Properties

Label 78.3.l.c.7.2
Level $78$
Weight $3$
Character 78.7
Analytic conductor $2.125$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,3,Mod(7,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 78.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.12534606201\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 82x^{5} + 5053x^{4} - 6736x^{3} + 6728x^{2} + 275384x + 5635876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.2
Root \(5.02578 - 5.02578i\) of defining polynomial
Character \(\chi\) \(=\) 78.7
Dual form 78.3.l.c.67.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(0.866025 - 1.50000i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.02578 + 4.02578i) q^{5} +(0.633975 - 2.36603i) q^{6} +(-4.99932 - 1.33956i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(0.866025 - 1.50000i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.02578 + 4.02578i) q^{5} +(0.633975 - 2.36603i) q^{6} +(-4.99932 - 1.33956i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-1.50000 - 2.59808i) q^{9} +(6.97286 + 4.02578i) q^{10} +(-3.41118 - 12.7307i) q^{11} -3.46410i q^{12} +(3.81310 + 12.4282i) q^{13} -7.31952 q^{14} +(9.52511 - 2.55225i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-16.3290 + 9.42753i) q^{17} +(-3.00000 - 3.00000i) q^{18} +(-7.85591 + 29.3187i) q^{19} +(10.9986 + 2.94708i) q^{20} +(-6.33889 + 6.33889i) q^{21} +(-9.31952 - 16.1419i) q^{22} +(-10.4840 - 6.05292i) q^{23} +(-1.26795 - 4.73205i) q^{24} +7.41388i q^{25} +(9.75784 + 15.5815i) q^{26} -5.19615 q^{27} +(-9.99865 + 2.67913i) q^{28} +(18.4722 - 31.9948i) q^{29} +(12.0774 - 6.97286i) q^{30} +(-6.48248 - 6.48248i) q^{31} +(1.46410 - 5.46410i) q^{32} +(-22.0502 - 5.90834i) q^{33} +(-18.8551 + 18.8551i) q^{34} +(-14.7334 - 25.5190i) q^{35} +(-5.19615 - 3.00000i) q^{36} +(13.6094 + 50.7908i) q^{37} +42.9255i q^{38} +(21.9446 + 5.04348i) q^{39} +16.1031 q^{40} +(-6.38053 + 1.70966i) q^{41} +(-6.33889 + 10.9793i) q^{42} +(11.7826 - 6.80268i) q^{43} +(-18.6390 - 18.6390i) q^{44} +(4.42062 - 16.4980i) q^{45} +(-16.5369 - 4.43105i) q^{46} +(61.6060 - 61.6060i) q^{47} +(-3.46410 - 6.00000i) q^{48} +(-19.2364 - 11.1062i) q^{49} +(2.71367 + 10.1276i) q^{50} +32.6579i q^{51} +(19.0327 + 17.7132i) q^{52} +4.64409 q^{53} +(-7.09808 + 1.90192i) q^{54} +(37.5184 - 64.9837i) q^{55} +(-12.6778 + 7.31952i) q^{56} +(37.1746 + 37.1746i) q^{57} +(13.5226 - 50.4670i) q^{58} +(24.1018 + 6.45805i) q^{59} +(13.9457 - 13.9457i) q^{60} +(-19.2713 - 33.3788i) q^{61} +(-11.2280 - 6.48248i) q^{62} +(4.01869 + 14.9980i) q^{63} -8.00000i q^{64} +(-34.6825 + 65.3840i) q^{65} -32.2838 q^{66} +(91.8346 - 24.6070i) q^{67} +(-18.8551 + 32.6579i) q^{68} +(-18.1588 + 10.4840i) q^{69} +(-29.4668 - 29.4668i) q^{70} +(10.5106 - 39.2261i) q^{71} +(-8.19615 - 2.19615i) q^{72} +(60.4486 - 60.4486i) q^{73} +(37.1815 + 64.4002i) q^{74} +(11.1208 + 6.42061i) q^{75} +(15.7118 + 58.6373i) q^{76} +68.2144i q^{77} +(31.8229 - 1.14274i) q^{78} -94.2854 q^{79} +(21.9973 - 5.89416i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(-8.09018 + 4.67087i) q^{82} +(-63.4890 - 63.4890i) q^{83} +(-4.64039 + 17.3182i) q^{84} +(-103.690 - 27.7837i) q^{85} +(13.6054 - 13.6054i) q^{86} +(-31.9948 - 55.4166i) q^{87} +(-32.2838 - 18.6390i) q^{88} +(40.3655 + 150.646i) q^{89} -24.1547i q^{90} +(-2.41456 - 67.2405i) q^{91} -24.2117 q^{92} +(-15.3377 + 4.10973i) q^{93} +(61.6060 - 106.705i) q^{94} +(-149.657 + 86.4044i) q^{95} +(-6.92820 - 6.92820i) q^{96} +(-39.2736 + 146.571i) q^{97} +(-30.3426 - 8.13028i) q^{98} +(-27.9586 + 27.9586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9} - 6 q^{10} + 24 q^{11} + 4 q^{14} - 12 q^{15} + 16 q^{16} - 84 q^{17} - 24 q^{18} + 10 q^{19} - 12 q^{20} + 18 q^{21} - 12 q^{22} - 12 q^{23} - 24 q^{24} + 26 q^{26} + 20 q^{28} + 36 q^{29} - 18 q^{30} - 94 q^{31} - 16 q^{32} + 60 q^{34} - 204 q^{35} + 140 q^{37} + 66 q^{39} - 24 q^{40} + 72 q^{41} + 18 q^{42} - 222 q^{43} - 24 q^{44} - 84 q^{46} + 300 q^{47} + 42 q^{49} - 62 q^{50} + 44 q^{52} + 84 q^{53} - 36 q^{54} + 396 q^{55} + 36 q^{56} + 24 q^{57} - 66 q^{58} - 60 q^{59} - 12 q^{60} - 90 q^{61} + 198 q^{62} - 24 q^{63} - 108 q^{65} + 72 q^{66} + 304 q^{67} + 60 q^{68} - 216 q^{69} - 408 q^{70} - 192 q^{71} - 24 q^{72} + 16 q^{73} - 46 q^{74} + 312 q^{75} - 20 q^{76} + 114 q^{78} - 96 q^{79} - 24 q^{80} - 36 q^{81} + 114 q^{82} - 12 q^{84} - 390 q^{85} + 168 q^{86} + 30 q^{87} + 72 q^{88} + 354 q^{89} - 218 q^{91} - 288 q^{92} - 42 q^{93} + 300 q^{94} - 576 q^{95} - 460 q^{97} + 58 q^{98} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(67\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) 0.866025 1.50000i 0.288675 0.500000i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 4.02578 + 4.02578i 0.805157 + 0.805157i 0.983896 0.178740i \(-0.0572019\pi\)
−0.178740 + 0.983896i \(0.557202\pi\)
\(6\) 0.633975 2.36603i 0.105662 0.394338i
\(7\) −4.99932 1.33956i −0.714189 0.191366i −0.116612 0.993178i \(-0.537203\pi\)
−0.597577 + 0.801811i \(0.703870\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −1.50000 2.59808i −0.166667 0.288675i
\(10\) 6.97286 + 4.02578i 0.697286 + 0.402578i
\(11\) −3.41118 12.7307i −0.310107 1.15734i −0.928459 0.371435i \(-0.878866\pi\)
0.618352 0.785901i \(-0.287801\pi\)
\(12\) 3.46410i 0.288675i
\(13\) 3.81310 + 12.4282i 0.293316 + 0.956016i
\(14\) −7.31952 −0.522823
\(15\) 9.52511 2.55225i 0.635007 0.170150i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −16.3290 + 9.42753i −0.960527 + 0.554560i −0.896335 0.443377i \(-0.853780\pi\)
−0.0641917 + 0.997938i \(0.520447\pi\)
\(18\) −3.00000 3.00000i −0.166667 0.166667i
\(19\) −7.85591 + 29.3187i −0.413469 + 1.54309i 0.374413 + 0.927262i \(0.377844\pi\)
−0.787883 + 0.615826i \(0.788823\pi\)
\(20\) 10.9986 + 2.94708i 0.549932 + 0.147354i
\(21\) −6.33889 + 6.33889i −0.301852 + 0.301852i
\(22\) −9.31952 16.1419i −0.423614 0.733722i
\(23\) −10.4840 6.05292i −0.455825 0.263170i 0.254462 0.967083i \(-0.418102\pi\)
−0.710287 + 0.703912i \(0.751435\pi\)
\(24\) −1.26795 4.73205i −0.0528312 0.197169i
