Properties

Label 78.4
Level 78
Weight 4
Dimension 124
Nonzero newspaces 6
Newform subspaces 16
Sturm bound 1344
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 16 \)
Sturm bound: \(1344\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(78))\).

Total New Old
Modular forms 552 124 428
Cusp forms 456 124 332
Eisenstein series 96 0 96

Trace form

\( 124 q + 4 q^{2} + 6 q^{3} - 8 q^{4} - 12 q^{5} - 12 q^{6} - 112 q^{7} - 32 q^{8} - 18 q^{9} + 204 q^{10} + 216 q^{11} + 72 q^{12} + 538 q^{13} + 176 q^{14} + 180 q^{15} - 32 q^{16} - 222 q^{17} - 72 q^{18}+ \cdots + 6624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(78))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
78.4.a \(\chi_{78}(1, \cdot)\) 78.4.a.a 1 1
78.4.a.b 1
78.4.a.c 1
78.4.a.d 1
78.4.a.e 1
78.4.a.f 1
78.4.b \(\chi_{78}(25, \cdot)\) 78.4.b.a 2 1
78.4.b.b 4
78.4.e \(\chi_{78}(55, \cdot)\) 78.4.e.a 2 2
78.4.e.b 4
78.4.e.c 4
78.4.e.d 6
78.4.g \(\chi_{78}(5, \cdot)\) 78.4.g.a 28 2
78.4.i \(\chi_{78}(43, \cdot)\) 78.4.i.a 4 2
78.4.i.b 8
78.4.k \(\chi_{78}(11, \cdot)\) 78.4.k.a 56 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(78))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(78)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 2}\)