Properties

Label 78.3.l.c.67.2
Level $78$
Weight $3$
Character 78.67
Analytic conductor $2.125$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 78.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.12534606201\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 82x^{5} + 5053x^{4} - 6736x^{3} + 6728x^{2} + 275384x + 5635876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.2
Root \(5.02578 + 5.02578i\) of defining polynomial
Character \(\chi\) \(=\) 78.67
Dual form 78.3.l.c.7.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(0.866025 + 1.50000i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.02578 - 4.02578i) q^{5} +(0.633975 + 2.36603i) q^{6} +(-4.99932 + 1.33956i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(0.866025 + 1.50000i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.02578 - 4.02578i) q^{5} +(0.633975 + 2.36603i) q^{6} +(-4.99932 + 1.33956i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +(6.97286 - 4.02578i) q^{10} +(-3.41118 + 12.7307i) q^{11} +3.46410i q^{12} +(3.81310 - 12.4282i) q^{13} -7.31952 q^{14} +(9.52511 + 2.55225i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-16.3290 - 9.42753i) q^{17} +(-3.00000 + 3.00000i) q^{18} +(-7.85591 - 29.3187i) q^{19} +(10.9986 - 2.94708i) q^{20} +(-6.33889 - 6.33889i) q^{21} +(-9.31952 + 16.1419i) q^{22} +(-10.4840 + 6.05292i) q^{23} +(-1.26795 + 4.73205i) q^{24} -7.41388i q^{25} +(9.75784 - 15.5815i) q^{26} -5.19615 q^{27} +(-9.99865 - 2.67913i) q^{28} +(18.4722 + 31.9948i) q^{29} +(12.0774 + 6.97286i) q^{30} +(-6.48248 + 6.48248i) q^{31} +(1.46410 + 5.46410i) q^{32} +(-22.0502 + 5.90834i) q^{33} +(-18.8551 - 18.8551i) q^{34} +(-14.7334 + 25.5190i) q^{35} +(-5.19615 + 3.00000i) q^{36} +(13.6094 - 50.7908i) q^{37} -42.9255i q^{38} +(21.9446 - 5.04348i) q^{39} +16.1031 q^{40} +(-6.38053 - 1.70966i) q^{41} +(-6.33889 - 10.9793i) q^{42} +(11.7826 + 6.80268i) q^{43} +(-18.6390 + 18.6390i) q^{44} +(4.42062 + 16.4980i) q^{45} +(-16.5369 + 4.43105i) q^{46} +(61.6060 + 61.6060i) q^{47} +(-3.46410 + 6.00000i) q^{48} +(-19.2364 + 11.1062i) q^{49} +(2.71367 - 10.1276i) q^{50} -32.6579i q^{51} +(19.0327 - 17.7132i) q^{52} +4.64409 q^{53} +(-7.09808 - 1.90192i) q^{54} +(37.5184 + 64.9837i) q^{55} +(-12.6778 - 7.31952i) q^{56} +(37.1746 - 37.1746i) q^{57} +(13.5226 + 50.4670i) q^{58} +(24.1018 - 6.45805i) q^{59} +(13.9457 + 13.9457i) q^{60} +(-19.2713 + 33.3788i) q^{61} +(-11.2280 + 6.48248i) q^{62} +(4.01869 - 14.9980i) q^{63} +8.00000i q^{64} +(-34.6825 - 65.3840i) q^{65} -32.2838 q^{66} +(91.8346 + 24.6070i) q^{67} +(-18.8551 - 32.6579i) q^{68} +(-18.1588 - 10.4840i) q^{69} +(-29.4668 + 29.4668i) q^{70} +(10.5106 + 39.2261i) q^{71} +(-8.19615 + 2.19615i) q^{72} +(60.4486 + 60.4486i) q^{73} +(37.1815 - 64.4002i) q^{74} +(11.1208 - 6.42061i) q^{75} +(15.7118 - 58.6373i) q^{76} -68.2144i q^{77} +(31.8229 + 1.14274i) q^{78} -94.2854 q^{79} +(21.9973 + 5.89416i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-8.09018 - 4.67087i) q^{82} +(-63.4890 + 63.4890i) q^{83} +(-4.64039 - 17.3182i) q^{84} +(-103.690 + 27.7837i) q^{85} +(13.6054 + 13.6054i) q^{86} +(-31.9948 + 55.4166i) q^{87} +(-32.2838 + 18.6390i) q^{88} +(40.3655 - 150.646i) q^{89} +24.1547i q^{90} +(-2.41456 + 67.2405i) q^{91} -24.2117 q^{92} +(-15.3377 - 4.10973i) q^{93} +(61.6060 + 106.705i) q^{94} +(-149.657 - 86.4044i) q^{95} +(-6.92820 + 6.92820i) q^{96} +(-39.2736 - 146.571i) q^{97} +(-30.3426 + 8.13028i) q^{98} +(-27.9586 - 27.9586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9} - 6 q^{10} + 24 q^{11} + 4 q^{14} - 12 q^{15} + 16 q^{16} - 84 q^{17} - 24 q^{18} + 10 q^{19} - 12 q^{20} + 18 q^{21} - 12 q^{22} - 12 q^{23} - 24 q^{24} + 26 q^{26} + 20 q^{28} + 36 q^{29} - 18 q^{30} - 94 q^{31} - 16 q^{32} + 60 q^{34} - 204 q^{35} + 140 q^{37} + 66 q^{39} - 24 q^{40} + 72 q^{41} + 18 q^{42} - 222 q^{43} - 24 q^{44} - 84 q^{46} + 300 q^{47} + 42 q^{49} - 62 q^{50} + 44 q^{52} + 84 q^{53} - 36 q^{54} + 396 q^{55} + 36 q^{56} + 24 q^{57} - 66 q^{58} - 60 q^{59} - 12 q^{60} - 90 q^{61} + 198 q^{62} - 24 q^{63} - 108 q^{65} + 72 q^{66} + 304 q^{67} + 60 q^{68} - 216 q^{69} - 408 q^{70} - 192 q^{71} - 24 q^{72} + 16 q^{73} - 46 q^{74} + 312 q^{75} - 20 q^{76} + 114 q^{78} - 96 q^{79} - 24 q^{80} - 36 q^{81} + 114 q^{82} - 12 q^{84} - 390 q^{85} + 168 q^{86} + 30 q^{87} + 72 q^{88} + 354 q^{89} - 218 q^{91} - 288 q^{92} - 42 q^{93} + 300 q^{94} - 576 q^{95} - 460 q^{97} + 58 q^{98} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(67\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) 0.866025 + 1.50000i 0.288675 + 0.500000i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 4.02578 4.02578i 0.805157 0.805157i −0.178740 0.983896i \(-0.557202\pi\)
0.983896 + 0.178740i \(0.0572019\pi\)
\(6\) 0.633975 + 2.36603i 0.105662 + 0.394338i
\(7\) −4.99932 + 1.33956i −0.714189 + 0.191366i −0.597577 0.801811i \(-0.703870\pi\)
−0.116612 + 0.993178i \(0.537203\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −1.50000 + 2.59808i −0.166667 + 0.288675i
\(10\) 6.97286 4.02578i 0.697286 0.402578i
\(11\) −3.41118 + 12.7307i −0.310107 + 1.15734i 0.618352 + 0.785901i \(0.287801\pi\)
−0.928459 + 0.371435i \(0.878866\pi\)
\(12\) 3.46410i 0.288675i
\(13\) 3.81310 12.4282i 0.293316 0.956016i
\(14\) −7.31952 −0.522823
\(15\) 9.52511 + 2.55225i 0.635007 + 0.170150i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −16.3290 9.42753i −0.960527 0.554560i −0.0641917 0.997938i \(-0.520447\pi\)
−0.896335 + 0.443377i \(0.853780\pi\)
\(18\) −3.00000 + 3.00000i −0.166667 + 0.166667i
\(19\) −7.85591 29.3187i −0.413469 1.54309i −0.787883 0.615826i \(-0.788823\pi\)
0.374413 0.927262i \(-0.377844\pi\)
\(20\) 10.9986 2.94708i 0.549932 0.147354i
\(21\) −6.33889 6.33889i −0.301852 0.301852i
\(22\) −9.31952 + 16.1419i −0.423614 + 0.733722i
\(23\) −10.4840 + 6.05292i −0.455825 + 0.263170i −0.710287 0.703912i \(-0.751435\pi\)
0.254462 + 0.967083i \(0.418102\pi\)
\(24\) −1.26795 + 4.73205i −0.0528312 + 0.197169i
\(25\) 7.41388i 0.296555i
\(26\) 9.75784 15.5815i 0.375301 0.599290i
