Properties

Label 78.3.l.c.67.1
Level $78$
Weight $3$
Character 78.67
Analytic conductor $2.125$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 78.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.12534606201\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 82x^{5} + 5053x^{4} - 6736x^{3} + 6728x^{2} + 275384x + 5635876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.1
Root \(-5.39181 - 5.39181i\) of defining polynomial
Character \(\chi\) \(=\) 78.67
Dual form 78.3.l.c.7.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(0.866025 + 1.50000i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-6.39181 + 6.39181i) q^{5} +(0.633975 + 2.36603i) q^{6} +(9.23137 - 2.47354i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(0.866025 + 1.50000i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-6.39181 + 6.39181i) q^{5} +(0.633975 + 2.36603i) q^{6} +(9.23137 - 2.47354i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +(-11.0709 + 6.39181i) q^{10} +(4.21503 - 15.7307i) q^{11} +3.46410i q^{12} +(-3.81310 - 12.4282i) q^{13} +13.5157 q^{14} +(-15.1232 - 4.05225i) q^{15} +(2.00000 + 3.46410i) q^{16} +(8.31934 + 4.80317i) q^{17} +(-3.00000 + 3.00000i) q^{18} +(2.56168 + 9.56033i) q^{19} +(-17.4627 + 4.67913i) q^{20} +(11.7049 + 11.7049i) q^{21} +(11.5157 - 19.9457i) q^{22} +(-23.6929 + 13.6791i) q^{23} +(-1.26795 + 4.73205i) q^{24} -56.7105i q^{25} +(-0.659759 - 18.3729i) q^{26} -5.19615 q^{27} +(18.4627 + 4.94708i) q^{28} +(-13.8023 - 23.9063i) q^{29} +(-19.1754 - 11.0709i) q^{30} +(11.5613 - 11.5613i) q^{31} +(1.46410 + 5.46410i) q^{32} +(27.2464 - 7.30064i) q^{33} +(9.60634 + 9.60634i) q^{34} +(-43.1948 + 74.8156i) q^{35} +(-5.19615 + 3.00000i) q^{36} +(-5.45615 + 20.3626i) q^{37} +13.9973i q^{38} +(15.3401 - 16.4828i) q^{39} -25.5672 q^{40} +(39.1030 + 10.4776i) q^{41} +(11.7049 + 20.2735i) q^{42} +(-30.9095 - 17.8456i) q^{43} +(23.0313 - 23.0313i) q^{44} +(-7.01869 - 26.1941i) q^{45} +(-37.3721 + 10.0138i) q^{46} +(25.5184 + 25.5184i) q^{47} +(-3.46410 + 6.00000i) q^{48} +(36.6646 - 21.1683i) q^{49} +(20.7575 - 77.4679i) q^{50} +16.6387i q^{51} +(5.82371 - 25.3394i) q^{52} -39.0697 q^{53} +(-7.09808 - 1.90192i) q^{54} +(73.6060 + 127.489i) q^{55} +(23.4098 + 13.5157i) q^{56} +(-12.1220 + 12.1220i) q^{57} +(-10.1040 - 37.7086i) q^{58} +(-46.0300 + 12.3337i) q^{59} +(-22.1419 - 22.1419i) q^{60} +(-35.2717 + 61.0923i) q^{61} +(20.0248 - 11.5613i) q^{62} +(-7.42062 + 27.6941i) q^{63} +8.00000i q^{64} +(103.811 + 55.0661i) q^{65} +39.8915 q^{66} +(38.7250 + 10.3763i) q^{67} +(9.60634 + 16.6387i) q^{68} +(-41.0374 - 23.6929i) q^{69} +(-86.3896 + 86.3896i) q^{70} +(-8.28114 - 30.9056i) q^{71} +(-8.19615 + 2.19615i) q^{72} +(-9.68320 - 9.68320i) q^{73} +(-14.9065 + 25.8188i) q^{74} +(85.0657 - 49.1127i) q^{75} +(-5.12337 + 19.1207i) q^{76} -155.642i q^{77} +(26.9880 - 16.9011i) q^{78} -56.1543 q^{79} +(-34.9255 - 9.35826i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(49.5806 + 28.6254i) q^{82} +(4.59931 - 4.59931i) q^{83} +(8.56859 + 31.9784i) q^{84} +(-83.8766 + 22.4747i) q^{85} +(-35.6912 - 35.6912i) q^{86} +(23.9063 - 41.4069i) q^{87} +(39.8915 - 23.0313i) q^{88} +(29.9479 - 111.767i) q^{89} -38.3509i q^{90} +(-65.9418 - 105.298i) q^{91} -54.7165 q^{92} +(27.3544 + 7.32958i) q^{93} +(25.5184 + 44.1991i) q^{94} +(-77.4816 - 44.7340i) q^{95} +(-6.92820 + 6.92820i) q^{96} +(-9.04249 - 33.7470i) q^{97} +(57.8330 - 15.4963i) q^{98} +(34.5470 + 34.5470i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9} - 6 q^{10} + 24 q^{11} + 4 q^{14} - 12 q^{15} + 16 q^{16} - 84 q^{17} - 24 q^{18} + 10 q^{19} - 12 q^{20} + 18 q^{21} - 12 q^{22} - 12 q^{23} - 24 q^{24} + 26 q^{26} + 20 q^{28} + 36 q^{29} - 18 q^{30} - 94 q^{31} - 16 q^{32} + 60 q^{34} - 204 q^{35} + 140 q^{37} + 66 q^{39} - 24 q^{40} + 72 q^{41} + 18 q^{42} - 222 q^{43} - 24 q^{44} - 84 q^{46} + 300 q^{47} + 42 q^{49} - 62 q^{50} + 44 q^{52} + 84 q^{53} - 36 q^{54} + 396 q^{55} + 36 q^{56} + 24 q^{57} - 66 q^{58} - 60 q^{59} - 12 q^{60} - 90 q^{61} + 198 q^{62} - 24 q^{63} - 108 q^{65} + 72 q^{66} + 304 q^{67} + 60 q^{68} - 216 q^{69} - 408 q^{70} - 192 q^{71} - 24 q^{72} + 16 q^{73} - 46 q^{74} + 312 q^{75} - 20 q^{76} + 114 q^{78} - 96 q^{79} - 24 q^{80} - 36 q^{81} + 114 q^{82} - 12 q^{84} - 390 q^{85} + 168 q^{86} + 30 q^{87} + 72 q^{88} + 354 q^{89} - 218 q^{91} - 288 q^{92} - 42 q^{93} + 300 q^{94} - 576 q^{95} - 460 q^{97} + 58 q^{98} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(67\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) 0.866025 + 1.50000i 0.288675 + 0.500000i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −6.39181 + 6.39181i −1.27836 + 1.27836i −0.336778 + 0.941584i \(0.609337\pi\)
−0.941584 + 0.336778i \(0.890663\pi\)
\(6\) 0.633975 + 2.36603i 0.105662 + 0.394338i
\(7\) 9.23137 2.47354i 1.31877 0.353363i 0.470252 0.882532i \(-0.344163\pi\)
0.848516 + 0.529170i \(0.177496\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −1.50000 + 2.59808i −0.166667 + 0.288675i
\(10\) −11.0709 + 6.39181i −1.10709 + 0.639181i
\(11\) 4.21503 15.7307i 0.383184 1.43006i −0.457825 0.889042i \(-0.651371\pi\)
0.841009 0.541021i \(-0.181962\pi\)
\(12\) 3.46410i 0.288675i
\(13\) −3.81310 12.4282i −0.293316 0.956016i
\(14\) 13.5157 0.965405
\(15\) −15.1232 4.05225i −1.00821 0.270150i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 8.31934 + 4.80317i 0.489373 + 0.282540i 0.724314 0.689470i \(-0.242157\pi\)
−0.234941 + 0.972010i \(0.575490\pi\)
\(18\) −3.00000 + 3.00000i −0.166667 + 0.166667i
\(19\) 2.56168 + 9.56033i 0.134825 + 0.503175i 0.999999 + 0.00170204i \(0.000541777\pi\)
−0.865173 + 0.501473i \(0.832792\pi\)
\(20\) −17.4627 + 4.67913i −0.873137 + 0.233956i
\(21\) 11.7049 + 11.7049i 0.557377 + 0.557377i
\(22\) 11.5157 19.9457i 0.523440 0.906624i
\(23\) −23.6929 + 13.6791i −1.03013 + 0.594745i −0.917021 0.398838i \(-0.869414\pi\)
−0.113107 + 0.993583i \(0.536080\pi\)
\(24\) −1.26795 + 4.73205i −0.0528312 + 0.197169i
\(25\) 56.7105i 2.26842i
\(26\) −0.659759 18.3729i −0.0253754 0.706651i
\(27\) −5.19615 −0.192450
\(28\) 18.4627 + 4.94708i 0.659384 + 0.176681i