\(25\) 7.41388i 0.296555i
\(26\) 9.75784 + 15.5815i 0.375301 + 0.599290i
\(27\) −5.19615 −0.192450
\(28\) −9.99865 + 2.67913i −0.357095 + 0.0956832i
\(29\) 18.4722 31.9948i 0.636972 1.10327i −0.349122 0.937077i \(-0.613520\pi\)
0.986094 0.166190i \(-0.0531467\pi\)
\(30\) 12.0774 6.97286i 0.402578 0.232429i
\(31\) −6.48248 6.48248i −0.209112 0.209112i 0.594778 0.803890i \(-0.297240\pi\)
−0.803890 + 0.594778i \(0.797240\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) −22.0502 5.90834i −0.668188 0.179041i
\(34\) −18.8551 + 18.8551i −0.554560 + 0.554560i
\(35\) −14.7334 25.5190i −0.420954 0.729114i
\(36\) −5.19615 3.00000i −0.144338 0.0833333i
\(37\) 13.6094 + 50.7908i 0.367821 + 1.37273i 0.863556 + 0.504252i \(0.168232\pi\)
−0.495736 + 0.868473i \(0.665102\pi\)
\(38\) 42.9255i 1.12962i
\(39\) 21.9446 + 5.04348i 0.562681 + 0.129320i
\(40\) 16.1031 0.402578
\(41\) −6.38053 + 1.70966i −0.155623 + 0.0416989i −0.335789 0.941937i \(-0.609003\pi\)
0.180167 + 0.983636i \(0.442336\pi\)
\(42\) −6.33889 + 10.9793i −0.150926 + 0.261411i
\(43\) 11.7826 6.80268i 0.274014 0.158202i −0.356697 0.934220i \(-0.616097\pi\)
0.630710 + 0.776018i \(0.282764\pi\)
\(44\) −18.6390 18.6390i −0.423614 0.423614i
\(45\) 4.42062 16.4980i 0.0982360 0.366622i
\(46\) −16.5369 4.43105i −0.359498 0.0963271i
\(47\) 61.6060 61.6060i 1.31077 1.31077i 0.389914 0.920851i \(-0.372505\pi\)
0.920851 0.389914i \(-0.127495\pi\)
\(48\) −3.46410 6.00000i −0.0721688 0.125000i
\(49\) −19.2364 11.1062i −0.392580 0.226656i
\(50\) 2.71367 + 10.1276i 0.0542734 + 0.202551i
\(51\) 32.6579i 0.640351i
\(52\) 19.0327 + 17.7132i 0.366013 + 0.340638i
\(53\) 4.64409 0.0876244 0.0438122 0.999040i \(-0.486050\pi\)
0.0438122 + 0.999040i \(0.486050\pi\)
\(54\) −7.09808 + 1.90192i −0.131446 + 0.0352208i
\(55\) 37.5184 64.9837i 0.682152 1.18152i
\(56\) −12.6778 + 7.31952i −0.226389 + 0.130706i
\(57\) 37.1746 + 37.1746i 0.652185 + 0.652185i
\(58\) 13.5226 50.4670i 0.233148 0.870120i
\(59\) 24.1018 + 6.45805i 0.408505 + 0.109459i 0.457219 0.889354i \(-0.348846\pi\)
−0.0487140 + 0.998813i \(0.515512\pi\)
\(60\) 13.9457 13.9457i 0.232429 0.232429i
\(61\) −19.2713 33.3788i −0.315923 0.547194i 0.663710 0.747990i \(-0.268981\pi\)
−0.979633 + 0.200795i \(0.935647\pi\)
\(62\) −11.2280 6.48248i −0.181097 0.104556i
\(63\) 4.01869 + 14.9980i 0.0637888 + 0.238063i
\(64\) 8.00000i 0.125000i
\(65\) −34.6825 + 65.3840i −0.533577 + 1.00591i
\(66\) −32.2838 −0.489148
\(67\) 91.8346 24.6070i 1.37067 0.367269i 0.502944 0.864319i \(-0.332250\pi\)
0.867722 + 0.497050i \(0.165583\pi\)
\(68\) −18.8551 + 32.6579i −0.277280 + 0.480263i
\(69\) −18.1588 + 10.4840i −0.263170 + 0.151942i
\(70\) −29.4668 29.4668i −0.420954 0.420954i
\(71\) 10.5106 39.2261i 0.148037 0.552481i −0.851565 0.524250i \(-0.824346\pi\)
0.999601 0.0282312i \(-0.00898747\pi\)
\(72\) −8.19615 2.19615i −0.113835 0.0305021i
\(73\) 60.4486 60.4486i 0.828063 0.828063i −0.159186 0.987249i \(-0.550887\pi\)
0.987249 + 0.159186i \(0.0508869\pi\)
\(74\) 37.1815 + 64.4002i 0.502452 + 0.870273i
\(75\) 11.1208 + 6.42061i 0.148278 + 0.0856082i
\(76\) 15.7118 + 58.6373i 0.206735 + 0.771544i
\(77\) 68.2144i 0.885901i
\(78\) 31.8229 1.14274i 0.407985 0.0146505i
\(79\) −94.2854 −1.19349 −0.596743 0.802433i \(-0.703539\pi\)
−0.596743 + 0.802433i \(0.703539\pi\)
\(80\) 21.9973 5.89416i 0.274966 0.0736770i
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) −8.09018 + 4.67087i −0.0986608 + 0.0569618i
\(83\) −63.4890 63.4890i −0.764928 0.764928i 0.212281 0.977209i \(-0.431911\pi\)
−0.977209 + 0.212281i \(0.931911\pi\)
\(84\) −4.64039 + 17.3182i −0.0552427 + 0.206169i
\(85\) −103.690 27.7837i −1.21988 0.326867i
\(86\) 13.6054 13.6054i 0.158202 0.158202i
\(87\) −31.9948 55.4166i −0.367756 0.636972i
\(88\) −32.2838 18.6390i −0.366861 0.211807i
\(89\) 40.3655 + 150.646i 0.453545 + 1.69265i 0.692330 + 0.721581i \(0.256584\pi\)
−0.238784 + 0.971073i \(0.576749\pi\)
\(90\) 24.1547i 0.268386i
\(91\) −2.41456 67.2405i −0.0265336 0.738907i
\(92\) −24.2117 −0.263170
\(93\) −15.3377 + 4.10973i −0.164922 + 0.0441906i
\(94\) 61.6060 106.705i 0.655383 1.13516i
\(95\) −149.657 + 86.4044i −1.57534 + 0.909520i
\(96\) −6.92820 6.92820i −0.0721688 0.0721688i
\(97\) −39.2736 + 146.571i −0.404882 + 1.51104i 0.399391 + 0.916781i \(0.369222\pi\)
−0.804273 + 0.594260i \(0.797445\pi\)
\(98\) −30.3426 8.13028i −0.309618 0.0829620i
\(99\) −27.9586 + 27.9586i −0.282410 + 0.282410i
\(100\) 7.41388 + 12.8412i 0.0741388 + 0.128412i
\(101\) 39.8138 + 22.9865i 0.394196 + 0.227589i 0.683977 0.729504i \(-0.260249\pi\)
−0.289781 + 0.957093i \(0.593582\pi\)
\(102\) 11.9536 + 44.6115i 0.117192 + 0.437368i
\(103\) 92.8099i 0.901067i 0.892759 + 0.450534i \(0.148766\pi\)
−0.892759 + 0.450534i \(0.851234\pi\)
\(104\) 32.4826 + 17.2302i 0.312333 + 0.165675i
\(105\) −51.0380 −0.486076
\(106\) 6.34395 1.69986i 0.0598486 0.0160364i
\(107\) −37.6202 + 65.1600i −0.351590 + 0.608972i −0.986528 0.163591i \(-0.947692\pi\)
0.634938 + 0.772563i \(0.281026\pi\)
\(108\) −9.00000 + 5.19615i −0.0833333 + 0.0481125i
\(109\) −46.0551 46.0551i −0.422524 0.422524i 0.463548 0.886072i \(-0.346576\pi\)
−0.886072 + 0.463548i \(0.846576\pi\)
\(110\) 27.4654 102.502i 0.249685 0.931837i
\(111\) 87.9723 + 23.5721i 0.792544 + 0.212361i
\(112\) −14.6390 + 14.6390i −0.130706 + 0.130706i
\(113\) −78.2467 135.527i −0.692449 1.19936i −0.971033 0.238945i \(-0.923199\pi\)
0.278585 0.960412i \(-0.410135\pi\)
\(114\) 64.3882 + 37.1746i 0.564809 + 0.326093i
\(115\) −17.8384 66.5739i −0.155117 0.578904i
\(116\) 73.8888i 0.636972i
\(117\) 26.5698 28.5490i 0.227092 0.244009i
\(118\) 35.2875 0.299046
\(119\) 94.2625 25.2576i 0.792122 0.212248i
\(120\) 13.9457 24.1547i 0.116214 0.201289i
\(121\) −45.6455 + 26.3534i −0.377235 + 0.217797i
\(122\) −38.5426 38.5426i −0.315923 0.315923i
\(123\) −2.96121 + 11.0514i −0.0240749 + 0.0898487i
\(124\) −17.7105 4.74551i −0.142826 0.0382702i
\(125\) 70.7979 70.7979i 0.566383 0.566383i
\(126\) 10.9793 + 19.0167i 0.0871371 + 0.150926i