\(27\) −5.19615 −0.192450
\(28\) −9.99865 2.67913i −0.357095 0.0956832i
\(29\) 18.4722 + 31.9948i 0.636972 + 1.10327i 0.986094 + 0.166190i \(0.0531467\pi\)
−0.349122 + 0.937077i \(0.613520\pi\)
\(30\) 12.0774 + 6.97286i 0.402578 + 0.232429i
\(31\) −6.48248 + 6.48248i −0.209112 + 0.209112i −0.803890 0.594778i \(-0.797240\pi\)
0.594778 + 0.803890i \(0.297240\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) −22.0502 + 5.90834i −0.668188 + 0.179041i
\(34\) −18.8551 18.8551i −0.554560 0.554560i
\(35\) −14.7334 + 25.5190i −0.420954 + 0.729114i
\(36\) −5.19615 + 3.00000i −0.144338 + 0.0833333i
\(37\) 13.6094 50.7908i 0.367821 1.37273i −0.495736 0.868473i \(-0.665102\pi\)
0.863556 0.504252i \(-0.168232\pi\)
\(38\) 42.9255i 1.12962i
\(39\) 21.9446 5.04348i 0.562681 0.129320i
\(40\) 16.1031 0.402578
\(41\) −6.38053 1.70966i −0.155623 0.0416989i 0.180167 0.983636i \(-0.442336\pi\)
−0.335789 + 0.941937i \(0.609003\pi\)
\(42\) −6.33889 10.9793i −0.150926 0.261411i
\(43\) 11.7826 + 6.80268i 0.274014 + 0.158202i 0.630710 0.776018i \(-0.282764\pi\)
−0.356697 + 0.934220i \(0.616097\pi\)
\(44\) −18.6390 + 18.6390i −0.423614 + 0.423614i
\(45\) 4.42062 + 16.4980i 0.0982360 + 0.366622i
\(46\) −16.5369 + 4.43105i −0.359498 + 0.0963271i
\(47\) 61.6060 + 61.6060i 1.31077 + 1.31077i 0.920851 + 0.389914i \(0.127495\pi\)
0.389914 + 0.920851i \(0.372505\pi\)
\(48\) −3.46410 + 6.00000i −0.0721688 + 0.125000i
\(49\) −19.2364 + 11.1062i −0.392580 + 0.226656i
\(50\) 2.71367 10.1276i 0.0542734 0.202551i
\(51\) 32.6579i 0.640351i
\(52\) 19.0327 17.7132i 0.366013 0.340638i
\(53\) 4.64409 0.0876244 0.0438122 0.999040i \(-0.486050\pi\)
0.0438122 + 0.999040i \(0.486050\pi\)
\(54\) −7.09808 1.90192i −0.131446 0.0352208i
\(55\) 37.5184 + 64.9837i 0.682152 + 1.18152i
\(56\) −12.6778 7.31952i −0.226389 0.130706i
\(57\) 37.1746 37.1746i 0.652185 0.652185i
\(58\) 13.5226 + 50.4670i 0.233148 + 0.870120i
\(59\) 24.1018 6.45805i 0.408505 0.109459i −0.0487140 0.998813i \(-0.515512\pi\)
0.457219 + 0.889354i \(0.348846\pi\)
\(60\) 13.9457 + 13.9457i 0.232429 + 0.232429i
\(61\) −19.2713 + 33.3788i −0.315923 + 0.547194i −0.979633 0.200795i \(-0.935647\pi\)
0.663710 + 0.747990i \(0.268981\pi\)
\(62\) −11.2280 + 6.48248i −0.181097 + 0.104556i
\(63\) 4.01869 14.9980i 0.0637888 0.238063i
\(64\) 8.00000i 0.125000i
\(65\) −34.6825 65.3840i −0.533577 1.00591i
\(66\) −32.2838 −0.489148
\(67\) 91.8346 + 24.6070i 1.37067 + 0.367269i 0.867722 0.497050i \(-0.165583\pi\)
0.502944 + 0.864319i \(0.332250\pi\)
\(68\) −18.8551 32.6579i −0.277280 0.480263i
\(69\) −18.1588 10.4840i −0.263170 0.151942i
\(70\) −29.4668 + 29.4668i −0.420954 + 0.420954i
\(71\) 10.5106 + 39.2261i 0.148037 + 0.552481i 0.999601 + 0.0282312i \(0.00898747\pi\)
−0.851565 + 0.524250i \(0.824346\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) 60.4486 + 60.4486i 0.828063 + 0.828063i 0.987249 0.159186i \(-0.0508869\pi\)
−0.159186 + 0.987249i \(0.550887\pi\)
\(74\) 37.1815 64.4002i 0.502452 0.870273i
\(75\) 11.1208 6.42061i 0.148278 0.0856082i
\(76\) 15.7118 58.6373i 0.206735 0.771544i
\(77\) 68.2144i 0.885901i
\(78\) 31.8229 + 1.14274i 0.407985 + 0.0146505i
\(79\) −94.2854 −1.19349 −0.596743 0.802433i \(-0.703539\pi\)
−0.596743 + 0.802433i \(0.703539\pi\)
\(80\) 21.9973 + 5.89416i 0.274966 + 0.0736770i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) −8.09018 4.67087i −0.0986608 0.0569618i
\(83\) −63.4890 + 63.4890i −0.764928 + 0.764928i −0.977209 0.212281i \(-0.931911\pi\)
0.212281 + 0.977209i \(0.431911\pi\)
\(84\) −4.64039 17.3182i −0.0552427 0.206169i
\(85\) −103.690 + 27.7837i −1.21988 + 0.326867i
\(86\) 13.6054 + 13.6054i 0.158202 + 0.158202i
\(87\) −31.9948 + 55.4166i −0.367756 + 0.636972i
\(88\) −32.2838 + 18.6390i −0.366861 + 0.211807i
\(89\) 40.3655 150.646i 0.453545 1.69265i −0.238784 0.971073i \(-0.576749\pi\)
0.692330 0.721581i \(-0.256584\pi\)
\(90\) 24.1547i 0.268386i
\(91\) −2.41456 + 67.2405i −0.0265336 + 0.738907i
\(92\) −24.2117 −0.263170
\(93\) −15.3377 4.10973i −0.164922 0.0441906i
\(94\) 61.6060 + 106.705i 0.655383 + 1.13516i
\(95\) −149.657 86.4044i −1.57534 0.909520i
\(96\) −6.92820 + 6.92820i −0.0721688 + 0.0721688i
\(97\) −39.2736 146.571i −0.404882 1.51104i −0.804273 0.594260i \(-0.797445\pi\)
0.399391 0.916781i \(-0.369222\pi\)
\(98\) −30.3426 + 8.13028i −0.309618 + 0.0829620i
\(99\) −27.9586 27.9586i −0.282410 0.282410i
\(100\) 7.41388 12.8412i 0.0741388 0.128412i
\(101\) 39.8138 22.9865i 0.394196 0.227589i −0.289781 0.957093i \(-0.593582\pi\)
0.683977 + 0.729504i \(0.260249\pi\)
\(102\) 11.9536 44.6115i 0.117192 0.437368i
\(103\) 92.8099i 0.901067i −0.892759 0.450534i \(-0.851234\pi\)
0.892759 0.450534i \(-0.148766\pi\)
\(104\) 32.4826 17.2302i 0.312333 0.165675i
\(105\) −51.0380 −0.486076
\(106\) 6.34395 + 1.69986i 0.0598486 + 0.0160364i
\(107\) −37.6202 65.1600i −0.351590 0.608972i 0.634938 0.772563i \(-0.281026\pi\)
−0.986528 + 0.163591i \(0.947692\pi\)
\(108\) −9.00000 5.19615i −0.0833333 0.0481125i
\(109\) −46.0551 + 46.0551i −0.422524 + 0.422524i −0.886072 0.463548i \(-0.846576\pi\)
0.463548 + 0.886072i \(0.346576\pi\)
\(110\) 27.4654 + 102.502i 0.249685 + 0.931837i
\(111\) 87.9723 23.5721i 0.792544 0.212361i
\(112\) −14.6390 14.6390i −0.130706 0.130706i
\(113\) −78.2467 + 135.527i −0.692449 + 1.19936i 0.278585 + 0.960412i \(0.410135\pi\)
−0.971033 + 0.238945i \(0.923199\pi\)
\(114\) 64.3882 37.1746i 0.564809 0.326093i
\(115\) −17.8384 + 66.5739i −0.155117 + 0.578904i
\(116\) 73.8888i 0.636972i
\(117\) 26.5698 + 28.5490i 0.227092 + 0.244009i
\(118\) 35.2875 0.299046
\(119\) 94.2625 + 25.2576i 0.792122 + 0.212248i
\(120\) 13.9457 + 24.1547i 0.116214 + 0.201289i
\(121\) −45.6455 26.3534i −0.377235 0.217797i
\(122\) −38.5426 + 38.5426i −0.315923 + 0.315923i
\(123\) −2.96121 11.0514i −0.0240749 0.0898487i
\(124\) −17.7105 + 4.74551i −0.142826 + 0.0382702i
\(125\) 70.7979 + 70.7979i 0.566383 + 0.566383i
\(126\) 10.9793 19.0167i 0.0871371 0.150926i
\(127\) 158.809 91.6886i 1.25047 0.721957i 0.279265 0.960214i \(-0.409909\pi\)