\(29\) −13.8023 23.9063i −0.475942 0.824356i 0.523678 0.851916i \(-0.324559\pi\)
−0.999620 + 0.0275606i \(0.991226\pi\)
\(30\) −19.1754 11.0709i −0.639181 0.369031i
\(31\) 11.5613 11.5613i 0.372946 0.372946i −0.495603 0.868549i \(-0.665053\pi\)
0.868549 + 0.495603i \(0.165053\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 27.2464 7.30064i 0.825648 0.221232i
\(34\) 9.60634 + 9.60634i 0.282540 + 0.282540i
\(35\) −43.1948 + 74.8156i −1.23414 + 2.13759i
\(36\) −5.19615 + 3.00000i −0.144338 + 0.0833333i
\(37\) −5.45615 + 20.3626i −0.147464 + 0.550342i 0.852170 + 0.523265i \(0.175286\pi\)
−0.999633 + 0.0270763i \(0.991380\pi\)
\(38\) 13.9973i 0.368350i
\(39\) 15.3401 16.4828i 0.393335 0.422636i
\(40\) −25.5672 −0.639181
\(41\) 39.1030 + 10.4776i 0.953731 + 0.255551i 0.701945 0.712232i \(-0.252315\pi\)
0.251786 + 0.967783i \(0.418982\pi\)
\(42\) 11.7049 + 20.2735i 0.278688 + 0.482703i
\(43\) −30.9095 17.8456i −0.718826 0.415014i 0.0954945 0.995430i \(-0.469557\pi\)
−0.814320 + 0.580416i \(0.802890\pi\)
\(44\) 23.0313 23.0313i 0.523440 0.523440i
\(45\) −7.01869 26.1941i −0.155971 0.582092i
\(46\) −37.3721 + 10.0138i −0.812436 + 0.217692i
\(47\) 25.5184 + 25.5184i 0.542944 + 0.542944i 0.924391 0.381447i \(-0.124574\pi\)
−0.381447 + 0.924391i \(0.624574\pi\)
\(48\) −3.46410 + 6.00000i −0.0721688 + 0.125000i
\(49\) 36.6646 21.1683i 0.748258 0.432007i
\(50\) 20.7575 77.4679i 0.415149 1.54936i
\(51\) 16.6387i 0.326249i
\(52\) 5.82371 25.3394i 0.111994 0.487296i
\(53\) −39.0697 −0.737165 −0.368582 0.929595i \(-0.620157\pi\)
−0.368582 + 0.929595i \(0.620157\pi\)
\(54\) −7.09808 1.90192i −0.131446 0.0352208i
\(55\) 73.6060 + 127.489i 1.33829 + 2.31799i
\(56\) 23.4098 + 13.5157i 0.418033 + 0.241351i
\(57\) −12.1220 + 12.1220i −0.212667 + 0.212667i
\(58\) −10.1040 37.7086i −0.174207 0.650149i
\(59\) −46.0300 + 12.3337i −0.780169 + 0.209046i −0.626859 0.779132i \(-0.715660\pi\)
−0.153310 + 0.988178i \(0.548993\pi\)
\(60\) −22.1419 22.1419i −0.369031 0.369031i
\(61\) −35.2717 + 61.0923i −0.578224 + 1.00151i 0.417459 + 0.908696i \(0.362921\pi\)
−0.995683 + 0.0928174i \(0.970413\pi\)
\(62\) 20.0248 11.5613i 0.322981 0.186473i
\(63\) −7.42062 + 27.6941i −0.117788 + 0.439589i
\(64\) 8.00000i 0.125000i
\(65\) 103.811 + 55.0661i 1.59710 + 0.847170i
\(66\) 39.8915 0.604416
\(67\) 38.7250 + 10.3763i 0.577984 + 0.154870i 0.535956 0.844246i \(-0.319951\pi\)
0.0420285 + 0.999116i \(0.486618\pi\)
\(68\) 9.60634 + 16.6387i 0.141270 + 0.244686i
\(69\) −41.0374 23.6929i −0.594745 0.343376i
\(70\) −86.3896 + 86.3896i −1.23414 + 1.23414i
\(71\) −8.28114 30.9056i −0.116636 0.435291i 0.882768 0.469809i \(-0.155677\pi\)
−0.999404 + 0.0345180i \(0.989010\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) −9.68320 9.68320i −0.132647 0.132647i 0.637666 0.770313i \(-0.279900\pi\)
−0.770313 + 0.637666i \(0.779900\pi\)
\(74\) −14.9065 + 25.8188i −0.201439 + 0.348903i
\(75\) 85.0657 49.1127i 1.13421 0.654836i
\(76\) −5.12337 + 19.1207i −0.0674127 + 0.251588i
\(77\) 155.642i 2.02132i