\(127\) 158.809 + 91.6886i 1.25047 + 0.721957i 0.971202 0.238257i \(-0.0765760\pi\)
0.279265 + 0.960214i \(0.409909\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 23.5652i 0.182676i
\(130\) −23.4450 + 102.011i −0.180346 + 0.784699i
\(131\) −151.996 −1.16027 −0.580137 0.814519i \(-0.697001\pi\)
−0.580137 + 0.814519i \(0.697001\pi\)
\(132\) −44.1004 + 11.8167i −0.334094 + 0.0895203i
\(133\) 78.5485 136.050i 0.590590 1.02293i
\(134\) 116.442 67.2276i 0.868968 0.501699i
\(135\) −20.9186 20.9186i −0.154953 0.154953i
\(136\) −13.8029 + 51.5130i −0.101492 + 0.378772i
\(137\) 232.278 + 62.2386i 1.69546 + 0.454297i 0.971789 0.235851i \(-0.0757876\pi\)
0.723669 + 0.690147i \(0.242454\pi\)
\(138\) −20.9679 + 20.9679i −0.151942 + 0.151942i
\(139\) 92.7313 + 160.615i 0.667132 + 1.15551i 0.978703 + 0.205283i \(0.0658115\pi\)
−0.311571 + 0.950223i \(0.600855\pi\)
\(140\) −51.0380 29.4668i −0.364557 0.210477i
\(141\) −39.0566 145.761i −0.276997 1.03377i
\(142\) 57.4311i 0.404444i
\(143\) 145.213 90.9383i 1.01547 0.635932i
\(144\) −12.0000 −0.0833333
\(145\) 203.169 54.4390i 1.40117 0.375441i
\(146\) 60.4486 104.700i 0.414031 0.717123i
\(147\) −33.3185 + 19.2364i −0.226656 + 0.130860i
\(148\) 74.3630 + 74.3630i 0.502452 + 0.502452i
\(149\) −4.67634 + 17.4523i −0.0313848 + 0.117130i −0.979841 0.199778i \(-0.935978\pi\)
0.948456 + 0.316908i \(0.102645\pi\)
\(150\) 17.5414 + 4.70021i 0.116943 + 0.0313348i
\(151\) −95.4196 + 95.4196i −0.631918 + 0.631918i −0.948549 0.316631i \(-0.897448\pi\)
0.316631 + 0.948549i \(0.397448\pi\)
\(152\) 42.9255 + 74.3491i 0.282405 + 0.489139i
\(153\) 48.9869 + 28.2826i 0.320176 + 0.184853i
\(154\) 24.9682 + 93.1826i 0.162131 + 0.605082i
\(155\) 52.1942i 0.336736i
\(156\) 43.0526 13.2090i 0.275978 0.0846730i
\(157\) −195.116 −1.24278 −0.621389 0.783502i \(-0.713431\pi\)
−0.621389 + 0.783502i \(0.713431\pi\)
\(158\) −128.796 + 34.5108i −0.815166 + 0.218423i
\(159\) 4.02190 6.96614i 0.0252950 0.0438122i
\(160\) 27.8915 16.1031i 0.174322 0.100645i
\(161\) 44.3045 + 44.3045i 0.275183 + 0.275183i
\(162\) −3.29423 + 12.2942i −0.0203347 + 0.0758903i
\(163\) −119.531 32.0282i −0.733319 0.196492i −0.127212 0.991876i \(-0.540603\pi\)
−0.606107 + 0.795383i \(0.707270\pi\)
\(164\) −9.34174 + 9.34174i −0.0569618 + 0.0569618i
\(165\) −64.9837 112.555i −0.393841 0.682152i
\(166\) −109.966 63.4890i −0.662447 0.382464i
\(167\) 32.1530 + 119.997i 0.192533 + 0.718542i 0.992892 + 0.119021i \(0.0379756\pi\)
−0.800359 + 0.599521i \(0.795358\pi\)
\(168\) 25.3556i 0.150926i
\(169\) −139.920 + 94.7801i −0.827932 + 0.560829i
\(170\) −151.813 −0.893016
\(171\) 87.9560 23.5677i 0.514362 0.137823i
\(172\) 13.6054 23.5652i 0.0791009 0.137007i
\(173\) 103.214 59.5906i 0.596612 0.344454i −0.171096 0.985254i \(-0.554731\pi\)
0.767708 + 0.640800i \(0.221397\pi\)
\(174\) −63.9895 63.9895i −0.367756 0.367756i
\(175\) 9.93138 37.0644i 0.0567507 0.211797i
\(176\) −50.9228 13.6447i −0.289334 0.0775268i
\(177\) 30.5598 30.5598i 0.172654 0.172654i
\(178\) 110.281 + 191.012i 0.619554 + 1.07310i
\(179\) −185.772 107.255i −1.03783 0.599192i −0.118613 0.992941i \(-0.537845\pi\)
−0.919218 + 0.393748i \(0.871178\pi\)
\(180\) −8.84124 32.9959i −0.0491180 0.183311i
\(181\) 343.720i 1.89901i −0.313755 0.949504i \(-0.601587\pi\)
0.313755 0.949504i \(-0.398413\pi\)
\(182\) −27.9101 90.9685i −0.153352 0.499827i
\(183\) −66.7577 −0.364796
\(184\) −33.0738 + 8.86209i −0.179749 + 0.0481635i
\(185\) −149.685 + 259.261i −0.809106 + 1.40141i
\(186\) −19.4474 + 11.2280i −0.104556 + 0.0603655i
\(187\) 175.720 + 175.720i 0.939679 + 0.939679i
\(188\) 45.0987 168.311i 0.239887 0.895270i
\(189\) 25.9773 + 6.96058i 0.137446 + 0.0368285i
\(190\) −172.809 + 172.809i −0.909520 + 0.909520i
\(191\) −124.859 216.262i −0.653712 1.13226i −0.982215 0.187760i \(-0.939877\pi\)
0.328503 0.944503i \(-0.393456\pi\)
\(192\) −12.0000 6.92820i −0.0625000 0.0360844i
\(193\) 35.0725 + 130.892i 0.181723 + 0.678199i 0.995308 + 0.0967539i \(0.0308460\pi\)
−0.813585 + 0.581445i \(0.802487\pi\)
\(194\) 214.595i 1.10616i
\(195\) 68.0401 + 108.648i 0.348923 + 0.557169i
\(196\) −44.4246 −0.226656
\(197\) −3.39652 + 0.910096i −0.0172412 + 0.00461977i −0.267429 0.963577i \(-0.586174\pi\)
0.250188 + 0.968197i \(0.419508\pi\)
\(198\) −27.9586 + 48.4256i −0.141205 + 0.244574i
\(199\) −229.666 + 132.598i −1.15410 + 0.666319i −0.949883 0.312606i \(-0.898798\pi\)
−0.204216 + 0.978926i \(0.565465\pi\)
\(200\) 14.8278 + 14.8278i 0.0741388 + 0.0741388i
\(201\) 42.6206 159.062i 0.212043 0.791355i
\(202\) 62.8003 + 16.8273i 0.310893 + 0.0833034i
\(203\) −135.208 + 135.208i −0.666047 + 0.666047i
\(204\) 32.6579 + 56.5652i 0.160088 + 0.277280i
\(205\) −32.5693 18.8039i −0.158875 0.0917264i
\(206\) 33.9708 + 126.781i 0.164907 + 0.615440i
\(207\) 36.3175i 0.175447i
\(208\) 50.6788 + 11.6474i 0.243648 + 0.0559972i
\(209\) 400.045 1.91409
\(210\) −69.7192 + 18.6812i −0.331996 + 0.0889581i
\(211\) 6.87066 11.9003i 0.0325624 0.0563997i −0.849285 0.527935i \(-0.822967\pi\)
0.881847 + 0.471535i \(0.156300\pi\)
\(212\) 8.04381 4.64409i 0.0379425 0.0219061i
\(213\) −49.7368 49.7368i −0.233506 0.233506i
\(214\) −27.5399 + 102.780i −0.128691 + 0.480281i
\(215\) 74.8202 + 20.0480i 0.348001 + 0.0932466i
\(216\) −10.3923 + 10.3923i −0.0481125 + 0.0481125i
\(217\) 23.7243 + 41.0917i 0.109329 + 0.189363i
\(218\) −79.7698 46.0551i −0.365917 0.211262i
\(219\) −38.3229 143.023i −0.174990 0.653072i
\(220\) 150.073i 0.682152i
\(221\) −179.431 166.991i −0.811906 0.755617i
\(222\) 128.800 0.580182
\(223\) 98.7837 26.4690i 0.442976 0.118695i −0.0304348 0.999537i \(-0.509689\pi\)
0.473411 + 0.880842i \(0.343023\pi\)
\(224\) −14.6390 + 25.3556i −0.0653528 + 0.113194i
\(225\) 19.2618 11.1208i 0.0856082 0.0494259i
\(226\) −156.493 156.493i −0.692449 0.692449i
\(227\) −59.9993 + 223.920i −0.264314 + 0.986433i 0.698355 + 0.715752i \(0.253916\pi\)
−0.962669 + 0.270682i \(0.912751\pi\)
\(228\) 101.563 + 27.2137i 0.445451 + 0.119358i
\(229\) 306.032 306.032i 1.33639 1.33639i 0.436854 0.899533i \(-0.356093\pi\)
0.899533 0.436854i \(-0.143907\pi\)