0.971202 + 0.238257i \(0.0765760\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) 23.5652i 0.182676i
\(130\) −23.4450 102.011i −0.180346 0.784699i
\(131\) −151.996 −1.16027 −0.580137 0.814519i \(-0.697001\pi\)
−0.580137 + 0.814519i \(0.697001\pi\)
\(132\) −44.1004 11.8167i −0.334094 0.0895203i
\(133\) 78.5485 + 136.050i 0.590590 + 1.02293i
\(134\) 116.442 + 67.2276i 0.868968 + 0.501699i
\(135\) −20.9186 + 20.9186i −0.154953 + 0.154953i
\(136\) −13.8029 51.5130i −0.101492 0.378772i
\(137\) 232.278 62.2386i 1.69546 0.454297i 0.723669 0.690147i \(-0.242454\pi\)
0.971789 + 0.235851i \(0.0757876\pi\)
\(138\) −20.9679 20.9679i −0.151942 0.151942i
\(139\) 92.7313 160.615i 0.667132 1.15551i −0.311571 0.950223i \(-0.600855\pi\)
0.978703 0.205283i \(-0.0658115\pi\)
\(140\) −51.0380 + 29.4668i −0.364557 + 0.210477i
\(141\) −39.0566 + 145.761i −0.276997 + 1.03377i
\(142\) 57.4311i 0.404444i
\(143\) 145.213 + 90.9383i 1.01547 + 0.635932i
\(144\) −12.0000 −0.0833333
\(145\) 203.169 + 54.4390i 1.40117 + 0.375441i
\(146\) 60.4486 + 104.700i 0.414031 + 0.717123i
\(147\) −33.3185 19.2364i −0.226656 0.130860i
\(148\) 74.3630 74.3630i 0.502452 0.502452i
\(149\) −4.67634 17.4523i −0.0313848 0.117130i 0.948456 0.316908i \(-0.102645\pi\)
−0.979841 + 0.199778i \(0.935978\pi\)
\(150\) 17.5414 4.70021i 0.116943 0.0313348i
\(151\) −95.4196 95.4196i −0.631918 0.631918i 0.316631 0.948549i \(-0.397448\pi\)
−0.948549 + 0.316631i \(0.897448\pi\)
\(152\) 42.9255 74.3491i 0.282405 0.489139i
\(153\) 48.9869 28.2826i 0.320176 0.184853i
\(154\) 24.9682 93.1826i 0.162131 0.605082i
\(155\) 52.1942i 0.336736i
\(156\) 43.0526 + 13.2090i 0.275978 + 0.0846730i
\(157\) −195.116 −1.24278 −0.621389 0.783502i \(-0.713431\pi\)
−0.621389 + 0.783502i \(0.713431\pi\)
\(158\) −128.796 34.5108i −0.815166 0.218423i
\(159\) 4.02190 + 6.96614i 0.0252950 + 0.0438122i
\(160\) 27.8915 + 16.1031i 0.174322 + 0.100645i
\(161\) 44.3045 44.3045i 0.275183 0.275183i
\(162\) −3.29423 12.2942i −0.0203347 0.0758903i
\(163\) −119.531 + 32.0282i −0.733319 + 0.196492i −0.606107 0.795383i \(-0.707270\pi\)
−0.127212 + 0.991876i \(0.540603\pi\)
\(164\) −9.34174 9.34174i −0.0569618 0.0569618i
\(165\) −64.9837 + 112.555i −0.393841 + 0.682152i
\(166\) −109.966 + 63.4890i −0.662447 + 0.382464i
\(167\) 32.1530 119.997i 0.192533 0.718542i −0.800359 0.599521i \(-0.795358\pi\)
0.992892 0.119021i \(-0.0379756\pi\)
\(168\) 25.3556i 0.150926i
\(169\) −139.920 94.7801i −0.827932 0.560829i
\(170\) −151.813 −0.893016
\(171\) 87.9560 + 23.5677i 0.514362 + 0.137823i
\(172\) 13.6054 + 23.5652i 0.0791009 + 0.137007i
\(173\) 103.214 + 59.5906i 0.596612 + 0.344454i 0.767708 0.640800i \(-0.221397\pi\)
−0.171096 + 0.985254i \(0.554731\pi\)
\(174\) −63.9895 + 63.9895i −0.367756 + 0.367756i
\(175\) 9.93138 + 37.0644i 0.0567507 + 0.211797i
\(176\) −50.9228 + 13.6447i −0.289334 + 0.0775268i
\(177\) 30.5598 + 30.5598i 0.172654 + 0.172654i
\(178\) 110.281 191.012i 0.619554 1.07310i
\(179\) −185.772 + 107.255i −1.03783 + 0.599192i −0.919218 0.393748i \(-0.871178\pi\)
−0.118613 + 0.992941i \(0.537845\pi\)
\(180\) −8.84124 + 32.9959i −0.0491180 + 0.183311i
\(181\) 343.720i 1.89901i 0.313755 + 0.949504i \(0.398413\pi\)
−0.313755 + 0.949504i \(0.601587\pi\)
\(182\) −27.9101 + 90.9685i −0.153352 + 0.499827i
\(183\) −66.7577 −0.364796
\(184\) −33.0738 8.86209i −0.179749 0.0481635i
\(185\) −149.685 259.261i −0.809106 1.40141i
\(186\) −19.4474 11.2280i −0.104556 0.0603655i
\(187\) 175.720 175.720i 0.939679 0.939679i
\(188\) 45.0987 + 168.311i 0.239887 + 0.895270i
\(189\) 25.9773 6.96058i 0.137446 0.0368285i
\(190\) −172.809 172.809i −0.909520 0.909520i
\(191\) −124.859 + 216.262i −0.653712 + 1.13226i 0.328503 + 0.944503i \(0.393456\pi\)
−0.982215 + 0.187760i \(0.939877\pi\)
\(192\) −12.0000 + 6.92820i −0.0625000 + 0.0360844i
\(193\) 35.0725 130.892i 0.181723 0.678199i −0.813585 0.581445i \(-0.802487\pi\)
0.995308 0.0967539i \(-0.0308460\pi\)
\(194\) 214.595i 1.10616i
\(195\) 68.0401 108.648i 0.348923 0.557169i
\(196\) −44.4246 −0.226656
\(197\) −3.39652 0.910096i −0.0172412 0.00461977i 0.250188 0.968197i \(-0.419508\pi\)
−0.267429 + 0.963577i \(0.586174\pi\)
\(198\) −27.9586 48.4256i −0.141205 0.244574i
\(199\) −229.666 132.598i −1.15410 0.666319i −0.204216 0.978926i \(-0.565465\pi\)
−0.949883 + 0.312606i \(0.898798\pi\)
\(200\) 14.8278 14.8278i 0.0741388 0.0741388i
\(201\) 42.6206 + 159.062i 0.212043 + 0.791355i
\(202\) 62.8003 16.8273i 0.310893 0.0833034i
\(203\) −135.208 135.208i −0.666047 0.666047i
\(204\) 32.6579 56.5652i 0.160088 0.277280i
\(205\) −32.5693 + 18.8039i −0.158875 + 0.0917264i
\(206\) 33.9708 126.781i 0.164907 0.615440i
\(207\) 36.3175i 0.175447i
\(208\) 50.6788 11.6474i 0.243648 0.0559972i
\(209\) 400.045 1.91409
\(210\) −69.7192 18.6812i −0.331996 0.0889581i
\(211\) 6.87066 + 11.9003i 0.0325624 + 0.0563997i 0.881847 0.471535i \(-0.156300\pi\)
−0.849285 + 0.527935i \(0.822967\pi\)
\(212\) 8.04381 + 4.64409i 0.0379425 + 0.0219061i
\(213\) −49.7368 + 49.7368i −0.233506 + 0.233506i
\(214\) −27.5399 102.780i −0.128691 0.480281i
\(215\) 74.8202 20.0480i 0.348001 0.0932466i
\(216\) −10.3923 10.3923i −0.0481125 0.0481125i
\(217\) 23.7243 41.0917i 0.109329 0.189363i
\(218\) −79.7698 + 46.0551i −0.365917 + 0.211262i
\(219\) −38.3229 + 143.023i −0.174990 + 0.653072i
\(220\) 150.073i 0.682152i
\(221\) −179.431 + 166.991i −0.811906 + 0.755617i
\(222\) 128.800 0.580182
\(223\) 98.7837 + 26.4690i 0.442976 + 0.118695i 0.473411 0.880842i \(-0.343023\pi\)
−0.0304348 + 0.999537i \(0.509689\pi\)
\(224\) −14.6390 25.3556i −0.0653528 0.113194i
\(225\) 19.2618 + 11.1208i 0.0856082 + 0.0494259i
\(226\) −156.493 + 156.493i −0.692449 + 0.692449i
\(227\) −59.9993 223.920i −0.264314 0.986433i −0.962669 0.270682i \(-0.912751\pi\)
0.698355 0.715752i \(-0.253916\pi\)
\(228\) 101.563 27.2137i 0.445451 0.119358i
\(229\) 306.032 + 306.032i 1.33639 + 1.33639i 0.899533 + 0.436854i \(0.143907\pi\)
0.436854 + 0.899533i \(0.356093\pi\)
\(230\) −48.7355 + 84.4124i −0.211894 + 0.367010i
\(231\) 102.322 59.0754i 0.442951 0.255738i
