Properties

Label 78.4.a.b
Level $78$
Weight $4$
Character orbit 78.a
Self dual yes
Analytic conductor $4.602$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,4,Mod(1,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 78.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.60214898045\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 16 q^{5} - 6 q^{6} - 8 q^{7} - 8 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 16 q^{5} - 6 q^{6} - 8 q^{7} - 8 q^{8} + 9 q^{9} + 32 q^{10} - 38 q^{11} + 12 q^{12} - 13 q^{13} + 16 q^{14} - 48 q^{15} + 16 q^{16} - 78 q^{17} - 18 q^{18} - 72 q^{19} - 64 q^{20} - 24 q^{21} + 76 q^{22} - 52 q^{23} - 24 q^{24} + 131 q^{25} + 26 q^{26} + 27 q^{27} - 32 q^{28} + 242 q^{29} + 96 q^{30} + 76 q^{31} - 32 q^{32} - 114 q^{33} + 156 q^{34} + 128 q^{35} + 36 q^{36} + 342 q^{37} + 144 q^{38} - 39 q^{39} + 128 q^{40} - 336 q^{41} + 48 q^{42} + 76 q^{43} - 152 q^{44} - 144 q^{45} + 104 q^{46} + 94 q^{47} + 48 q^{48} - 279 q^{49} - 262 q^{50} - 234 q^{51} - 52 q^{52} - 450 q^{53} - 54 q^{54} + 608 q^{55} + 64 q^{56} - 216 q^{57} - 484 q^{58} + 854 q^{59} - 192 q^{60} - 110 q^{61} - 152 q^{62} - 72 q^{63} + 64 q^{64} + 208 q^{65} + 228 q^{66} - 908 q^{67} - 312 q^{68} - 156 q^{69} - 256 q^{70} + 838 q^{71} - 72 q^{72} - 970 q^{73} - 684 q^{74} + 393 q^{75} - 288 q^{76} + 304 q^{77} + 78 q^{78} - 352 q^{79} - 256 q^{80} + 81 q^{81} + 672 q^{82} + 474 q^{83} - 96 q^{84} + 1248 q^{85} - 152 q^{86} + 726 q^{87} + 304 q^{88} - 1452 q^{89} + 288 q^{90} + 104 q^{91} - 208 q^{92} + 228 q^{93} - 188 q^{94} + 1152 q^{95} - 96 q^{96} - 562 q^{97} + 558 q^{98} - 342 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 3.00000 4.00000 −16.0000 −6.00000 −8.00000 −8.00000 9.00000 32.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 78.4.a.b 1
3.b odd 2 1 234.4.a.j 1
4.b odd 2 1 624.4.a.a 1
5.b even 2 1 1950.4.a.k 1
8.b even 2 1 2496.4.a.h 1
8.d odd 2 1 2496.4.a.p 1
12.b even 2 1 1872.4.a.p 1
13.b even 2 1 1014.4.a.k 1
13.d odd 4 2 1014.4.b.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.4.a.b 1 1.a even 1 1 trivial
234.4.a.j 1 3.b odd 2 1
624.4.a.a 1 4.b odd 2 1
1014.4.a.k 1 13.b even 2 1
1014.4.b.f 2 13.d odd 4 2
1872.4.a.p 1 12.b even 2 1
1950.4.a.k 1 5.b even 2 1
2496.4.a.h 1 8.b even 2 1
2496.4.a.p 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(78))\):

\( T_{5} + 16 \) Copy content Toggle raw display
\( T_{7} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 16 \) Copy content Toggle raw display
$7$ \( T + 8 \) Copy content Toggle raw display
$11$ \( T + 38 \) Copy content Toggle raw display
$13$ \( T + 13 \) Copy content Toggle raw display
$17$ \( T + 78 \) Copy content Toggle raw display
$19$ \( T + 72 \) Copy content Toggle raw display
$23$ \( T + 52 \) Copy content Toggle raw display
$29$ \( T - 242 \) Copy content Toggle raw display
$31$ \( T - 76 \) Copy content Toggle raw display
$37$ \( T - 342 \) Copy content Toggle raw display
$41$ \( T + 336 \) Copy content Toggle raw display
$43$ \( T - 76 \) Copy content Toggle raw display
$47$ \( T - 94 \) Copy content Toggle raw display
$53$ \( T + 450 \) Copy content Toggle raw display
$59$ \( T - 854 \) Copy content Toggle raw display
$61$ \( T + 110 \) Copy content Toggle raw display
$67$ \( T + 908 \) Copy content Toggle raw display
$71$ \( T - 838 \) Copy content Toggle raw display
$73$ \( T + 970 \) Copy content Toggle raw display
$79$ \( T + 352 \) Copy content Toggle raw display
$83$ \( T - 474 \) Copy content Toggle raw display
$89$ \( T + 1452 \) Copy content Toggle raw display
$97$ \( T + 562 \) Copy content Toggle raw display
show more
show less