\(78\) 26.9880 16.9011i 0.346000 0.216680i
\(79\) −56.1543 −0.710814 −0.355407 0.934712i \(-0.615658\pi\)
−0.355407 + 0.934712i \(0.615658\pi\)
\(80\) −34.9255 9.35826i −0.436569 0.116978i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 49.5806 + 28.6254i 0.604641 + 0.349090i
\(83\) 4.59931 4.59931i 0.0554133 0.0554133i −0.678857 0.734270i \(-0.737524\pi\)
0.734270 + 0.678857i \(0.237524\pi\)
\(84\) 8.56859 + 31.9784i 0.102007 + 0.380695i
\(85\) −83.8766 + 22.4747i −0.986783 + 0.264408i
\(86\) −35.6912 35.6912i −0.415014 0.415014i
\(87\) 23.9063 41.4069i 0.274785 0.475942i
\(88\) 39.8915 23.0313i 0.453312 0.261720i
\(89\) 29.9479 111.767i 0.336494 1.25581i −0.565747 0.824579i \(-0.691412\pi\)
0.902241 0.431233i \(-0.141921\pi\)
\(90\) 38.3509i 0.426121i
\(91\) −65.9418 105.298i −0.724636 1.15712i
\(92\) −54.7165 −0.594745
\(93\) 27.3544 + 7.32958i 0.294133 + 0.0788127i
\(94\) 25.5184 + 44.1991i 0.271472 + 0.470203i
\(95\) −77.4816 44.7340i −0.815596 0.470885i
\(96\) −6.92820 + 6.92820i −0.0721688 + 0.0721688i
\(97\) −9.04249 33.7470i −0.0932215 0.347908i 0.903522 0.428541i \(-0.140972\pi\)
−0.996744 + 0.0806336i \(0.974306\pi\)
\(98\) 57.8330 15.4963i 0.590132 0.158126i
\(99\) 34.5470 + 34.5470i 0.348960 + 0.348960i
\(100\) 56.7105 98.2254i 0.567105 0.982254i
\(101\) −101.471 + 58.5846i −1.00467 + 0.580045i −0.909626 0.415428i \(-0.863632\pi\)
−0.0950419 + 0.995473i \(0.530299\pi\)
\(102\) −6.09018 + 22.7289i −0.0597076 + 0.222832i
\(103\) 184.178i 1.78813i 0.447933 + 0.894067i \(0.352160\pi\)
−0.447933 + 0.894067i \(0.647840\pi\)
\(104\) 17.2302 32.4826i 0.165675 0.312333i
\(105\) −149.631 −1.42506
\(106\) −53.3702 14.3005i −0.503493 0.134910i
\(107\) −3.57599 6.19380i −0.0334205 0.0578860i 0.848831 0.528664i \(-0.177307\pi\)
−0.882252 + 0.470778i \(0.843973\pi\)
\(108\) −9.00000 5.19615i −0.0833333 0.0481125i
\(109\) 8.07627 8.07627i 0.0740942 0.0740942i −0.669089 0.743183i \(-0.733315\pi\)
0.743183 + 0.669089i \(0.233315\pi\)
\(110\) 53.8833 + 201.095i 0.489848 + 1.82814i
\(111\) −35.2691 + 9.45034i −0.317740 + 0.0851382i
\(112\) 27.0313 + 27.0313i 0.241351 + 0.241351i
\(113\) 58.2038 100.812i 0.515077 0.892140i −0.484769 0.874642i \(-0.661096\pi\)
0.999847 0.0174984i \(-0.00557019\pi\)
\(114\) −20.9959 + 12.1220i −0.184175 + 0.106333i
\(115\) 64.0064 238.875i 0.556578 2.07718i
\(116\) 55.2093i 0.475942i
\(117\) 38.0091 + 8.73557i 0.324864 + 0.0746630i
\(118\) −67.3926 −0.571124
\(119\) 88.6798 + 23.7617i 0.745208 + 0.199678i
\(120\) −22.1419 38.3509i −0.184516 0.319591i
\(121\) −124.899 72.1107i −1.03223 0.595956i
\(122\) −70.5433 + 70.5433i −0.578224 + 0.578224i
\(123\) 18.1477 + 67.7283i 0.147543 + 0.550637i
\(124\) 31.5861 8.46347i 0.254727 0.0682538i
\(125\) 202.687 + 202.687i 1.62150 + 1.62150i
\(126\) −20.2735 + 35.1147i −0.160901 + 0.278688i
\(127\) −23.3984 + 13.5091i −0.184240 + 0.106371i −0.589283 0.807927i \(-0.700590\pi\)
0.405043 + 0.914297i \(0.367256\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) 61.8190i 0.479217i
\(130\) 121.653 + 113.219i 0.935795 + 0.870917i