\(230\) −48.7355 84.4124i −0.211894 0.367010i
\(231\) 102.322 + 59.0754i 0.442951 + 0.255738i
\(232\) −27.0452 100.934i −0.116574 0.435060i
\(233\) 156.892i 0.673356i 0.941620 + 0.336678i \(0.109303\pi\)
−0.941620 + 0.336678i \(0.890697\pi\)
\(234\) 25.8453 48.7239i 0.110450 0.208222i
\(235\) 496.025 2.11074
\(236\) 48.2036 12.9161i 0.204252 0.0547293i
\(237\) −81.6535 + 141.428i −0.344530 + 0.596743i
\(238\) 119.520 69.0050i 0.502185 0.289937i
\(239\) 10.5731 + 10.5731i 0.0442390 + 0.0442390i 0.728880 0.684641i \(-0.240041\pi\)
−0.684641 + 0.728880i \(0.740041\pi\)
\(240\) 10.2090 38.1004i 0.0425374 0.158752i
\(241\) −227.506 60.9601i −0.944009 0.252946i −0.246191 0.969221i \(-0.579179\pi\)
−0.697818 + 0.716275i \(0.745846\pi\)
\(242\) −52.7068 + 52.7068i −0.217797 + 0.217797i
\(243\) 7.79423 + 13.5000i 0.0320750 + 0.0555556i
\(244\) −66.7577 38.5426i −0.273597 0.157961i
\(245\) −32.7307 122.153i −0.133595 0.498583i
\(246\) 16.1804i 0.0657738i
\(247\) −394.334 + 14.1602i −1.59649 + 0.0573289i
\(248\) −25.9299 −0.104556
\(249\) −150.217 + 40.2504i −0.603280 + 0.161648i
\(250\) 70.7979 122.626i 0.283192 0.490502i
\(251\) 66.6188 38.4624i 0.265414 0.153237i −0.361388 0.932416i \(-0.617697\pi\)
0.626802 + 0.779179i \(0.284364\pi\)
\(252\) 21.9586 + 21.9586i 0.0871371 + 0.0871371i
\(253\) −41.2952 + 154.116i −0.163222 + 0.609153i
\(254\) 250.498 + 67.1207i 0.986212 + 0.264255i
\(255\) −131.474 + 131.474i −0.515583 + 0.515583i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 55.0112 + 31.7607i 0.214051 + 0.123583i 0.603193 0.797595i \(-0.293895\pi\)
−0.389142 + 0.921178i \(0.627228\pi\)
\(258\) −8.62545 32.1906i −0.0334320 0.124770i
\(259\) 272.151i 1.05077i
\(260\) 5.31210 + 147.931i 0.0204311 + 0.568965i
\(261\) −110.833 −0.424648
\(262\) −207.630 + 55.6343i −0.792482 + 0.212345i
\(263\) −112.589 + 195.009i −0.428094 + 0.741481i −0.996704 0.0811268i \(-0.974148\pi\)
0.568610 + 0.822607i \(0.307481\pi\)
\(264\) −55.9171 + 32.2838i −0.211807 + 0.122287i
\(265\) 18.6961 + 18.6961i 0.0705514 + 0.0705514i
\(266\) 57.5015 214.598i 0.216171 0.806761i
\(267\) 260.927 + 69.9151i 0.977254 + 0.261854i
\(268\) 134.455 134.455i 0.501699 0.501699i
\(269\) −11.0720 19.1773i −0.0411600 0.0712912i 0.844712 0.535222i \(-0.179772\pi\)
−0.885872 + 0.463931i \(0.846439\pi\)
\(270\) −36.2321 20.9186i −0.134193 0.0774763i
\(271\) −38.5487 143.866i −0.142246 0.530869i −0.999863 0.0165796i \(-0.994722\pi\)
0.857617 0.514290i \(-0.171944\pi\)
\(272\) 75.4202i 0.277280i
\(273\) −102.952 54.6102i −0.377113 0.200037i
\(274\) 340.078 1.24116
\(275\) 94.3839 25.2901i 0.343214 0.0919640i
\(276\) −20.9679 + 36.3175i −0.0759708 + 0.131585i
\(277\) 175.448 101.295i 0.633388 0.365687i −0.148675 0.988886i \(-0.547501\pi\)
0.782063 + 0.623200i \(0.214168\pi\)
\(278\) 185.463 + 185.463i 0.667132 + 0.667132i
\(279\) −7.11826 + 26.5657i −0.0255135 + 0.0952176i
\(280\) −80.5048 21.5712i −0.287517 0.0770400i
\(281\) 44.0655 44.0655i 0.156817 0.156817i −0.624338 0.781154i \(-0.714631\pi\)
0.781154 + 0.624338i \(0.214631\pi\)
\(282\) −106.705 184.818i −0.378385 0.655383i
\(283\) −122.008 70.4411i −0.431122 0.248909i 0.268702 0.963223i \(-0.413405\pi\)
−0.699825 + 0.714315i \(0.746739\pi\)
\(284\) −21.0212 78.4523i −0.0740184 0.276240i
\(285\) 299.314i 1.05022i
\(286\) 165.078 177.376i 0.577197 0.620194i
\(287\) 34.1885 0.119124
\(288\) −16.3923 + 4.39230i −0.0569177 + 0.0152511i
\(289\) 33.2565 57.6020i 0.115075 0.199315i
\(290\) 257.608 148.730i 0.888304 0.512862i
\(291\) 185.844 + 185.844i 0.638641 + 0.638641i
\(292\) 44.2514 165.149i 0.151546 0.565577i
\(293\) −165.289 44.2892i −0.564128 0.151158i −0.0345257 0.999404i \(-0.510992\pi\)
−0.529602 + 0.848246i \(0.677659\pi\)
\(294\) −38.4729 + 38.4729i −0.130860 + 0.130860i
\(295\) 71.0299 + 123.027i 0.240779 + 0.417042i
\(296\) 128.800 + 74.3630i 0.435137 + 0.251226i
\(297\) 17.7250 + 66.1507i 0.0596802 + 0.222729i
\(298\) 25.5520i 0.0857449i
\(299\) 35.2505 153.377i 0.117895 0.512968i
\(300\) 25.6824 0.0856082
\(301\) −68.0176 + 18.2253i −0.225972 + 0.0605490i
\(302\) −95.4196 + 165.272i −0.315959 + 0.547257i
\(303\) 68.9595 39.8138i 0.227589 0.131399i
\(304\) 85.8510 + 85.8510i 0.282405 + 0.282405i
\(305\) 56.7940 211.958i 0.186210 0.694945i
\(306\) 77.2695 + 20.7043i 0.252515 + 0.0676611i
\(307\) −252.758 + 252.758i −0.823317 + 0.823317i −0.986582 0.163265i \(-0.947797\pi\)
0.163265 + 0.986582i \(0.447797\pi\)
\(308\) 68.2144 + 118.151i 0.221475 + 0.383606i
\(309\) 139.215 + 80.3758i 0.450534 + 0.260116i
\(310\) −19.1044 71.2985i −0.0616271 0.229995i
\(311\) 209.742i 0.674411i −0.941431 0.337206i \(-0.890518\pi\)
0.941431 0.337206i \(-0.109482\pi\)
\(312\) 53.9761 33.8021i 0.173000 0.108340i
\(313\) 386.143 1.23368 0.616842 0.787087i \(-0.288412\pi\)
0.616842 + 0.787087i \(0.288412\pi\)
\(314\) −266.534 + 71.4175i −0.848834 + 0.227444i
\(315\) −44.2002 + 76.5570i −0.140318 + 0.243038i
\(316\) −163.307 + 94.2854i −0.516794 + 0.298371i
\(317\) −114.759 114.759i −0.362016 0.362016i 0.502538 0.864555i \(-0.332400\pi\)
−0.864555 + 0.502538i \(0.832400\pi\)
\(318\) 2.94424 10.9880i 0.00925861 0.0345536i
\(319\) −470.328 126.024i −1.47438 0.395059i
\(320\) 32.2063 32.2063i 0.100645 0.100645i
\(321\) 65.1600 + 112.860i 0.202991 + 0.351590i
\(322\) 76.7376 + 44.3045i 0.238315 + 0.137592i
\(323\) −148.124 552.805i −0.458587 1.71147i
\(324\) 18.0000i 0.0555556i
\(325\) −92.1413 + 28.2699i −0.283512 + 0.0869843i
\(326\) −175.005 −0.536826
\(327\) −108.968 + 29.1978i −0.333234 + 0.0892899i
\(328\) −9.34174 + 16.1804i −0.0284809 + 0.0493304i
\(329\) −390.513 + 225.463i −1.18697 + 0.685298i
\(330\) −129.967 129.967i −0.393841 0.393841i
\(331\) −94.4880 + 352.634i −0.285462 + 1.06536i 0.663039 + 0.748585i \(0.269267\pi\)
−0.948501 + 0.316775i \(0.897400\pi\)
\(332\) −173.455 46.4772i −0.522456 0.139992i
\(333\) 111.544 111.544i 0.334968 0.334968i
\(334\) 87.8436 + 152.150i 0.263005 + 0.455538i
\(335\) 468.769 + 270.644i 1.39931 + 0.807892i
\(336\) 9.28078 + 34.6363i 0.0276214 + 0.103084i