\(232\) −27.0452 + 100.934i −0.116574 + 0.435060i
\(233\) 156.892i 0.673356i −0.941620 0.336678i \(-0.890697\pi\)
0.941620 0.336678i \(-0.109303\pi\)
\(234\) 25.8453 + 48.7239i 0.110450 + 0.208222i
\(235\) 496.025 2.11074
\(236\) 48.2036 + 12.9161i 0.204252 + 0.0547293i
\(237\) −81.6535 141.428i −0.344530 0.596743i
\(238\) 119.520 + 69.0050i 0.502185 + 0.289937i
\(239\) 10.5731 10.5731i 0.0442390 0.0442390i −0.684641 0.728880i \(-0.740041\pi\)
0.728880 + 0.684641i \(0.240041\pi\)
\(240\) 10.2090 + 38.1004i 0.0425374 + 0.158752i
\(241\) −227.506 + 60.9601i −0.944009 + 0.252946i −0.697818 0.716275i \(-0.745846\pi\)
−0.246191 + 0.969221i \(0.579179\pi\)
\(242\) −52.7068 52.7068i −0.217797 0.217797i
\(243\) 7.79423 13.5000i 0.0320750 0.0555556i
\(244\) −66.7577 + 38.5426i −0.273597 + 0.157961i
\(245\) −32.7307 + 122.153i −0.133595 + 0.498583i
\(246\) 16.1804i 0.0657738i
\(247\) −394.334 14.1602i −1.59649 0.0573289i
\(248\) −25.9299 −0.104556
\(249\) −150.217 40.2504i −0.603280 0.161648i
\(250\) 70.7979 + 122.626i 0.283192 + 0.490502i
\(251\) 66.6188 + 38.4624i 0.265414 + 0.153237i 0.626802 0.779179i \(-0.284364\pi\)
−0.361388 + 0.932416i \(0.617697\pi\)
\(252\) 21.9586 21.9586i 0.0871371 0.0871371i
\(253\) −41.2952 154.116i −0.163222 0.609153i
\(254\) 250.498 67.1207i 0.986212 0.264255i
\(255\) −131.474 131.474i −0.515583 0.515583i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 55.0112 31.7607i 0.214051 0.123583i −0.389142 0.921178i \(-0.627228\pi\)
0.603193 + 0.797595i \(0.293895\pi\)
\(258\) −8.62545 + 32.1906i −0.0334320 + 0.124770i
\(259\) 272.151i 1.05077i
\(260\) 5.31210 147.931i 0.0204311 0.568965i
\(261\) −110.833 −0.424648
\(262\) −207.630 55.6343i −0.792482 0.212345i
\(263\) −112.589 195.009i −0.428094 0.741481i 0.568610 0.822607i \(-0.307481\pi\)
−0.996704 + 0.0811268i \(0.974148\pi\)
\(264\) −55.9171 32.2838i −0.211807 0.122287i
\(265\) 18.6961 18.6961i 0.0705514 0.0705514i
\(266\) 57.5015 + 214.598i 0.216171 + 0.806761i
\(267\) 260.927 69.9151i 0.977254 0.261854i
\(268\) 134.455 + 134.455i 0.501699 + 0.501699i
\(269\) −11.0720 + 19.1773i −0.0411600 + 0.0712912i −0.885872 0.463931i \(-0.846439\pi\)
0.844712 + 0.535222i \(0.179772\pi\)
\(270\) −36.2321 + 20.9186i −0.134193 + 0.0774763i
\(271\) −38.5487 + 143.866i −0.142246 + 0.530869i 0.857617 + 0.514290i \(0.171944\pi\)
−0.999863 + 0.0165796i \(0.994722\pi\)
\(272\) 75.4202i 0.277280i
\(273\) −102.952 + 54.6102i −0.377113 + 0.200037i
\(274\) 340.078 1.24116
\(275\) 94.3839 + 25.2901i 0.343214 + 0.0919640i
\(276\) −20.9679 36.3175i −0.0759708 0.131585i
\(277\) 175.448 + 101.295i 0.633388 + 0.365687i 0.782063 0.623200i \(-0.214168\pi\)
−0.148675 + 0.988886i \(0.547501\pi\)
\(278\) 185.463 185.463i 0.667132 0.667132i
\(279\) −7.11826 26.5657i −0.0255135 0.0952176i
\(280\) −80.5048 + 21.5712i −0.287517 + 0.0770400i
\(281\) 44.0655 + 44.0655i 0.156817 + 0.156817i 0.781154 0.624338i \(-0.214631\pi\)
−0.624338 + 0.781154i \(0.714631\pi\)
\(282\) −106.705 + 184.818i −0.378385 + 0.655383i
\(283\) −122.008 + 70.4411i −0.431122 + 0.248909i −0.699825 0.714315i \(-0.746739\pi\)
0.268702 + 0.963223i \(0.413405\pi\)
\(284\) −21.0212 + 78.4523i −0.0740184 + 0.276240i
\(285\) 299.314i 1.05022i
\(286\) 165.078 + 177.376i 0.577197 + 0.620194i
\(287\) 34.1885 0.119124
\(288\) −16.3923 4.39230i −0.0569177 0.0152511i
\(289\) 33.2565 + 57.6020i 0.115075 + 0.199315i
\(290\) 257.608 + 148.730i 0.888304 + 0.512862i
\(291\) 185.844 185.844i 0.638641 0.638641i
\(292\) 44.2514 + 165.149i 0.151546 + 0.565577i
\(293\) −165.289 + 44.2892i −0.564128 + 0.151158i −0.529602 0.848246i \(-0.677659\pi\)
−0.0345257 + 0.999404i \(0.510992\pi\)
\(294\) −38.4729 38.4729i −0.130860 0.130860i
\(295\) 71.0299 123.027i 0.240779 0.417042i
\(296\) 128.800 74.3630i 0.435137 0.251226i
\(297\) 17.7250 66.1507i 0.0596802 0.222729i
\(298\) 25.5520i 0.0857449i
\(299\) 35.2505 + 153.377i 0.117895 + 0.512968i
\(300\) 25.6824 0.0856082
\(301\) −68.0176 18.2253i −0.225972 0.0605490i
\(302\) −95.4196 165.272i −0.315959 0.547257i
\(303\) 68.9595 + 39.8138i 0.227589 + 0.131399i
\(304\) 85.8510 85.8510i 0.282405 0.282405i
\(305\) 56.7940 + 211.958i 0.186210 + 0.694945i
\(306\) 77.2695 20.7043i 0.252515 0.0676611i
\(307\) −252.758 252.758i −0.823317 0.823317i 0.163265 0.986582i \(-0.447797\pi\)
−0.986582 + 0.163265i \(0.947797\pi\)
\(308\) 68.2144 118.151i 0.221475 0.383606i
\(309\) 139.215 80.3758i 0.450534 0.260116i
\(310\) −19.1044 + 71.2985i −0.0616271 + 0.229995i
\(311\) 209.742i 0.674411i 0.941431 + 0.337206i \(0.109482\pi\)
−0.941431 + 0.337206i \(0.890518\pi\)
\(312\) 53.9761 + 33.8021i 0.173000 + 0.108340i
\(313\) 386.143 1.23368 0.616842 0.787087i \(-0.288412\pi\)
0.616842 + 0.787087i \(0.288412\pi\)
\(314\) −266.534 71.4175i −0.848834 0.227444i
\(315\) −44.2002 76.5570i −0.140318 0.243038i
\(316\) −163.307 94.2854i −0.516794 0.298371i
\(317\) −114.759 + 114.759i −0.362016 + 0.362016i −0.864555 0.502538i \(-0.832400\pi\)
0.502538 + 0.864555i \(0.332400\pi\)
\(318\) 2.94424 + 10.9880i 0.00925861 + 0.0345536i
\(319\) −470.328 + 126.024i −1.47438 + 0.395059i
\(320\) 32.2063 + 32.2063i 0.100645 + 0.100645i
\(321\) 65.1600 112.860i 0.202991 0.351590i
\(322\) 76.7376 44.3045i 0.238315 0.137592i
\(323\) −148.124 + 552.805i −0.458587 + 1.71147i
\(324\) 18.0000i 0.0555556i
\(325\) −92.1413 28.2699i −0.283512 0.0869843i
\(326\) −175.005 −0.536826
\(327\) −108.968 29.1978i −0.333234 0.0892899i
\(328\) −9.34174 16.1804i −0.0284809 0.0493304i
\(329\) −390.513 225.463i −1.18697 0.685298i
\(330\) −129.967 + 129.967i −0.393841 + 0.393841i
\(331\) −94.4880 352.634i −0.285462 1.06536i −0.948501 0.316775i \(-0.897400\pi\)
0.663039 0.748585i \(-0.269267\pi\)
\(332\) −173.455 + 46.4772i −0.522456 + 0.139992i
\(333\) 111.544 + 111.544i 0.334968 + 0.334968i
\(334\) 87.8436 152.150i 0.263005 0.455538i
\(335\) 468.769 270.644i 1.39931 0.807892i
\(336\) 9.28078 34.6363i 0.0276214 0.103084i
\(337\) 385.355i 1.14349i −0.820432 0.571744i \(-0.806267\pi\)
0.820432 0.571744i \(-0.193733\pi\)