\(131\) −64.5682 −0.492887 −0.246444 0.969157i \(-0.579262\pi\)
−0.246444 + 0.969157i \(0.579262\pi\)
\(132\) 54.4927 + 14.6013i 0.412824 + 0.110616i
\(133\) 47.2957 + 81.9186i 0.355607 + 0.615929i
\(134\) 49.1013 + 28.3486i 0.366427 + 0.211557i
\(135\) 33.2128 33.2128i 0.246021 0.246021i
\(136\) 7.03233 + 26.2450i 0.0517083 + 0.192978i
\(137\) 197.212 52.8428i 1.43950 0.385714i 0.547143 0.837039i \(-0.315715\pi\)
0.892360 + 0.451325i \(0.149049\pi\)
\(138\) −47.3859 47.3859i −0.343376 0.343376i
\(139\) −31.8057 + 55.0890i −0.228818 + 0.396324i −0.957458 0.288573i \(-0.906819\pi\)
0.728640 + 0.684897i \(0.240153\pi\)
\(140\) −149.631 + 86.3896i −1.06879 + 0.617069i
\(141\) −16.1780 + 60.3771i −0.114738 + 0.428207i
\(142\) 45.2490i 0.318655i
\(143\) −211.577 + 7.59757i −1.47956 + 0.0531299i
\(144\) −12.0000 −0.0833333
\(145\) 241.026 + 64.5828i 1.66225 + 0.445399i
\(146\) −9.68320 16.7718i −0.0663233 0.114875i
\(147\) 63.5050 + 36.6646i 0.432007 + 0.249419i
\(148\) −29.8130 + 29.8130i −0.201439 + 0.201439i
\(149\) 7.51093 + 28.0312i 0.0504089 + 0.188129i 0.986539 0.163525i \(-0.0522863\pi\)
−0.936130 + 0.351653i \(0.885620\pi\)
\(150\) 134.178 35.9530i 0.894523 0.239687i
\(151\) 31.6350 + 31.6350i 0.209503 + 0.209503i 0.804056 0.594553i \(-0.202671\pi\)
−0.594553 + 0.804056i \(0.702671\pi\)
\(152\) −13.9973 + 24.2440i −0.0920875 + 0.159500i
\(153\) −24.9580 + 14.4095i −0.163124 + 0.0941798i
\(154\) 56.9689 212.611i 0.369928 1.38059i
\(155\) 147.796i 0.953520i
\(156\) 43.0526 13.2090i 0.275978 0.0846730i
\(157\) 242.423 1.54409 0.772047 0.635566i \(-0.219233\pi\)
0.772047 + 0.635566i \(0.219233\pi\)
\(158\) −76.7082 20.5539i −0.485495 0.130088i
\(159\) −33.8354 58.6046i −0.212801 0.368582i
\(160\) −44.2838 25.5672i −0.276773 0.159795i
\(161\) −184.883 + 184.883i −1.14834 + 1.14834i
\(162\) −3.29423 12.2942i −0.0203347 0.0758903i
\(163\) −15.0812 + 4.04100i −0.0925228 + 0.0247914i −0.304783 0.952422i \(-0.598584\pi\)
0.212261 + 0.977213i \(0.431917\pi\)
\(164\) 57.2507 + 57.2507i 0.349090 + 0.349090i
\(165\) −127.489 + 220.818i −0.772662 + 1.33829i
\(166\) 7.96623 4.59931i 0.0479894 0.0277067i
\(167\) 12.8137 47.8214i 0.0767287 0.286355i −0.916891 0.399138i \(-0.869310\pi\)
0.993620 + 0.112782i \(0.0359762\pi\)
\(168\) 46.8197i 0.278688i
\(169\) −139.920 + 94.7801i −0.827932 + 0.560829i
\(170\) −122.804 −0.722376
\(171\) −28.6810 7.68505i −0.167725 0.0449418i
\(172\) −35.6912 61.8190i −0.207507 0.359413i
\(173\) −145.860 84.2123i −0.843122 0.486776i 0.0152025 0.999884i \(-0.495161\pi\)
−0.858324 + 0.513108i \(0.828494\pi\)
\(174\) 47.8126 47.8126i 0.274785 0.274785i
\(175\) −140.276 523.516i −0.801575 2.99152i
\(176\) 62.9228 16.8601i 0.357516 0.0957961i
\(177\) −58.3637 58.3637i −0.329738 0.329738i
\(178\) 81.8193 141.715i 0.459659 0.796153i
\(179\) 271.106 156.523i 1.51456 0.874432i 0.514707 0.857366i \(-0.327901\pi\)
0.999854 0.0170659i \(-0.00543251\pi\)
\(180\) 14.0374 52.3882i 0.0779855 0.291046i
\(181\) 19.4795i 0.107622i 0.998551 + 0.0538108i \(0.0171368\pi\)