\(337\) 385.355i 1.14349i 0.820432 + 0.571744i \(0.193733\pi\)
−0.820432 + 0.571744i \(0.806267\pi\)
\(338\) −156.443 + 180.686i −0.462849 + 0.534575i
\(339\) −271.055 −0.799571
\(340\) −207.380 + 55.5673i −0.609942 + 0.163433i
\(341\) −60.4136 + 104.639i −0.177166 + 0.306861i
\(342\) 111.524 64.3882i 0.326093 0.188270i
\(343\) 260.620 + 260.620i 0.759825 + 0.759825i
\(344\) 9.95981 37.1705i 0.0289529 0.108054i
\(345\) −115.309 30.8971i −0.334230 0.0895567i
\(346\) 119.181 119.181i 0.344454 0.344454i
\(347\) 11.9337 + 20.6697i 0.0343909 + 0.0595669i 0.882709 0.469921i \(-0.155718\pi\)
−0.848318 + 0.529488i \(0.822384\pi\)
\(348\) −110.833 63.9895i −0.318486 0.183878i
\(349\) −80.6742 301.080i −0.231158 0.862694i −0.979843 0.199768i \(-0.935981\pi\)
0.748685 0.662926i \(-0.230686\pi\)
\(350\) 54.2661i 0.155046i
\(351\) −19.8135 64.5788i −0.0564486 0.183985i
\(352\) −74.5561 −0.211807
\(353\) −546.864 + 146.532i −1.54919 + 0.415104i −0.929222 0.369523i \(-0.879521\pi\)
−0.619968 + 0.784627i \(0.712854\pi\)
\(354\) 30.5598 52.9312i 0.0863272 0.149523i
\(355\) 200.229 115.603i 0.564027 0.325641i
\(356\) 220.561 + 220.561i 0.619554 + 0.619554i
\(357\) 43.7474 163.267i 0.122542 0.457332i
\(358\) −293.027 78.5164i −0.818512 0.219320i
\(359\) −30.3760 + 30.3760i −0.0846129 + 0.0846129i −0.748146 0.663534i \(-0.769056\pi\)
0.663534 + 0.748146i \(0.269056\pi\)
\(360\) −24.1547 41.8372i −0.0670964 0.116214i
\(361\) −485.233 280.150i −1.34414 0.776038i
\(362\) −125.810 469.531i −0.347543 1.29705i
\(363\) 91.2909i 0.251490i
\(364\) −71.4227 114.049i −0.196216 0.313323i
\(365\) 486.706 1.33344
\(366\) −91.1927 + 24.4350i −0.249160 + 0.0667623i
\(367\) 226.506 392.320i 0.617182 1.06899i −0.372815 0.927906i \(-0.621607\pi\)
0.989997 0.141086i \(-0.0450593\pi\)
\(368\) −41.9359 + 24.2117i −0.113956 + 0.0657926i
\(369\) 14.0126 + 14.0126i 0.0379745 + 0.0379745i
\(370\) −109.577 + 408.946i −0.296153 + 1.10526i
\(371\) −23.2173 6.22107i −0.0625804 0.0167684i
\(372\) −22.4560 + 22.4560i −0.0603655 + 0.0603655i
\(373\) 203.654 + 352.740i 0.545991 + 0.945683i 0.998544 + 0.0539461i \(0.0171799\pi\)
−0.452553 + 0.891737i \(0.649487\pi\)
\(374\) 304.356 + 175.720i 0.813786 + 0.469840i
\(375\) −44.8841 167.510i −0.119691 0.446692i
\(376\) 246.424i 0.655383i
\(377\) 468.074 + 107.577i 1.24158 + 0.285349i
\(378\) 38.0333 0.100617
\(379\) −10.1914 + 2.73079i −0.0268903 + 0.00720524i −0.272239 0.962230i \(-0.587764\pi\)
0.245349 + 0.969435i \(0.421098\pi\)
\(380\) −172.809 + 299.314i −0.454760 + 0.787668i
\(381\) 275.066 158.809i 0.721957 0.416822i
\(382\) −249.718 249.718i −0.653712 0.653712i
\(383\) −127.444 + 475.626i −0.332751 + 1.24184i 0.573535 + 0.819181i \(0.305571\pi\)
−0.906287 + 0.422664i \(0.861095\pi\)
\(384\) −18.9282 5.07180i −0.0492922 0.0132078i
\(385\) −274.616 + 274.616i −0.713289 + 0.713289i
\(386\) 95.8199 + 165.965i 0.248238 + 0.429961i
\(387\) −35.3477 20.4080i −0.0913378 0.0527339i
\(388\) 78.5471 + 293.142i 0.202441 + 0.755520i
\(389\) 61.5695i 0.158276i −0.996864 0.0791382i \(-0.974783\pi\)
0.996864 0.0791382i \(-0.0252168\pi\)
\(390\) 132.712 + 123.512i 0.340288 + 0.316696i
\(391\) 228.256 0.583776
\(392\) −60.6852 + 16.2606i −0.154809 + 0.0414810i
\(393\) −131.632 + 227.994i −0.334942 + 0.580137i
\(394\) −4.30662 + 2.48643i −0.0109305 + 0.00631073i
\(395\) −379.573 379.573i −0.960943 0.960943i
\(396\) −20.4671 + 76.3842i −0.0516846 + 0.192889i
\(397\) 196.078 + 52.5390i 0.493899 + 0.132340i 0.497167 0.867655i \(-0.334374\pi\)
−0.00326782 + 0.999995i \(0.501040\pi\)
\(398\) −265.195 + 265.195i −0.666319 + 0.666319i
\(399\) −136.050 235.645i −0.340977 0.590590i
\(400\) 25.6824 + 14.8278i 0.0642061 + 0.0370694i
\(401\) −71.0875 265.302i −0.177276 0.661602i −0.996153 0.0876329i \(-0.972070\pi\)
0.818877 0.573969i \(-0.194597\pi\)
\(402\) 232.883i 0.579312i
\(403\) 55.8472 105.284i 0.138579 0.261251i
\(404\) 91.9460 0.227589
\(405\) −49.4939 + 13.2619i −0.122207 + 0.0327453i
\(406\) −135.208 + 234.186i −0.333023 + 0.576814i
\(407\) 600.179 346.514i 1.47464 0.851385i
\(408\) 65.3158 + 65.3158i 0.160088 + 0.160088i
\(409\) −56.5699 + 211.122i −0.138313 + 0.516190i 0.861650 + 0.507504i \(0.169432\pi\)
−0.999962 + 0.00868619i \(0.997235\pi\)
\(410\) −51.3732 13.7654i −0.125301 0.0335742i
\(411\) 294.516 294.516i 0.716585 0.716585i
\(412\) 92.8099 + 160.752i 0.225267 + 0.390174i
\(413\) −111.842 64.5718i −0.270803 0.156348i
\(414\) 13.2931 + 49.6107i 0.0321090 + 0.119833i
\(415\) 511.186i 1.23177i
\(416\) 73.4917 2.63904i 0.176663 0.00634384i
\(417\) 321.231 0.770337
\(418\) 546.472 146.427i 1.30735 0.350303i
\(419\) 213.906 370.495i 0.510514 0.884237i −0.489411 0.872053i \(-0.662788\pi\)
0.999926 0.0121839i \(-0.00387834\pi\)
\(420\) −88.4004 + 51.0380i −0.210477 + 0.121519i
\(421\) 275.833 + 275.833i 0.655185 + 0.655185i 0.954237 0.299052i \(-0.0966703\pi\)
−0.299052 + 0.954237i \(0.596670\pi\)
\(422\) 5.02967 18.7710i 0.0119187 0.0444810i
\(423\) −252.466 67.6481i −0.596846 0.159924i
\(424\) 9.28819 9.28819i 0.0219061 0.0219061i
\(425\) −69.8946 121.061i −0.164458 0.284849i
\(426\) −86.1466 49.7368i −0.202222 0.116753i
\(427\) 51.6303 + 192.687i 0.120914 + 0.451257i
\(428\) 150.481i 0.351590i
\(429\) −10.6498 296.574i −0.0248246 0.691314i
\(430\) 109.544 0.254755
\(431\) −536.117 + 143.652i −1.24389 + 0.333300i −0.819974 0.572401i \(-0.806012\pi\)
−0.423917 + 0.905701i \(0.639345\pi\)
\(432\) −10.3923 + 18.0000i −0.0240563 + 0.0416667i
\(433\) 583.519 336.895i 1.34762 0.778048i 0.359706 0.933066i \(-0.382877\pi\)
0.987912 + 0.155018i \(0.0495435\pi\)
\(434\) 47.4487 + 47.4487i 0.109329 + 0.109329i
\(435\) 94.2911 351.899i 0.216761 0.808964i
\(436\) −125.825 33.7147i −0.288589 0.0773273i
\(437\) 259.825 259.825i 0.594564 0.594564i
\(438\) −104.700 181.346i −0.239041 0.414031i
\(439\) 497.218 + 287.069i 1.13262 + 0.653916i 0.944591 0.328248i \(-0.106458\pi\)
0.188024 + 0.982164i \(0.439792\pi\)
\(440\) −54.9307 205.004i −0.124843 0.465919i
\(441\) 66.6370i 0.151104i
\(442\) −306.231 162.438i −0.692830 0.367507i