\(338\) −156.443 180.686i −0.462849 0.534575i
\(339\) −271.055 −0.799571
\(340\) −207.380 55.5673i −0.609942 0.163433i
\(341\) −60.4136 104.639i −0.177166 0.306861i
\(342\) 111.524 + 64.3882i 0.326093 + 0.188270i
\(343\) 260.620 260.620i 0.759825 0.759825i
\(344\) 9.95981 + 37.1705i 0.0289529 + 0.108054i
\(345\) −115.309 + 30.8971i −0.334230 + 0.0895567i
\(346\) 119.181 + 119.181i 0.344454 + 0.344454i
\(347\) 11.9337 20.6697i 0.0343909 0.0595669i −0.848318 0.529488i \(-0.822384\pi\)
0.882709 + 0.469921i \(0.155718\pi\)
\(348\) −110.833 + 63.9895i −0.318486 + 0.183878i
\(349\) −80.6742 + 301.080i −0.231158 + 0.862694i 0.748685 + 0.662926i \(0.230686\pi\)
−0.979843 + 0.199768i \(0.935981\pi\)
\(350\) 54.2661i 0.155046i
\(351\) −19.8135 + 64.5788i −0.0564486 + 0.183985i
\(352\) −74.5561 −0.211807
\(353\) −546.864 146.532i −1.54919 0.415104i −0.619968 0.784627i \(-0.712854\pi\)
−0.929222 + 0.369523i \(0.879521\pi\)
\(354\) 30.5598 + 52.9312i 0.0863272 + 0.149523i
\(355\) 200.229 + 115.603i 0.564027 + 0.325641i
\(356\) 220.561 220.561i 0.619554 0.619554i
\(357\) 43.7474 + 163.267i 0.122542 + 0.457332i
\(358\) −293.027 + 78.5164i −0.818512 + 0.219320i
\(359\) −30.3760 30.3760i −0.0846129 0.0846129i 0.663534 0.748146i \(-0.269056\pi\)
−0.748146 + 0.663534i \(0.769056\pi\)
\(360\) −24.1547 + 41.8372i −0.0670964 + 0.116214i
\(361\) −485.233 + 280.150i −1.34414 + 0.776038i
\(362\) −125.810 + 469.531i −0.347543 + 1.29705i
\(363\) 91.2909i 0.251490i
\(364\) −71.4227 + 114.049i −0.196216 + 0.313323i
\(365\) 486.706 1.33344
\(366\) −91.1927 24.4350i −0.249160 0.0667623i
\(367\) 226.506 + 392.320i 0.617182 + 1.06899i 0.989997 + 0.141086i \(0.0450593\pi\)
−0.372815 + 0.927906i \(0.621607\pi\)
\(368\) −41.9359 24.2117i −0.113956 0.0657926i
\(369\) 14.0126 14.0126i 0.0379745 0.0379745i
\(370\) −109.577 408.946i −0.296153 1.10526i
\(371\) −23.2173 + 6.22107i −0.0625804 + 0.0167684i
\(372\) −22.4560 22.4560i −0.0603655 0.0603655i
\(373\) 203.654 352.740i 0.545991 0.945683i −0.452553 0.891737i \(-0.649487\pi\)
0.998544 0.0539461i \(-0.0171799\pi\)
\(374\) 304.356 175.720i 0.813786 0.469840i
\(375\) −44.8841 + 167.510i −0.119691 + 0.446692i
\(376\) 246.424i 0.655383i
\(377\) 468.074 107.577i 1.24158 0.285349i
\(378\) 38.0333 0.100617
\(379\) −10.1914 2.73079i −0.0268903 0.00720524i 0.245349 0.969435i \(-0.421098\pi\)
−0.272239 + 0.962230i \(0.587764\pi\)
\(380\) −172.809 299.314i −0.454760 0.787668i
\(381\) 275.066 + 158.809i 0.721957 + 0.416822i
\(382\) −249.718 + 249.718i −0.653712 + 0.653712i
\(383\) −127.444 475.626i −0.332751 1.24184i −0.906287 0.422664i \(-0.861095\pi\)
0.573535 0.819181i \(-0.305571\pi\)
\(384\) −18.9282 + 5.07180i −0.0492922 + 0.0132078i
\(385\) −274.616 274.616i −0.713289 0.713289i
\(386\) 95.8199 165.965i 0.248238 0.429961i
\(387\) −35.3477 + 20.4080i −0.0913378 + 0.0527339i
\(388\) 78.5471 293.142i 0.202441 0.755520i
\(389\) 61.5695i 0.158276i 0.996864 + 0.0791382i \(0.0252168\pi\)
−0.996864 + 0.0791382i \(0.974783\pi\)
\(390\) 132.712 123.512i 0.340288 0.316696i
\(391\) 228.256 0.583776
\(392\) −60.6852 16.2606i −0.154809 0.0414810i
\(393\) −131.632 227.994i −0.334942 0.580137i
\(394\) −4.30662 2.48643i −0.0109305 0.00631073i
\(395\) −379.573 + 379.573i −0.960943 + 0.960943i
\(396\) −20.4671 76.3842i −0.0516846 0.192889i
\(397\) 196.078 52.5390i 0.493899 0.132340i −0.00326782 0.999995i \(-0.501040\pi\)
0.497167 + 0.867655i \(0.334374\pi\)
\(398\) −265.195 265.195i −0.666319 0.666319i
\(399\) −136.050 + 235.645i −0.340977 + 0.590590i
\(400\) 25.6824 14.8278i 0.0642061 0.0370694i
\(401\) −71.0875 + 265.302i −0.177276 + 0.661602i 0.818877 + 0.573969i \(0.194597\pi\)
−0.996153 + 0.0876329i \(0.972070\pi\)
\(402\) 232.883i 0.579312i
\(403\) 55.8472 + 105.284i 0.138579 + 0.261251i
\(404\) 91.9460 0.227589
\(405\) −49.4939 13.2619i −0.122207 0.0327453i
\(406\) −135.208 234.186i −0.333023 0.576814i
\(407\) 600.179 + 346.514i 1.47464 + 0.851385i
\(408\) 65.3158 65.3158i 0.160088 0.160088i
\(409\) −56.5699 211.122i −0.138313 0.516190i −0.999962 0.00868619i \(-0.997235\pi\)
0.861650 0.507504i \(-0.169432\pi\)
\(410\) −51.3732 + 13.7654i −0.125301 + 0.0335742i
\(411\) 294.516 + 294.516i 0.716585 + 0.716585i
\(412\) 92.8099 160.752i 0.225267 0.390174i
\(413\) −111.842 + 64.5718i −0.270803 + 0.156348i
\(414\) 13.2931 49.6107i 0.0321090 0.119833i
\(415\) 511.186i 1.23177i
\(416\) 73.4917 + 2.63904i 0.176663 + 0.00634384i
\(417\) 321.231 0.770337
\(418\) 546.472 + 146.427i 1.30735 + 0.350303i
\(419\) 213.906 + 370.495i 0.510514 + 0.884237i 0.999926 + 0.0121839i \(0.00387834\pi\)
−0.489411 + 0.872053i \(0.662788\pi\)
\(420\) −88.4004 51.0380i −0.210477 0.121519i
\(421\) 275.833 275.833i 0.655185 0.655185i −0.299052 0.954237i \(-0.596670\pi\)
0.954237 + 0.299052i \(0.0966703\pi\)
\(422\) 5.02967 + 18.7710i 0.0119187 + 0.0444810i
\(423\) −252.466 + 67.6481i −0.596846 + 0.159924i
\(424\) 9.28819 + 9.28819i 0.0219061 + 0.0219061i
\(425\) −69.8946 + 121.061i −0.164458 + 0.284849i
\(426\) −86.1466 + 49.7368i −0.202222 + 0.116753i
\(427\) 51.6303 192.687i 0.120914 0.451257i
\(428\) 150.481i 0.351590i
\(429\) −10.6498 + 296.574i −0.0248246 + 0.691314i
\(430\) 109.544 0.254755
\(431\) −536.117 143.652i −1.24389 0.333300i −0.423917 0.905701i \(-0.639345\pi\)
−0.819974 + 0.572401i \(0.806012\pi\)
\(432\) −10.3923 18.0000i −0.0240563 0.0416667i
\(433\) 583.519 + 336.895i 1.34762 + 0.778048i 0.987912 0.155018i \(-0.0495435\pi\)
0.359706 + 0.933066i \(0.382877\pi\)
\(434\) 47.4487 47.4487i 0.109329 0.109329i
\(435\) 94.2911 + 351.899i 0.216761 + 0.808964i
\(436\) −125.825 + 33.7147i −0.288589 + 0.0773273i
\(437\) 259.825 + 259.825i 0.594564 + 0.594564i
\(438\) −104.700 + 181.346i −0.239041 + 0.414031i
\(439\) 497.218 287.069i 1.13262 0.653916i 0.188024 0.982164i \(-0.439792\pi\)
0.944591 + 0.328248i \(0.106458\pi\)
\(440\) −54.9307 + 205.004i −0.124843 + 0.465919i
\(441\) 66.6370i 0.151104i
\(442\) −306.231 + 162.438i −0.692830 + 0.367507i
\(443\) −365.652 −0.825399 −0.412700 0.910867i \(-0.635414\pi\)