−0.998551 + 0.0538108i \(0.982863\pi\)
\(182\) −51.5367 167.976i −0.283168 0.922942i
\(183\) −122.185 −0.667675
\(184\) −74.7442 20.0276i −0.406218 0.108846i
\(185\) −95.2795 165.029i −0.515024 0.892048i
\(186\) 34.6840 + 20.0248i 0.186473 + 0.107660i
\(187\) 110.623 110.623i 0.591569 0.591569i
\(188\) 18.6807 + 69.7175i 0.0993657 + 0.370838i
\(189\) −47.9676 + 12.8529i −0.253797 + 0.0680047i
\(190\) −89.4681 89.4681i −0.470885 0.470885i
\(191\) −71.4756 + 123.799i −0.374218 + 0.648164i −0.990210 0.139588i \(-0.955422\pi\)
0.615992 + 0.787752i \(0.288755\pi\)
\(192\) −12.0000 + 6.92820i −0.0625000 + 0.0360844i
\(193\) −43.4334 + 162.096i −0.225044 + 0.839874i 0.757344 + 0.653017i \(0.226497\pi\)
−0.982387 + 0.186857i \(0.940170\pi\)
\(194\) 49.4091i 0.254686i
\(195\) 7.30415 + 203.406i 0.0374572 + 1.04311i
\(196\) 84.6734 0.432007
\(197\) 164.580 + 44.0992i 0.835434 + 0.223854i 0.651083 0.759007i \(-0.274315\pi\)
0.184351 + 0.982860i \(0.440982\pi\)
\(198\) 34.5470 + 59.8372i 0.174480 + 0.302208i
\(199\) 140.059 + 80.8629i 0.703813 + 0.406346i 0.808766 0.588131i \(-0.200136\pi\)
−0.104953 + 0.994477i \(0.533469\pi\)
\(200\) 113.421 113.421i 0.567105 0.567105i
\(201\) 17.9723 + 67.0736i 0.0894145 + 0.333699i
\(202\) −160.056 + 42.8869i −0.792357 + 0.212311i
\(203\) −186.548 186.548i −0.918953 0.918953i
\(204\) −16.6387 + 28.8190i −0.0815621 + 0.141270i
\(205\) −316.910 + 182.968i −1.54590 + 0.892526i
\(206\) −67.4138 + 251.592i −0.327251 + 1.22132i
\(207\) 82.0748i 0.396497i
\(208\) 35.4264 38.0654i 0.170319 0.183007i
\(209\) 161.188 0.771236
\(210\) −204.400 54.7688i −0.973333 0.260804i
\(211\) 89.9377 + 155.777i 0.426245 + 0.738278i 0.996536 0.0831651i \(-0.0265029\pi\)
−0.570291 + 0.821443i \(0.693170\pi\)
\(212\) −67.6707 39.0697i −0.319202 0.184291i
\(213\) 39.1868 39.1868i 0.183975 0.183975i
\(214\) −2.61781 9.76979i −0.0122327 0.0456532i
\(215\) 311.634 83.5020i 1.44946 0.388381i
\(216\) −10.3923 10.3923i −0.0481125 0.0481125i
\(217\) 78.1295 135.324i 0.360044 0.623614i
\(218\) 13.9885 8.07627i 0.0641675 0.0370471i
\(219\) 6.13890 22.9107i 0.0280315 0.104615i
\(220\) 294.424i 1.33829i
\(221\) 27.9723 121.709i 0.126571 0.550721i
\(222\) −51.6376 −0.232602
\(223\) 376.519 + 100.888i 1.68843 + 0.452413i 0.969983 0.243171i \(-0.0781877\pi\)
0.718445 + 0.695584i \(0.244854\pi\)
\(224\) 27.0313 + 46.8197i 0.120676 + 0.209016i
\(225\) 147.338 + 85.0657i 0.654836 + 0.378070i
\(226\) 116.408 116.408i 0.515077 0.515077i
\(227\) 34.5070 + 128.782i 0.152013 + 0.567321i 0.999343 + 0.0362535i \(0.0115424\pi\)
−0.847329 + 0.531068i \(0.821791\pi\)
\(228\) −33.1180 + 8.87393i −0.145254 + 0.0389207i
\(229\) −304.866 304.866i −1.33129 1.33129i −0.904215 0.427077i \(-0.859543\pi\)
−0.427077 0.904215i \(-0.640457\pi\)
\(230\) 174.869 302.882i 0.760299 1.31688i
\(231\) 233.463 134.790i 1.01066 0.583506i
\(232\) 20.2080 75.4172i 0.0871034 0.325074i
\(233\) 44.1414i 0.189448i −0.995504 0.0947240i \(-0.969803\pi\)
0.995504 0.0947240i \(-0.0301969\pi\)
\(234\) 48.7239 + 25.8453i 0.208222 + 0.110450i