\(443\) −365.652 −0.825399 −0.412700 0.910867i \(-0.635414\pi\)
−0.412700 + 0.910867i \(0.635414\pi\)
\(444\) 175.945 47.1442i 0.396272 0.106181i
\(445\) −443.966 + 768.972i −0.997677 + 1.72803i
\(446\) 125.253 72.3147i 0.280836 0.162141i
\(447\) 22.1287 + 22.1287i 0.0495048 + 0.0495048i
\(448\) −10.7165 + 39.9946i −0.0239208 + 0.0892736i
\(449\) 792.445 + 212.335i 1.76491 + 0.472906i 0.987703 0.156339i \(-0.0499692\pi\)
0.777207 + 0.629245i \(0.216636\pi\)
\(450\) 22.2417 22.2417i 0.0494259 0.0494259i
\(451\) 43.5302 + 75.3966i 0.0965194 + 0.167177i
\(452\) −271.055 156.493i −0.599678 0.346224i
\(453\) 60.4936 + 225.765i 0.133540 + 0.498378i
\(454\) 327.842i 0.722119i
\(455\) 260.975 280.416i 0.573572 0.616300i
\(456\) 148.698 0.326093
\(457\) 190.926 51.1586i 0.417782 0.111944i −0.0438033 0.999040i \(-0.513947\pi\)
0.461585 + 0.887096i \(0.347281\pi\)
\(458\) 306.032 530.064i 0.668193 1.15734i
\(459\) 84.8477 48.9869i 0.184853 0.106725i
\(460\) −97.4710 97.4710i −0.211894 0.211894i
\(461\) −26.1981 + 97.7727i −0.0568289 + 0.212088i −0.988502 0.151210i \(-0.951683\pi\)
0.931673 + 0.363299i \(0.118350\pi\)
\(462\) 161.397 + 43.2462i 0.349344 + 0.0936065i
\(463\) 177.994 177.994i 0.384435 0.384435i −0.488262 0.872697i \(-0.662369\pi\)
0.872697 + 0.488262i \(0.162369\pi\)
\(464\) −73.8888 127.979i −0.159243 0.275817i
\(465\) −78.2912 45.2015i −0.168368 0.0972075i
\(466\) 57.4264 + 214.318i 0.123233 + 0.459911i
\(467\) 104.162i 0.223044i −0.993762 0.111522i \(-0.964427\pi\)
0.993762 0.111522i \(-0.0355726\pi\)
\(468\) 17.4711 76.0182i 0.0373315 0.162432i
\(469\) −492.074 −1.04920
\(470\) 677.583 181.558i 1.44166 0.386293i
\(471\) −168.976 + 292.674i −0.358759 + 0.621389i
\(472\) 61.1197 35.2875i 0.129491 0.0747616i
\(473\) −126.795 126.795i −0.268066 0.268066i
\(474\) −59.7745 + 223.082i −0.126107 + 0.470636i
\(475\) −217.365 58.2428i −0.457611 0.122616i
\(476\) 138.010 138.010i 0.289937 0.289937i
\(477\) −6.96614 12.0657i −0.0146041 0.0252950i
\(478\) 18.3132 + 10.5731i 0.0383121 + 0.0221195i
\(479\) 19.1135 + 71.3326i 0.0399030 + 0.148920i 0.983003 0.183589i \(-0.0587715\pi\)
−0.943100 + 0.332509i \(0.892105\pi\)
\(480\) 55.7829i 0.116214i
\(481\) −579.345 + 362.811i −1.20446 + 0.754284i
\(482\) −333.092 −0.691062
\(483\) 104.825 28.0879i 0.217030 0.0581530i
\(484\) −52.7068 + 91.2909i −0.108898 + 0.188618i
\(485\) −748.170 + 431.956i −1.54262 + 0.890631i
\(486\) 15.5885 + 15.5885i 0.0320750 + 0.0320750i
\(487\) 169.904 634.092i 0.348880 1.30204i −0.539134 0.842220i \(-0.681249\pi\)
0.888014 0.459816i \(-0.152085\pi\)
\(488\) −105.300 28.2151i −0.215779 0.0578179i
\(489\) −151.559 + 151.559i −0.309937 + 0.309937i
\(490\) −89.4220 154.884i −0.182494 0.316089i
\(491\) 391.206 + 225.863i 0.796754 + 0.460006i 0.842335 0.538955i \(-0.181181\pi\)
−0.0455811 + 0.998961i \(0.514514\pi\)
\(492\) 5.92242 + 22.1028i 0.0120374 + 0.0449244i
\(493\) 696.588i 1.41296i
\(494\) −533.487 + 163.679i −1.07993 + 0.331335i
\(495\) −225.110 −0.454768
\(496\) −35.4209 + 9.49101i −0.0714132 + 0.0191351i
\(497\) −105.092 + 182.025i −0.211453 + 0.366247i
\(498\) −190.467 + 109.966i −0.382464 + 0.220816i
\(499\) −126.721 126.721i −0.253950 0.253950i 0.568638 0.822588i \(-0.307471\pi\)
−0.822588 + 0.568638i \(0.807471\pi\)
\(500\) 51.8277 193.424i 0.103655 0.386847i
\(501\) 207.840 + 55.6906i 0.414851 + 0.111159i
\(502\) 76.9248 76.9248i 0.153237 0.153237i
\(503\) 173.941 + 301.275i 0.345808 + 0.598957i 0.985500 0.169674i \(-0.0542715\pi\)
−0.639692 + 0.768631i \(0.720938\pi\)
\(504\) 38.0333 + 21.9586i 0.0754630 + 0.0435686i
\(505\) 67.7430 + 252.821i 0.134145 + 0.500635i
\(506\) 225.641i 0.445931i
\(507\) 20.9954 + 291.963i 0.0414111 + 0.575863i
\(508\) 366.754 0.721957
\(509\) −173.706 + 46.5443i −0.341269 + 0.0914426i −0.425383 0.905013i \(-0.639861\pi\)
0.0841143 + 0.996456i \(0.473194\pi\)
\(510\) −131.474 + 227.719i −0.257792 + 0.446508i
\(511\) −383.177 + 221.227i −0.749857 + 0.432930i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 40.8205 152.344i 0.0795722 0.296967i
\(514\) 86.7719 + 23.2505i 0.168817 + 0.0452344i
\(515\) −373.633 + 373.633i −0.725501 + 0.725501i
\(516\) −23.5652 40.8161i −0.0456689 0.0791009i
\(517\) −994.436 574.138i −1.92347 1.11052i
\(518\) −99.6140 371.765i −0.192305 0.717692i
\(519\) 206.428i 0.397741i
\(520\) 61.4029 + 200.133i 0.118083 + 0.384871i
\(521\) −107.588 −0.206503 −0.103251 0.994655i \(-0.532925\pi\)
−0.103251 + 0.994655i \(0.532925\pi\)
\(522\) −151.401 + 40.5677i −0.290040 + 0.0777160i
\(523\) 300.816 521.029i 0.575175 0.996232i −0.420848 0.907131i \(-0.638267\pi\)
0.996023 0.0891006i \(-0.0283993\pi\)
\(524\) −263.265 + 151.996i −0.502413 + 0.290068i
\(525\) −46.9958 46.9958i −0.0895158 0.0895158i
\(526\) −82.4207 + 307.598i −0.156693 + 0.584787i
\(527\) 166.966 + 44.7384i 0.316823 + 0.0848926i
\(528\) −64.5675 + 64.5675i −0.122287 + 0.122287i
\(529\) −191.224 331.210i −0.361483 0.626106i
\(530\) 32.3826 + 18.6961i 0.0610993 + 0.0352757i
\(531\) −19.3742 72.3054i −0.0364862 0.136168i
\(532\) 314.194i 0.590590i
\(533\) −45.5776 72.7794i −0.0855114 0.136547i
\(534\) 382.023 0.715400
\(535\) −413.771 + 110.870i −0.773404 + 0.207233i
\(536\) 134.455 232.883i 0.250849 0.434484i
\(537\) −321.766 + 185.772i −0.599192 + 0.345944i
\(538\) −22.1441 22.1441i −0.0411600 0.0411600i
\(539\) −75.7702 + 282.778i −0.140576 + 0.524635i
\(540\) −57.1507 15.3135i −0.105835 0.0283583i
\(541\) 212.291 212.291i 0.392405 0.392405i −0.483139 0.875544i \(-0.660503\pi\)
0.875544 + 0.483139i \(0.160503\pi\)
\(542\) −105.317 182.414i −0.194312 0.336558i
\(543\) −515.581 297.671i −0.949504 0.548196i
\(544\) 27.6057 + 103.026i 0.0507458 + 0.189386i
\(545\) 370.816i 0.680397i
\(546\) −160.624 36.9159i −0.294182 0.0676115i
\(547\) −709.928 −1.29786 −0.648929 0.760849i \(-0.724783\pi\)
−0.648929 + 0.760849i \(0.724783\pi\)
\(548\) 464.556 124.477i 0.847729 0.227148i
\(549\) −57.8139 + 100.137i −0.105308 + 0.182398i
\(550\) 119.674 69.0938i 0.217589 0.125625i
\(551\) 792.928 + 792.928i 1.43907 + 1.43907i
