# Properties

 Label 78.4.a.b Level $78$ Weight $4$ Character orbit 78.a Self dual yes Analytic conductor $4.602$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [78,4,Mod(1,78)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(78, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("78.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$78 = 2 \cdot 3 \cdot 13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 78.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.60214898045$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 16 q^{5} - 6 q^{6} - 8 q^{7} - 8 q^{8} + 9 q^{9}+O(q^{10})$$ q - 2 * q^2 + 3 * q^3 + 4 * q^4 - 16 * q^5 - 6 * q^6 - 8 * q^7 - 8 * q^8 + 9 * q^9 $$q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 16 q^{5} - 6 q^{6} - 8 q^{7} - 8 q^{8} + 9 q^{9} + 32 q^{10} - 38 q^{11} + 12 q^{12} - 13 q^{13} + 16 q^{14} - 48 q^{15} + 16 q^{16} - 78 q^{17} - 18 q^{18} - 72 q^{19} - 64 q^{20} - 24 q^{21} + 76 q^{22} - 52 q^{23} - 24 q^{24} + 131 q^{25} + 26 q^{26} + 27 q^{27} - 32 q^{28} + 242 q^{29} + 96 q^{30} + 76 q^{31} - 32 q^{32} - 114 q^{33} + 156 q^{34} + 128 q^{35} + 36 q^{36} + 342 q^{37} + 144 q^{38} - 39 q^{39} + 128 q^{40} - 336 q^{41} + 48 q^{42} + 76 q^{43} - 152 q^{44} - 144 q^{45} + 104 q^{46} + 94 q^{47} + 48 q^{48} - 279 q^{49} - 262 q^{50} - 234 q^{51} - 52 q^{52} - 450 q^{53} - 54 q^{54} + 608 q^{55} + 64 q^{56} - 216 q^{57} - 484 q^{58} + 854 q^{59} - 192 q^{60} - 110 q^{61} - 152 q^{62} - 72 q^{63} + 64 q^{64} + 208 q^{65} + 228 q^{66} - 908 q^{67} - 312 q^{68} - 156 q^{69} - 256 q^{70} + 838 q^{71} - 72 q^{72} - 970 q^{73} - 684 q^{74} + 393 q^{75} - 288 q^{76} + 304 q^{77} + 78 q^{78} - 352 q^{79} - 256 q^{80} + 81 q^{81} + 672 q^{82} + 474 q^{83} - 96 q^{84} + 1248 q^{85} - 152 q^{86} + 726 q^{87} + 304 q^{88} - 1452 q^{89} + 288 q^{90} + 104 q^{91} - 208 q^{92} + 228 q^{93} - 188 q^{94} + 1152 q^{95} - 96 q^{96} - 562 q^{97} + 558 q^{98} - 342 q^{99}+O(q^{100})$$ q - 2 * q^2 + 3 * q^3 + 4 * q^4 - 16 * q^5 - 6 * q^6 - 8 * q^7 - 8 * q^8 + 9 * q^9 + 32 * q^10 - 38 * q^11 + 12 * q^12 - 13 * q^13 + 16 * q^14 - 48 * q^15 + 16 * q^16 - 78 * q^17 - 18 * q^18 - 72 * q^19 - 64 * q^20 - 24 * q^21 + 76 * q^22 - 52 * q^23 - 24 * q^24 + 131 * q^25 + 26 * q^26 + 27 * q^27 - 32 * q^28 + 242 * q^29 + 96 * q^30 + 76 * q^31 - 32 * q^32 - 114 * q^33 + 156 * q^34 + 128 * q^35 + 36 * q^36 + 342 * q^37 + 144 * q^38 - 39 * q^39 + 128 * q^40 - 336 * q^41 + 48 * q^42 + 76 * q^43 - 152 * q^44 - 144 * q^45 + 104 * q^46 + 94 * q^47 + 48 * q^48 - 279 * q^49 - 262 * q^50 - 234 * q^51 - 52 * q^52 - 450 * q^53 - 54 * q^54 + 608 * q^55 + 64 * q^56 - 216 * q^57 - 484 * q^58 + 854 * q^59 - 192 * q^60 - 110 * q^61 - 152 * q^62 - 72 * q^63 + 64 * q^64 + 208 * q^65 + 228 * q^66 - 908 * q^67 - 312 * q^68 - 156 * q^69 - 256 * q^70 + 838 * q^71 - 72 * q^72 - 970 * q^73 - 684 * q^74 + 393 * q^75 - 288 * q^76 + 304 * q^77 + 78 * q^78 - 352 * q^79 - 256 * q^80 + 81 * q^81 + 672 * q^82 + 474 * q^83 - 96 * q^84 + 1248 * q^85 - 152 * q^86 + 726 * q^87 + 304 * q^88 - 1452 * q^89 + 288 * q^90 + 104 * q^91 - 208 * q^92 + 228 * q^93 - 188 * q^94 + 1152 * q^95 - 96 * q^96 - 562 * q^97 + 558 * q^98 - 342 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−2.00000 3.00000 4.00000 −16.0000 −6.00000 −8.00000 −8.00000 9.00000 32.0000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$3$$ $$-1$$
$$13$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 78.4.a.b 1
3.b odd 2 1 234.4.a.j 1
4.b odd 2 1 624.4.a.a 1
5.b even 2 1 1950.4.a.k 1
8.b even 2 1 2496.4.a.h 1
8.d odd 2 1 2496.4.a.p 1
12.b even 2 1 1872.4.a.p 1
13.b even 2 1 1014.4.a.k 1
13.d odd 4 2 1014.4.b.f 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.4.a.b 1 1.a even 1 1 trivial
234.4.a.j 1 3.b odd 2 1
624.4.a.a 1 4.b odd 2 1
1014.4.a.k 1 13.b even 2 1
1014.4.b.f 2 13.d odd 4 2
1872.4.a.p 1 12.b even 2 1
1950.4.a.k 1 5.b even 2 1
2496.4.a.h 1 8.b even 2 1
2496.4.a.p 1 8.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(78))$$:

 $$T_{5} + 16$$ T5 + 16 $$T_{7} + 8$$ T7 + 8

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 2$$
$3$ $$T - 3$$
$5$ $$T + 16$$
$7$ $$T + 8$$
$11$ $$T + 38$$
$13$ $$T + 13$$
$17$ $$T + 78$$
$19$ $$T + 72$$
$23$ $$T + 52$$
$29$ $$T - 242$$
$31$ $$T - 76$$
$37$ $$T - 342$$
$41$ $$T + 336$$
$43$ $$T - 76$$
$47$ $$T - 94$$
$53$ $$T + 450$$
$59$ $$T - 854$$
$61$ $$T + 110$$
$67$ $$T + 908$$
$71$ $$T - 838$$
$73$ $$T + 970$$
$79$ $$T + 352$$
$83$ $$T - 474$$
$89$ $$T + 1452$$
$97$ $$T + 562$$