−0.412700 + 0.910867i \(0.635414\pi\)
\(444\) 175.945 + 47.1442i 0.396272 + 0.106181i
\(445\) −443.966 768.972i −0.997677 1.72803i
\(446\) 125.253 + 72.3147i 0.280836 + 0.162141i
\(447\) 22.1287 22.1287i 0.0495048 0.0495048i
\(448\) −10.7165 39.9946i −0.0239208 0.0892736i
\(449\) 792.445 212.335i 1.76491 0.472906i 0.777207 0.629245i \(-0.216636\pi\)
0.987703 + 0.156339i \(0.0499692\pi\)
\(450\) 22.2417 + 22.2417i 0.0494259 + 0.0494259i
\(451\) 43.5302 75.3966i 0.0965194 0.167177i
\(452\) −271.055 + 156.493i −0.599678 + 0.346224i
\(453\) 60.4936 225.765i 0.133540 0.498378i
\(454\) 327.842i 0.722119i
\(455\) 260.975 + 280.416i 0.573572 + 0.616300i
\(456\) 148.698 0.326093
\(457\) 190.926 + 51.1586i 0.417782 + 0.111944i 0.461585 0.887096i \(-0.347281\pi\)
−0.0438033 + 0.999040i \(0.513947\pi\)
\(458\) 306.032 + 530.064i 0.668193 + 1.15734i
\(459\) 84.8477 + 48.9869i 0.184853 + 0.106725i
\(460\) −97.4710 + 97.4710i −0.211894 + 0.211894i
\(461\) −26.1981 97.7727i −0.0568289 0.212088i 0.931673 0.363299i \(-0.118350\pi\)
−0.988502 + 0.151210i \(0.951683\pi\)
\(462\) 161.397 43.2462i 0.349344 0.0936065i
\(463\) 177.994 + 177.994i 0.384435 + 0.384435i 0.872697 0.488262i \(-0.162369\pi\)
−0.488262 + 0.872697i \(0.662369\pi\)
\(464\) −73.8888 + 127.979i −0.159243 + 0.275817i
\(465\) −78.2912 + 45.2015i −0.168368 + 0.0972075i
\(466\) 57.4264 214.318i 0.123233 0.459911i
\(467\) 104.162i 0.223044i 0.993762 + 0.111522i \(0.0355726\pi\)
−0.993762 + 0.111522i \(0.964427\pi\)
\(468\) 17.4711 + 76.0182i 0.0373315 + 0.162432i
\(469\) −492.074 −1.04920
\(470\) 677.583 + 181.558i 1.44166 + 0.386293i
\(471\) −168.976 292.674i −0.358759 0.621389i
\(472\) 61.1197 + 35.2875i 0.129491 + 0.0747616i
\(473\) −126.795 + 126.795i −0.268066 + 0.268066i
\(474\) −59.7745 223.082i −0.126107 0.470636i
\(475\) −217.365 + 58.2428i −0.457611 + 0.122616i
\(476\) 138.010 + 138.010i 0.289937 + 0.289937i
\(477\) −6.96614 + 12.0657i −0.0146041 + 0.0252950i
\(478\) 18.3132 10.5731i 0.0383121 0.0221195i
\(479\) 19.1135 71.3326i 0.0399030 0.148920i −0.943100 0.332509i \(-0.892105\pi\)
0.983003 + 0.183589i \(0.0587715\pi\)
\(480\) 55.7829i 0.116214i
\(481\) −579.345 362.811i −1.20446 0.754284i
\(482\) −333.092 −0.691062
\(483\) 104.825 + 28.0879i 0.217030 + 0.0581530i
\(484\) −52.7068 91.2909i −0.108898 0.188618i
\(485\) −748.170 431.956i −1.54262 0.890631i
\(486\) 15.5885 15.5885i 0.0320750 0.0320750i
\(487\) 169.904 + 634.092i 0.348880 + 1.30204i 0.888014 + 0.459816i \(0.152085\pi\)
−0.539134 + 0.842220i \(0.681249\pi\)
\(488\) −105.300 + 28.2151i −0.215779 + 0.0578179i
\(489\) −151.559 151.559i −0.309937 0.309937i
\(490\) −89.4220 + 154.884i −0.182494 + 0.316089i
\(491\) 391.206 225.863i 0.796754 0.460006i −0.0455811 0.998961i \(-0.514514\pi\)
0.842335 + 0.538955i \(0.181181\pi\)
\(492\) 5.92242 22.1028i 0.0120374 0.0449244i
\(493\) 696.588i 1.41296i
\(494\) −533.487 163.679i −1.07993 0.331335i
\(495\) −225.110 −0.454768
\(496\) −35.4209 9.49101i −0.0714132 0.0191351i
\(497\) −105.092 182.025i −0.211453 0.366247i
\(498\) −190.467 109.966i −0.382464 0.220816i
\(499\) −126.721 + 126.721i −0.253950 + 0.253950i −0.822588 0.568638i \(-0.807471\pi\)
0.568638 + 0.822588i \(0.307471\pi\)
\(500\) 51.8277 + 193.424i 0.103655 + 0.386847i
\(501\) 207.840 55.6906i 0.414851 0.111159i
\(502\) 76.9248 + 76.9248i 0.153237 + 0.153237i
\(503\) 173.941 301.275i 0.345808 0.598957i −0.639692 0.768631i \(-0.720938\pi\)
0.985500 + 0.169674i \(0.0542715\pi\)
\(504\) 38.0333 21.9586i 0.0754630 0.0435686i
\(505\) 67.7430 252.821i 0.134145 0.500635i
\(506\) 225.641i 0.445931i
\(507\) 20.9954 291.963i 0.0414111 0.575863i
\(508\) 366.754 0.721957
\(509\) −173.706 46.5443i −0.341269 0.0914426i 0.0841143 0.996456i \(-0.473194\pi\)
−0.425383 + 0.905013i \(0.639861\pi\)
\(510\) −131.474 227.719i −0.257792 0.446508i
\(511\) −383.177 221.227i −0.749857 0.432930i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 40.8205 + 152.344i 0.0795722 + 0.296967i
\(514\) 86.7719 23.2505i 0.168817 0.0452344i
\(515\) −373.633 373.633i −0.725501 0.725501i
\(516\) −23.5652 + 40.8161i −0.0456689 + 0.0791009i
\(517\) −994.436 + 574.138i −1.92347 + 1.11052i
\(518\) −99.6140 + 371.765i −0.192305 + 0.717692i
\(519\) 206.428i 0.397741i
\(520\) 61.4029 200.133i 0.118083 0.384871i
\(521\) −107.588 −0.206503 −0.103251 0.994655i \(-0.532925\pi\)
−0.103251 + 0.994655i \(0.532925\pi\)
\(522\) −151.401 40.5677i −0.290040 0.0777160i
\(523\) 300.816 + 521.029i 0.575175 + 0.996232i 0.996023 + 0.0891006i \(0.0283993\pi\)
−0.420848 + 0.907131i \(0.638267\pi\)
\(524\) −263.265 151.996i −0.502413 0.290068i
\(525\) −46.9958 + 46.9958i −0.0895158 + 0.0895158i
\(526\) −82.4207 307.598i −0.156693 0.584787i
\(527\) 166.966 44.7384i 0.316823 0.0848926i
\(528\) −64.5675 64.5675i −0.122287 0.122287i
\(529\) −191.224 + 331.210i −0.361483 + 0.626106i
\(530\) 32.3826 18.6961i 0.0610993 0.0352757i
\(531\) −19.3742 + 72.3054i −0.0364862 + 0.136168i
\(532\) 314.194i 0.590590i
\(533\) −45.5776 + 72.7794i −0.0855114 + 0.136547i
\(534\) 382.023 0.715400
\(535\) −413.771 110.870i −0.773404 0.207233i
\(536\) 134.455 + 232.883i 0.250849 + 0.434484i
\(537\) −321.766 185.772i −0.599192 0.345944i
\(538\) −22.1441 + 22.1441i −0.0411600 + 0.0411600i
\(539\) −75.7702 282.778i −0.140576 0.524635i
\(540\) −57.1507 + 15.3135i −0.105835 + 0.0283583i
\(541\) 212.291 + 212.291i 0.392405 + 0.392405i 0.875544 0.483139i \(-0.160503\pi\)
−0.483139 + 0.875544i \(0.660503\pi\)
\(542\) −105.317 + 182.414i −0.194312 + 0.336558i
\(543\) −515.581 + 297.671i −0.949504 + 0.548196i
\(544\) 27.6057 103.026i 0.0507458 0.189386i
\(545\) 370.816i 0.680397i
\(546\) −160.624 + 36.9159i −0.294182 + 0.0676115i
\(547\) −709.928 −1.29786 −0.648929 0.760849i \(-0.724783\pi\)
−0.648929 + 0.760849i \(0.724783\pi\)
\(548\) 464.556 + 124.477i 0.847729 + 0.227148i
\(549\) −57.8139 100.137i −0.105308 0.182398i
\(550\) 119.674 + 69.0938i 0.217589 + 0.125625i
\(551\) 792.928 792.928i 1.43907 1.43907i
\(552\) −15.3496 57.2855i −0.0278072 0.103778i