\(552\) −15.3496 + 57.2855i −0.0278072 + 0.103778i
\(553\) 471.363 + 126.301i 0.852375 + 0.228393i
\(554\) 202.590 202.590i 0.365687 0.365687i
\(555\) 259.261 + 449.054i 0.467138 + 0.809106i
\(556\) 321.231 + 185.463i 0.577753 + 0.333566i
\(557\) 184.812 + 689.728i 0.331799 + 1.23829i 0.907298 + 0.420488i \(0.138141\pi\)
−0.575499 + 0.817802i \(0.695192\pi\)
\(558\) 38.8949i 0.0697041i
\(559\) 129.473 + 120.497i 0.231616 + 0.215558i
\(560\) −117.867 −0.210477
\(561\) 415.758 111.402i 0.741102 0.198578i
\(562\) 44.0655 76.3237i 0.0784083 0.135807i
\(563\) −159.912 + 92.3251i −0.284035 + 0.163988i −0.635249 0.772308i \(-0.719102\pi\)
0.351214 + 0.936295i \(0.385769\pi\)
\(564\) −213.409 213.409i −0.378385 0.378385i
\(565\) 230.599 860.608i 0.408140 1.52320i
\(566\) −192.449 51.5665i −0.340016 0.0911069i
\(567\) 32.9378 32.9378i 0.0580914 0.0580914i
\(568\) −57.4311 99.4735i −0.101111 0.175129i
\(569\) −808.949 467.047i −1.42170 0.820820i −0.425258 0.905072i \(-0.639817\pi\)
−0.996445 + 0.0842516i \(0.973150\pi\)
\(570\) 109.556 + 408.870i 0.192204 + 0.717316i
\(571\) 235.631i 0.412664i 0.978482 + 0.206332i \(0.0661527\pi\)
−0.978482 + 0.206332i \(0.933847\pi\)
\(572\) 160.577 302.722i 0.280729 0.529235i
\(573\) −432.524 −0.754842
\(574\) 46.7024 12.5139i 0.0813630 0.0218012i
\(575\) 44.8757 77.7269i 0.0780446 0.135177i
\(576\) −20.7846 + 12.0000i −0.0360844 + 0.0208333i
\(577\) −213.174 213.174i −0.369452 0.369452i 0.497826 0.867277i \(-0.334132\pi\)
−0.867277 + 0.497826i \(0.834132\pi\)
\(578\) 24.3455 90.8586i 0.0421202 0.157195i
\(579\) 226.712 + 60.7474i 0.391559 + 0.104918i
\(580\) 297.460 297.460i 0.512862 0.512862i
\(581\) 232.355 + 402.450i 0.399922 + 0.692685i
\(582\) 321.892 + 185.844i 0.553079 + 0.319320i
\(583\) −15.8418 59.1226i −0.0271730 0.101411i
\(584\) 241.794i 0.414031i
\(585\) 221.896 7.96815i 0.379310 0.0136208i
\(586\) −242.001 −0.412970
\(587\) −484.121 + 129.720i −0.824737 + 0.220988i −0.646416 0.762985i \(-0.723733\pi\)
−0.178321 + 0.983972i \(0.557066\pi\)
\(588\) −38.4729 + 66.6370i −0.0654301 + 0.113328i
\(589\) 240.984 139.132i 0.409140 0.236217i
\(590\) 142.060 + 142.060i 0.240779 + 0.240779i
\(591\) −1.57633 + 5.88295i −0.00266723 + 0.00995423i
\(592\) 203.163 + 54.4375i 0.343181 + 0.0919552i
\(593\) −456.457 + 456.457i −0.769743 + 0.769743i −0.978061 0.208319i \(-0.933201\pi\)
0.208319 + 0.978061i \(0.433201\pi\)
\(594\) 48.4256 + 83.8757i 0.0815246 + 0.141205i
\(595\) 481.162 + 277.799i 0.808676 + 0.466889i
\(596\) 9.35267 + 34.9046i 0.0156924 + 0.0585648i
\(597\) 459.331i 0.769399i
\(598\) −7.98694 222.420i −0.0133561 0.371940i
\(599\) 409.720 0.684007 0.342003 0.939699i \(-0.388895\pi\)
0.342003 + 0.939699i \(0.388895\pi\)
\(600\) 35.0829 9.40043i 0.0584715 0.0156674i
\(601\) 354.315 613.692i 0.589543 1.02112i −0.404750 0.914428i \(-0.632641\pi\)
0.994292 0.106690i \(-0.0340253\pi\)
\(602\) −86.2428 + 49.7923i −0.143261 + 0.0827115i
\(603\) −201.683 201.683i −0.334466 0.334466i
\(604\) −69.8520 + 260.691i −0.115649 + 0.431608i
\(605\) −289.852 77.6656i −0.479094 0.128373i
\(606\) 79.6276 79.6276i 0.131399 0.131399i
\(607\) −233.682 404.749i −0.384978 0.666802i 0.606788 0.794864i \(-0.292458\pi\)
−0.991766 + 0.128062i \(0.959124\pi\)
\(608\) 148.698 + 85.8510i 0.244570 + 0.141202i
\(609\) 85.7181 + 319.904i 0.140752 + 0.525295i
\(610\) 310.328i 0.508735i
\(611\) 1000.56 + 530.742i 1.63758 + 0.868644i
\(612\) 113.130 0.184853
\(613\) 962.345 257.859i 1.56989 0.420652i 0.634114 0.773239i \(-0.281365\pi\)
0.935779 + 0.352588i \(0.114698\pi\)
\(614\) −252.758 + 437.790i −0.411659 + 0.713013i
\(615\) −56.4117 + 32.5693i −0.0917264 + 0.0529583i
\(616\) 136.429 + 136.429i 0.221475 + 0.221475i
\(617\) 80.8743 301.827i 0.131077 0.489184i −0.868907 0.494976i \(-0.835177\pi\)
0.999983 + 0.00579153i \(0.00184351\pi\)
\(618\) 219.591 + 58.8391i 0.355325 + 0.0952090i
\(619\) −459.215 + 459.215i −0.741865 + 0.741865i −0.972937 0.231071i \(-0.925777\pi\)
0.231071 + 0.972937i \(0.425777\pi\)
\(620\) −52.1942 90.4029i −0.0841841 0.145811i
\(621\) 54.4763 + 31.4519i 0.0877235 + 0.0506472i
\(622\) −76.7709 286.513i −0.123426 0.460632i
\(623\) 807.201i 1.29567i
\(624\) 61.3602 65.9312i 0.0983337 0.105659i
\(625\) 755.381 1.20861
\(626\) 527.481 141.338i 0.842622 0.225780i
\(627\) 346.449 600.067i 0.552550 0.957045i
\(628\) −337.951 + 195.116i −0.538139 + 0.310695i
\(629\) −701.059 701.059i −1.11456 1.11456i
\(630\) −32.3568 + 120.757i −0.0513600 + 0.191678i
\(631\) 258.950 + 69.3855i 0.410381 + 0.109961i 0.458102 0.888899i \(-0.348529\pi\)
−0.0477214 + 0.998861i \(0.515196\pi\)
\(632\) −188.571 + 188.571i −0.298371 + 0.298371i
\(633\) −11.9003 20.6120i −0.0187999 0.0325624i
\(634\) −198.769 114.759i −0.313515 0.181008i
\(635\) 270.213 + 1008.45i 0.425533 + 1.58811i
\(636\) 16.0876i 0.0252950i
\(637\) 64.6791 281.423i 0.101537 0.441795i
\(638\) −688.608 −1.07932
\(639\) −117.678 + 31.5318i −0.184160 + 0.0493456i
\(640\) 32.2063 55.7829i 0.0503223 0.0871608i
\(641\) −149.378 + 86.2432i −0.233038 + 0.134545i −0.611973 0.790879i \(-0.709624\pi\)
0.378935 + 0.925423i \(0.376291\pi\)
\(642\) 130.320 + 130.320i 0.202991 + 0.202991i
\(643\) 246.195 918.812i 0.382885 1.42894i −0.458590 0.888648i \(-0.651645\pi\)
0.841475 0.540297i \(-0.181688\pi\)
\(644\) 121.042 + 32.4331i 0.187954 + 0.0503620i
\(645\) 94.8683 94.8683i 0.147083 0.147083i
\(646\) −404.681 700.929i −0.626442 1.08503i
\(647\) 640.175 + 369.605i 0.989452 + 0.571260i 0.905110 0.425177i \(-0.139788\pi\)
0.0843415 + 0.996437i \(0.473121\pi\)
\(648\) 6.58846 + 24.5885i 0.0101674 + 0.0379452i
\(649\) 328.862i 0.506721i
\(650\) −115.520 + 72.3435i −0.177723 + 0.111298i
\(651\) 82.1835 0.126242
\(652\) −239.062 + 64.0564i −0.366659 + 0.0982461i
\(653\) 561.339 972.268i 0.859632 1.48893i −0.0126491 0.999920i \(-0.504026\pi\)
0.872281 0.489006i \(-0.162640\pi\)
\(654\) −138.165 + 79.7698i −0.211262 + 0.121972i
\(655\) −611.903 611.903i −0.934202 0.934202i
\(656\) −6.83863 + 25.5221i −0.0104247 + 0.0389056i