\(235\) −326.217 −1.38816
\(236\) −92.0600 24.6674i −0.390085 0.104523i
\(237\) −48.6311 84.2315i −0.205194 0.355407i
\(238\) 112.441 + 64.9181i 0.472443 + 0.272765i
\(239\) −15.8448 + 15.8448i −0.0662964 + 0.0662964i −0.739478 0.673181i \(-0.764927\pi\)
0.673181 + 0.739478i \(0.264927\pi\)
\(240\) −16.2090 60.4927i −0.0675374 0.252053i
\(241\) −464.593 + 124.487i −1.92777 + 0.516545i −0.947076 + 0.321010i \(0.895978\pi\)
−0.980697 + 0.195535i \(0.937356\pi\)
\(242\) −144.221 144.221i −0.595956 0.595956i
\(243\) 7.79423 13.5000i 0.0320750 0.0555556i
\(244\) −122.185 + 70.5433i −0.500757 + 0.289112i
\(245\) −99.0494 + 369.657i −0.404283 + 1.50881i
\(246\) 99.1611i 0.403094i
\(247\) 109.050 68.2917i 0.441497 0.276484i
\(248\) 46.2453 0.186473
\(249\) 10.8821 + 2.91584i 0.0437031 + 0.0117102i
\(250\) 202.687 + 351.065i 0.810749 + 1.40426i
\(251\) −183.403 105.888i −0.730691 0.421865i 0.0879839 0.996122i \(-0.471958\pi\)
−0.818675 + 0.574257i \(0.805291\pi\)
\(252\) −40.5470 + 40.5470i −0.160901 + 0.160901i
\(253\) 115.316 + 430.365i 0.455794 + 1.70105i
\(254\) −36.9075 + 9.88934i −0.145305 + 0.0389344i
\(255\) −106.351 106.351i −0.417064 0.417064i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 235.923 136.210i 0.917990 0.530002i 0.0349966 0.999387i \(-0.488858\pi\)
0.882993 + 0.469386i \(0.155525\pi\)
\(258\) 22.6273 84.4464i 0.0877029 0.327311i
\(259\) 201.471i 0.777881i
\(260\) 124.740 + 199.189i 0.479771 + 0.766110i
\(261\) 82.8139 0.317295
\(262\) −88.2018 23.6336i −0.336648 0.0902046i
\(263\) −118.171 204.679i −0.449321 0.778247i 0.549021 0.835809i \(-0.315001\pi\)
−0.998342 + 0.0575615i \(0.981667\pi\)
\(264\) 69.0940 + 39.8915i 0.261720 + 0.151104i
\(265\) 249.726 249.726i 0.942363 0.942363i
\(266\) 34.6229 + 129.214i 0.130161 + 0.485768i
\(267\) 193.587 51.8713i 0.725043 0.194275i
\(268\) 56.6973 + 56.6973i 0.211557 + 0.211557i
\(269\) −233.180 + 403.880i −0.866842 + 1.50141i −0.00163514 + 0.999999i \(0.500520\pi\)
−0.865207 + 0.501415i \(0.832813\pi\)
\(270\) 57.5263 33.2128i 0.213060 0.123010i
\(271\) −119.372 + 445.502i −0.440486 + 1.64392i 0.287099 + 0.957901i \(0.407309\pi\)
−0.727586 + 0.686017i \(0.759358\pi\)
\(272\) 38.4254i 0.141270i
\(273\) 100.839 190.103i 0.369374 0.696348i
\(274\) 288.738 1.05379
\(275\) −892.095 239.036i −3.24398 0.869223i
\(276\) −47.3859 82.0748i −0.171688 0.297372i
\(277\) −21.2638 12.2766i −0.0767645 0.0443200i 0.461126 0.887334i \(-0.347445\pi\)
−0.537891 + 0.843014i \(0.680779\pi\)
\(278\) −63.6113 + 63.6113i −0.228818 + 0.228818i
\(279\) 12.6952 + 47.3792i 0.0455025 + 0.169818i
\(280\) −236.021 + 63.2416i −0.842931 + 0.225863i
\(281\) 276.591 + 276.591i 0.984311 + 0.984311i 0.999879 0.0155674i \(-0.00495547\pi\)
−0.0155674 + 0.999879i \(0.504955\pi\)
\(282\) −44.1991 + 76.5551i −0.156734 + 0.271472i
\(283\) 339.231 195.855i 1.19870 0.692068i 0.238432 0.971159i \(-0.423366\pi\)
0.960265 + 0.279091i \(0.0900331\pi\)
\(284\) 16.5623 61.8113i 0.0583179 0.217645i
\(285\) 154.963i 0.543731i