\(553\) 471.363 126.301i 0.852375 0.228393i
\(554\) 202.590 + 202.590i 0.365687 + 0.365687i
\(555\) 259.261 449.054i 0.467138 0.809106i
\(556\) 321.231 185.463i 0.577753 0.333566i
\(557\) 184.812 689.728i 0.331799 1.23829i −0.575499 0.817802i \(-0.695192\pi\)
0.907298 0.420488i \(-0.138141\pi\)
\(558\) 38.8949i 0.0697041i
\(559\) 129.473 120.497i 0.231616 0.215558i
\(560\) −117.867 −0.210477
\(561\) 415.758 + 111.402i 0.741102 + 0.198578i
\(562\) 44.0655 + 76.3237i 0.0784083 + 0.135807i
\(563\) −159.912 92.3251i −0.284035 0.163988i 0.351214 0.936295i \(-0.385769\pi\)
−0.635249 + 0.772308i \(0.719102\pi\)
\(564\) −213.409 + 213.409i −0.378385 + 0.378385i
\(565\) 230.599 + 860.608i 0.408140 + 1.52320i
\(566\) −192.449 + 51.5665i −0.340016 + 0.0911069i
\(567\) 32.9378 + 32.9378i 0.0580914 + 0.0580914i
\(568\) −57.4311 + 99.4735i −0.101111 + 0.175129i
\(569\) −808.949 + 467.047i −1.42170 + 0.820820i −0.996445 0.0842516i \(-0.973150\pi\)
−0.425258 + 0.905072i \(0.639817\pi\)
\(570\) 109.556 408.870i 0.192204 0.717316i
\(571\) 235.631i 0.412664i −0.978482 0.206332i \(-0.933847\pi\)
0.978482 0.206332i \(-0.0661527\pi\)
\(572\) 160.577 + 302.722i 0.280729 + 0.529235i
\(573\) −432.524 −0.754842
\(574\) 46.7024 + 12.5139i 0.0813630 + 0.0218012i
\(575\) 44.8757 + 77.7269i 0.0780446 + 0.135177i
\(576\) −20.7846 12.0000i −0.0360844 0.0208333i
\(577\) −213.174 + 213.174i −0.369452 + 0.369452i −0.867277 0.497826i \(-0.834132\pi\)
0.497826 + 0.867277i \(0.334132\pi\)
\(578\) 24.3455 + 90.8586i 0.0421202 + 0.157195i
\(579\) 226.712 60.7474i 0.391559 0.104918i
\(580\) 297.460 + 297.460i 0.512862 + 0.512862i
\(581\) 232.355 402.450i 0.399922 0.692685i
\(582\) 321.892 185.844i 0.553079 0.319320i
\(583\) −15.8418 + 59.1226i −0.0271730 + 0.101411i
\(584\) 241.794i 0.414031i
\(585\) 221.896 + 7.96815i 0.379310 + 0.0136208i
\(586\) −242.001 −0.412970
\(587\) −484.121 129.720i −0.824737 0.220988i −0.178321 0.983972i \(-0.557066\pi\)
−0.646416 + 0.762985i \(0.723733\pi\)
\(588\) −38.4729 66.6370i −0.0654301 0.113328i
\(589\) 240.984 + 139.132i 0.409140 + 0.236217i
\(590\) 142.060 142.060i 0.240779 0.240779i
\(591\) −1.57633 5.88295i −0.00266723 0.00995423i
\(592\) 203.163 54.4375i 0.343181 0.0919552i
\(593\) −456.457 456.457i −0.769743 0.769743i 0.208319 0.978061i \(-0.433201\pi\)
−0.978061 + 0.208319i \(0.933201\pi\)
\(594\) 48.4256 83.8757i 0.0815246 0.141205i
\(595\) 481.162 277.799i 0.808676 0.466889i
\(596\) 9.35267 34.9046i 0.0156924 0.0585648i
\(597\) 459.331i 0.769399i
\(598\) −7.98694 + 222.420i −0.0133561 + 0.371940i
\(599\) 409.720 0.684007 0.342003 0.939699i \(-0.388895\pi\)
0.342003 + 0.939699i \(0.388895\pi\)
\(600\) 35.0829 + 9.40043i 0.0584715 + 0.0156674i
\(601\) 354.315 + 613.692i 0.589543 + 1.02112i 0.994292 + 0.106690i \(0.0340253\pi\)
−0.404750 + 0.914428i \(0.632641\pi\)
\(602\) −86.2428 49.7923i −0.143261 0.0827115i
\(603\) −201.683 + 201.683i −0.334466 + 0.334466i
\(604\) −69.8520 260.691i −0.115649 0.431608i
\(605\) −289.852 + 77.6656i −0.479094 + 0.128373i
\(606\) 79.6276 + 79.6276i 0.131399 + 0.131399i
\(607\) −233.682 + 404.749i −0.384978 + 0.666802i −0.991766 0.128062i \(-0.959124\pi\)
0.606788 + 0.794864i \(0.292458\pi\)
\(608\) 148.698 85.8510i 0.244570 0.141202i
\(609\) 85.7181 319.904i 0.140752 0.525295i
\(610\) 310.328i 0.508735i
\(611\) 1000.56 530.742i 1.63758 0.868644i
\(612\) 113.130 0.184853
\(613\) 962.345 + 257.859i 1.56989 + 0.420652i 0.935779 0.352588i \(-0.114698\pi\)
0.634114 + 0.773239i \(0.281365\pi\)
\(614\) −252.758 437.790i −0.411659 0.713013i
\(615\) −56.4117 32.5693i −0.0917264 0.0529583i
\(616\) 136.429 136.429i 0.221475 0.221475i
\(617\) 80.8743 + 301.827i 0.131077 + 0.489184i 0.999983 0.00579153i \(-0.00184351\pi\)
−0.868907 + 0.494976i \(0.835177\pi\)
\(618\) 219.591 58.8391i 0.355325 0.0952090i
\(619\) −459.215 459.215i −0.741865 0.741865i 0.231071 0.972937i \(-0.425777\pi\)
−0.972937 + 0.231071i \(0.925777\pi\)
\(620\) −52.1942 + 90.4029i −0.0841841 + 0.145811i
\(621\) 54.4763 31.4519i 0.0877235 0.0506472i
\(622\) −76.7709 + 286.513i −0.123426 + 0.460632i
\(623\) 807.201i 1.29567i
\(624\) 61.3602 + 65.9312i 0.0983337 + 0.105659i
\(625\) 755.381 1.20861
\(626\) 527.481 + 141.338i 0.842622 + 0.225780i
\(627\) 346.449 + 600.067i 0.552550 + 0.957045i
\(628\) −337.951 195.116i −0.538139 0.310695i
\(629\) −701.059 + 701.059i −1.11456 + 1.11456i
\(630\) −32.3568 120.757i −0.0513600 0.191678i
\(631\) 258.950 69.3855i 0.410381 0.109961i −0.0477214 0.998861i \(-0.515196\pi\)
0.458102 + 0.888899i \(0.348529\pi\)
\(632\) −188.571 188.571i −0.298371 0.298371i
\(633\) −11.9003 + 20.6120i −0.0187999 + 0.0325624i
\(634\) −198.769 + 114.759i −0.313515 + 0.181008i
\(635\) 270.213 1008.45i 0.425533 1.58811i
\(636\) 16.0876i 0.0252950i
\(637\) 64.6791 + 281.423i 0.101537 + 0.441795i
\(638\) −688.608 −1.07932
\(639\) −117.678 31.5318i −0.184160 0.0493456i
\(640\) 32.2063 + 55.7829i 0.0503223 + 0.0871608i
\(641\) −149.378 86.2432i −0.233038 0.134545i 0.378935 0.925423i \(-0.376291\pi\)
−0.611973 + 0.790879i \(0.709624\pi\)
\(642\) 130.320 130.320i 0.202991 0.202991i
\(643\) 246.195 + 918.812i 0.382885 + 1.42894i 0.841475 + 0.540297i \(0.181688\pi\)
−0.458590 + 0.888648i \(0.651645\pi\)
\(644\) 121.042 32.4331i 0.187954 0.0503620i
\(645\) 94.8683 + 94.8683i 0.147083 + 0.147083i
\(646\) −404.681 + 700.929i −0.626442 + 1.08503i
\(647\) 640.175 369.605i 0.989452 0.571260i 0.0843415 0.996437i \(-0.473121\pi\)
0.905110 + 0.425177i \(0.139788\pi\)
\(648\) 6.58846 24.5885i 0.0101674 0.0379452i
\(649\) 328.862i 0.506721i
\(650\) −115.520 72.3435i −0.177723 0.111298i
\(651\) 82.1835 0.126242
\(652\) −239.062 64.0564i −0.366659 0.0982461i
\(653\) 561.339 + 972.268i 0.859632 + 1.48893i 0.872281 + 0.489006i \(0.162640\pi\)
−0.0126491 + 0.999920i \(0.504026\pi\)
\(654\) −138.165 79.7698i −0.211262 0.121972i
\(655\) −611.903 + 611.903i −0.934202 + 0.934202i
\(656\) −6.83863 25.5221i −0.0104247 0.0389056i
\(657\) −247.723 + 66.3771i −0.377052 + 0.101031i
\(658\) −450.926 450.926i −0.685298 0.685298i