\(657\) −247.723 66.3771i −0.377052 0.101031i
\(658\) −450.926 + 450.926i −0.685298 + 0.685298i
\(659\) −174.510 302.259i −0.264810 0.458664i 0.702704 0.711482i \(-0.251976\pi\)
−0.967514 + 0.252819i \(0.918642\pi\)
\(660\) −225.110 129.967i −0.341076 0.196920i
\(661\) 207.511 + 774.442i 0.313935 + 1.17162i 0.924977 + 0.380023i \(0.124084\pi\)
−0.611042 + 0.791598i \(0.709249\pi\)
\(662\) 516.292i 0.779898i
\(663\) −405.879 + 124.528i −0.612186 + 0.187825i
\(664\) −253.956 −0.382464
\(665\) 863.927 231.489i 1.29914 0.348103i
\(666\) 111.544 193.201i 0.167484 0.290091i
\(667\) −387.324 + 223.621i −0.580695 + 0.335264i
\(668\) 175.687 + 175.687i 0.263005 + 0.263005i
\(669\) 45.8457 171.098i 0.0685287 0.255752i
\(670\) 739.413 + 198.125i 1.10360 + 0.295709i
\(671\) −359.198 + 359.198i −0.535318 + 0.535318i
\(672\) 25.3556 + 43.9171i 0.0377315 + 0.0653528i
\(673\) 90.8433 + 52.4484i 0.134983 + 0.0779323i 0.565971 0.824425i \(-0.308502\pi\)
−0.430988 + 0.902358i \(0.641835\pi\)
\(674\) 141.050 + 526.405i 0.209273 + 0.781017i
\(675\) 38.5237i 0.0570721i
\(676\) −147.569 + 304.084i −0.218298 + 0.449829i
\(677\) −71.7517 −0.105985 −0.0529924 0.998595i \(-0.516876\pi\)
−0.0529924 + 0.998595i \(0.516876\pi\)
\(678\) −370.267 + 99.2128i −0.546117 + 0.146332i
\(679\) 392.682 680.146i 0.578325 1.00169i
\(680\) −262.947 + 151.813i −0.386687 + 0.223254i
\(681\) 283.920 + 283.920i 0.416916 + 0.416916i
\(682\) −44.2258 + 165.053i −0.0648473 + 0.242013i
\(683\) −719.362 192.753i −1.05324 0.282215i −0.309649 0.950851i \(-0.600212\pi\)
−0.743590 + 0.668636i \(0.766878\pi\)
\(684\) 128.776 128.776i 0.188270 0.188270i
\(685\) 684.541 + 1185.66i 0.999330 + 1.73089i
\(686\) 451.407 + 260.620i 0.658028 + 0.379912i
\(687\) −194.017 724.081i −0.282412 1.05397i
\(688\) 54.4214i 0.0791009i
\(689\) 17.7084 + 57.7178i 0.0257016 + 0.0837703i
\(690\) −168.825 −0.244674
\(691\) −550.709 + 147.562i −0.796973 + 0.213548i −0.634255 0.773124i \(-0.718693\pi\)
−0.162719 + 0.986673i \(0.552026\pi\)
\(692\) 119.181 206.428i 0.172227 0.298306i
\(693\) 177.226 102.322i 0.255738 0.147650i
\(694\) 23.8673 + 23.8673i 0.0343909 + 0.0343909i
\(695\) −273.286 + 1019.92i −0.393218 + 1.46751i
\(696\) −174.823 46.8436i −0.251182 0.0673040i
\(697\) 88.0695 88.0695i 0.126355 0.126355i
\(698\) −220.406 381.755i −0.315768 0.546926i
\(699\) 235.338 + 135.872i 0.336678 + 0.194381i
\(700\) −19.8628 74.1288i −0.0283754 0.105898i
\(701\) 234.275i 0.334201i 0.985940 + 0.167101i \(0.0534405\pi\)
−0.985940 + 0.167101i \(0.946559\pi\)
\(702\) −50.7032 80.9641i −0.0722268 0.115333i
\(703\) −1596.03 −2.27032
\(704\) −101.846 + 27.2894i −0.144667 + 0.0387634i
\(705\) 429.570 744.037i 0.609319 1.05537i
\(706\) −693.396 + 400.332i −0.982147 + 0.567043i
\(707\) −168.250 168.250i −0.237978 0.237978i
\(708\) 22.3714 83.4910i 0.0315980 0.117925i
\(709\) 23.0348 + 6.17216i 0.0324891 + 0.00870544i 0.275027 0.961436i \(-0.411313\pi\)
−0.242538 + 0.970142i \(0.577980\pi\)
\(710\) 231.205 231.205i 0.325641 0.325641i
\(711\) 141.428 + 244.961i 0.198914 + 0.344530i
\(712\) 382.023 + 220.561i 0.536550 + 0.309777i
\(713\) 28.7242 + 107.200i 0.0402864 + 0.150351i
\(714\) 239.040i 0.334790i
\(715\) 950.692 + 218.496i 1.32964 + 0.305589i
\(716\) −429.022 −0.599192
\(717\) 25.0163 6.70309i 0.0348902 0.00934880i
\(718\) −30.3760 + 52.6128i −0.0423064 + 0.0732769i
\(719\) 654.278 377.747i 0.909983 0.525379i 0.0295573 0.999563i \(-0.490590\pi\)
0.880426 + 0.474184i \(0.157257\pi\)
\(720\) −48.3094 48.3094i −0.0670964 0.0670964i
\(721\) 124.325 463.987i 0.172434 0.643532i
\(722\) −765.383 205.084i −1.06009 0.284050i
\(723\) −288.466 + 288.466i −0.398985 + 0.398985i
\(724\) −343.720 595.341i −0.474752 0.822295i
\(725\) 237.205 + 136.951i 0.327180 + 0.188897i
\(726\) 33.4148 + 124.706i 0.0460259 + 0.171771i
\(727\) 686.041i 0.943660i 0.881689 + 0.471830i \(0.156406\pi\)
−0.881689 + 0.471830i \(0.843594\pi\)
\(728\) −139.310 129.652i −0.191360 0.178093i
\(729\) 27.0000 0.0370370
\(730\) 664.853 178.147i 0.910757 0.244037i
\(731\) −128.265 + 222.161i −0.175465 + 0.303914i
\(732\) −115.628 + 66.7577i −0.157961 + 0.0911990i
\(733\) −173.245 173.245i −0.236351 0.236351i 0.578986 0.815337i \(-0.303448\pi\)
−0.815337 + 0.578986i \(0.803448\pi\)
\(734\) 165.814 618.826i 0.225904 0.843087i
\(735\) −211.575 56.6913i −0.287857 0.0771310i
\(736\) −48.4234 + 48.4234i −0.0657926 + 0.0657926i
\(737\) −626.529 1085.18i −0.850107 1.47243i
\(738\) 24.2705 + 14.0126i 0.0328869 + 0.0189873i
\(739\) −25.6776 95.8300i −0.0347464 0.129675i 0.946374 0.323073i \(-0.104716\pi\)
−0.981120 + 0.193398i \(0.938049\pi\)
\(740\) 598.739i 0.809106i
\(741\) −320.263 + 603.764i −0.432203 + 0.814796i
\(742\) −33.9925 −0.0458120
\(743\) 1205.46 323.002i 1.62242 0.434726i 0.670710 0.741720i \(-0.265990\pi\)
0.951712 + 0.306994i \(0.0993230\pi\)
\(744\) −22.4560 + 38.8949i −0.0301828 + 0.0522781i
\(745\) −89.0852 + 51.4334i −0.119577 + 0.0690381i
\(746\) 407.309 + 407.309i 0.545991 + 0.545991i
\(747\) −69.7158 + 260.183i −0.0933277 + 0.348304i
\(748\) 480.076 + 128.636i 0.641813 + 0.171973i
\(749\) 275.361 275.361i 0.367639 0.367639i
\(750\) −122.626 212.394i −0.163501 0.283192i
\(751\) 181.326 + 104.689i 0.241446 + 0.139399i 0.615841 0.787870i \(-0.288816\pi\)
−0.374395 + 0.927269i \(0.622150\pi\)
\(752\) −90.1974 336.621i −0.119943 0.447635i
\(753\) 133.238i 0.176942i
\(754\) 678.777 24.3744i 0.900234 0.0323268i
\(755\) −768.277 −1.01759
\(756\) 51.9545 13.9212i 0.0687229 0.0184142i
\(757\) −641.569 + 1111.23i −0.847515 + 1.46794i 0.0359036 + 0.999355i \(0.488569\pi\)
−0.883419 + 0.468584i \(0.844764\pi\)
\(758\) −12.9222 + 7.46065i −0.0170478 + 0.00984254i
\(759\) 195.411 + 195.411i 0.257459 + 0.257459i
\(760\) −126.505 + 472.122i −0.166454 + 0.621214i
\(761\) −449.407 120.418i −0.590548 0.158237i −0.0488443 0.998806i \(-0.515554\pi\)
−0.541704 + 0.840570i \(0.682220\pi\)
\(762\) 317.619 317.619i 0.416822 0.416822i
\(763\) 168.551 + 291.938i 0.220905 + 0.382619i
\(764\) −432.524 249.718i −0.566131 0.326856i
\(765\) 83