\(659\) −174.510 + 302.259i −0.264810 + 0.458664i −0.967514 0.252819i \(-0.918642\pi\)
0.702704 + 0.711482i \(0.251976\pi\)
\(660\) −225.110 + 129.967i −0.341076 + 0.196920i
\(661\) 207.511 774.442i 0.313935 1.17162i −0.611042 0.791598i \(-0.709249\pi\)
0.924977 0.380023i \(-0.124084\pi\)
\(662\) 516.292i 0.779898i
\(663\) −405.879 124.528i −0.612186 0.187825i
\(664\) −253.956 −0.382464
\(665\) 863.927 + 231.489i 1.29914 + 0.348103i
\(666\) 111.544 + 193.201i 0.167484 + 0.290091i
\(667\) −387.324 223.621i −0.580695 0.335264i
\(668\) 175.687 175.687i 0.263005 0.263005i
\(669\) 45.8457 + 171.098i 0.0685287 + 0.255752i
\(670\) 739.413 198.125i 1.10360 0.295709i
\(671\) −359.198 359.198i −0.535318 0.535318i
\(672\) 25.3556 43.9171i 0.0377315 0.0653528i
\(673\) 90.8433 52.4484i 0.134983 0.0779323i −0.430988 0.902358i \(-0.641835\pi\)
0.565971 + 0.824425i \(0.308502\pi\)
\(674\) 141.050 526.405i 0.209273 0.781017i
\(675\) 38.5237i 0.0570721i
\(676\) −147.569 304.084i −0.218298 0.449829i
\(677\) −71.7517 −0.105985 −0.0529924 0.998595i \(-0.516876\pi\)
−0.0529924 + 0.998595i \(0.516876\pi\)
\(678\) −370.267 99.2128i −0.546117 0.146332i
\(679\) 392.682 + 680.146i 0.578325 + 1.00169i
\(680\) −262.947 151.813i −0.386687 0.223254i
\(681\) 283.920 283.920i 0.416916 0.416916i
\(682\) −44.2258 165.053i −0.0648473 0.242013i
\(683\) −719.362 + 192.753i −1.05324 + 0.282215i −0.743590 0.668636i \(-0.766878\pi\)
−0.309649 + 0.950851i \(0.600212\pi\)
\(684\) 128.776 + 128.776i 0.188270 + 0.188270i
\(685\) 684.541 1185.66i 0.999330 1.73089i
\(686\) 451.407 260.620i 0.658028 0.379912i
\(687\) −194.017 + 724.081i −0.282412 + 1.05397i
\(688\) 54.4214i 0.0791009i
\(689\) 17.7084 57.7178i 0.0257016 0.0837703i
\(690\) −168.825 −0.244674
\(691\) −550.709 147.562i −0.796973 0.213548i −0.162719 0.986673i \(-0.552026\pi\)
−0.634255 + 0.773124i \(0.718693\pi\)
\(692\) 119.181 + 206.428i 0.172227 + 0.298306i
\(693\) 177.226 + 102.322i 0.255738 + 0.147650i
\(694\) 23.8673 23.8673i 0.0343909 0.0343909i
\(695\) −273.286 1019.92i −0.393218 1.46751i
\(696\) −174.823 + 46.8436i −0.251182 + 0.0673040i
\(697\) 88.0695 + 88.0695i 0.126355 + 0.126355i
\(698\) −220.406 + 381.755i −0.315768 + 0.546926i
\(699\) 235.338 135.872i 0.336678 0.194381i
\(700\) −19.8628 + 74.1288i −0.0283754 + 0.105898i
\(701\) 234.275i 0.334201i −0.985940 0.167101i \(-0.946559\pi\)
0.985940 0.167101i \(-0.0534405\pi\)
\(702\) −50.7032 + 80.9641i −0.0722268 + 0.115333i
\(703\) −1596.03 −2.27032
\(704\) −101.846 27.2894i −0.144667 0.0387634i
\(705\) 429.570 + 744.037i 0.609319 + 1.05537i
\(706\) −693.396 400.332i −0.982147 0.567043i
\(707\) −168.250 + 168.250i −0.237978 + 0.237978i
\(708\) 22.3714 + 83.4910i 0.0315980 + 0.117925i
\(709\) 23.0348 6.17216i 0.0324891 0.00870544i −0.242538 0.970142i \(-0.577980\pi\)
0.275027 + 0.961436i \(0.411313\pi\)
\(710\) 231.205 + 231.205i 0.325641 + 0.325641i
\(711\) 141.428 244.961i 0.198914 0.344530i
\(712\) 382.023 220.561i 0.536550 0.309777i
\(713\) 28.7242 107.200i 0.0402864 0.150351i
\(714\) 239.040i 0.334790i
\(715\) 950.692 218.496i 1.32964 0.305589i
\(716\) −429.022 −0.599192
\(717\) 25.0163 + 6.70309i 0.0348902 + 0.00934880i
\(718\) −30.3760 52.6128i −0.0423064 0.0732769i
\(719\) 654.278 + 377.747i 0.909983 + 0.525379i 0.880426 0.474184i \(-0.157257\pi\)
0.0295573 + 0.999563i \(0.490590\pi\)
\(720\) −48.3094 + 48.3094i −0.0670964 + 0.0670964i
\(721\) 124.325 + 463.987i 0.172434 + 0.643532i
\(722\) −765.383 + 205.084i −1.06009 + 0.284050i
\(723\) −288.466 288.466i −0.398985 0.398985i
\(724\) −343.720 + 595.341i −0.474752 + 0.822295i
\(725\) 237.205 136.951i 0.327180 0.188897i
\(726\) 33.4148 124.706i 0.0460259 0.171771i
\(727\) 686.041i 0.943660i −0.881689 0.471830i \(-0.843594\pi\)
0.881689 0.471830i \(-0.156406\pi\)
\(728\) −139.310 + 129.652i −0.191360 + 0.178093i
\(729\) 27.0000 0.0370370
\(730\) 664.853 + 178.147i 0.910757 + 0.244037i
\(731\) −128.265 222.161i −0.175465 0.303914i
\(732\) −115.628 66.7577i −0.157961 0.0911990i
\(733\) −173.245 + 173.245i −0.236351 + 0.236351i −0.815337 0.578986i \(-0.803448\pi\)
0.578986 + 0.815337i \(0.303448\pi\)
\(734\) 165.814 + 618.826i 0.225904 + 0.843087i
\(735\) −211.575 + 56.6913i −0.287857 + 0.0771310i
\(736\) −48.4234 48.4234i −0.0657926 0.0657926i
\(737\) −626.529 + 1085.18i −0.850107 + 1.47243i
\(738\) 24.2705 14.0126i 0.0328869 0.0189873i
\(739\) −25.6776 + 95.8300i −0.0347464 + 0.129675i −0.981120 0.193398i \(-0.938049\pi\)
0.946374 + 0.323073i \(0.104716\pi\)
\(740\) 598.739i 0.809106i
\(741\) −320.263 603.764i −0.432203 0.814796i
\(742\) −33.9925 −0.0458120
\(743\) 1205.46 + 323.002i 1.62242 + 0.434726i 0.951712 0.306994i \(-0.0993230\pi\)
0.670710 + 0.741720i \(0.265990\pi\)
\(744\) −22.4560 38.8949i −0.0301828 0.0522781i
\(745\) −89.0852 51.4334i −0.119577 0.0690381i
\(746\) 407.309 407.309i 0.545991 0.545991i
\(747\) −69.7158 260.183i −0.0933277 0.348304i
\(748\) 480.076 128.636i 0.641813 0.171973i
\(749\) 275.361 + 275.361i 0.367639 + 0.367639i
\(750\) −122.626 + 212.394i −0.163501 + 0.283192i
\(751\) 181.326 104.689i 0.241446 0.139399i −0.374395 0.927269i \(-0.622150\pi\)
0.615841 + 0.787870i \(0.288816\pi\)
\(752\) −90.1974 + 336.621i −0.119943 + 0.447635i
\(753\) 133.238i 0.176942i
\(754\) 678.777 + 24.3744i 0.900234 + 0.0323268i
\(755\) −768.277 −1.01759
\(756\) 51.9545 + 13.9212i 0.0687229 + 0.0184142i
\(757\) −641.569 1111.23i −0.847515 1.46794i −0.883419 0.468584i \(-0.844764\pi\)
0.0359036 0.999355i \(-0.488569\pi\)
\(758\) −12.9222 7.46065i −0.0170478 0.00984254i
\(759\) 195.411 195.411i 0.257459 0.257459i
\(760\) −126.505 472.122i −0.166454 0.621214i
\(761\) −449.407 + 120.418i −0.590548 + 0.158237i −0.541704 0.840570i \(-0.682220\pi\)
−0.0488443 + 0.998806i \(0.515554\pi\)
\(762\) 317.619 + 317.619i 0.416822 + 0.416822i
\(763\) 168.551 291.938i 0.220905 0.382619i
\(764\) −432.524 + 249.718i −0.566131 + 0.326856i
\(765\) 83.3510 311.070i 0.108956 0.406628i
\(766\) 696.365i 0.909093i
\(767\) 11.6406 324.167i 0.0151768 0.422643i
\(768\) −27.7128 −0.0360844