\(286\) −291.800 67.0640i −1.02028 0.234489i
\(287\) 386.891 1.34805
\(288\) −16.3923 4.39230i −0.0569177 0.0152511i
\(289\) −98.3591 170.363i −0.340343 0.589491i
\(290\) 305.609 + 176.444i 1.05382 + 0.608426i
\(291\) 42.7895 42.7895i 0.147043 0.147043i
\(292\) −7.08860 26.4550i −0.0242760 0.0905993i
\(293\) 286.280 76.7084i 0.977064 0.261804i 0.265256 0.964178i \(-0.414543\pi\)
0.711808 + 0.702374i \(0.247877\pi\)
\(294\) 73.3293 + 73.3293i 0.249419 + 0.249419i
\(295\) 215.380 373.050i 0.730103 1.26457i
\(296\) −51.6376 + 29.8130i −0.174451 + 0.100720i
\(297\) −21.9019 + 81.7391i −0.0737439 + 0.275216i
\(298\) 41.0405i 0.137720i
\(299\) 260.351 + 242.301i 0.870738 + 0.810371i
\(300\) 196.451 0.654836
\(301\) −329.479 88.2837i −1.09462 0.293301i
\(302\) 31.6350 + 54.7934i 0.104752 + 0.181435i
\(303\) −175.754 101.471i −0.580045 0.334889i
\(304\) −27.9946 + 27.9946i −0.0920875 + 0.0920875i
\(305\) −165.041 615.940i −0.541117 2.01948i
\(306\) −39.3675 + 10.5485i −0.128652 + 0.0344722i
\(307\) 221.215 + 221.215i 0.720571 + 0.720571i 0.968722 0.248150i \(-0.0798227\pi\)
−0.248150 + 0.968722i \(0.579823\pi\)
\(308\) 155.642 269.580i 0.505331 0.875259i
\(309\) −276.267 + 159.503i −0.894067 + 0.516190i
\(310\) −54.0969 + 201.892i −0.174506 + 0.651266i
\(311\) 12.5556i 0.0403716i 0.999796 + 0.0201858i \(0.00642578\pi\)
−0.999796 + 0.0201858i \(0.993574\pi\)
\(312\) 63.6457 2.28547i 0.203993 0.00732523i
\(313\) 590.956 1.88804 0.944018 0.329893i \(-0.107013\pi\)
0.944018 + 0.329893i \(0.107013\pi\)
\(314\) 331.156 + 88.7329i 1.05464 + 0.282589i
\(315\) −129.584 224.447i −0.411379 0.712529i
\(316\) −97.2622 56.1543i −0.307792 0.177704i
\(317\) 54.7137 54.7137i 0.172598 0.172598i −0.615522 0.788120i \(-0.711055\pi\)
0.788120 + 0.615522i \(0.211055\pi\)
\(318\) −24.7692 92.4400i −0.0778906 0.290692i
\(319\) −434.240 + 116.354i −1.36125 + 0.364747i
\(320\) −51.1345 51.1345i −0.159795 0.159795i
\(321\) 6.19380 10.7280i 0.0192953 0.0334205i
\(322\) −320.226 + 184.883i −0.994491 + 0.574170i
\(323\) −24.6084 + 91.8398i −0.0761870 + 0.284334i
\(324\) 18.0000i 0.0555556i
\(325\) −704.809 + 216.243i −2.16864 + 0.665363i
\(326\) −22.0804 −0.0677314
\(327\) 19.1087 + 5.12015i 0.0584362 + 0.0156579i
\(328\) 57.2507 + 99.1611i 0.174545 + 0.302321i
\(329\) 298.690 + 172.449i 0.907874 + 0.524161i
\(330\) −254.979 + 254.979i −0.772662 + 0.772662i
\(331\) −5.29073 19.7453i −0.0159841 0.0596534i 0.957473 0.288522i \(-0.0931640\pi\)
−0.973457 + 0.228869i \(0.926497\pi\)
\(332\) 12.5655 3.36693i 0.0378480 0.0101413i
\(333\) −44.7195 44.7195i −0.134293 0.134293i
\(334\) 35.0077 60.6351i 0.104813 0.181542i
\(335\) −313.846 + 181.199i −0.936854 + 0.540893i
\(336\) −17.1372 + 63.9568i −0.0510035 + 0.190348i
\(337\) 202.326i 0.600375i −0.953880 0.300188i \(-0.902951\pi\)
0.953880 0.300188i \(-0.0970493\pi\)
\(338\) −225.827 + 78.2575i −0.668127 + 0.231531i
\(339\) 201.624 0.594760
\(340\) −167.753 44.9493i −0.493392 0.132204i
\(341\) −133.136 230.599i −0.390429 0.676243i
\(342\) −36.3660 20.9959i −0.106333 0.0613917i
\(343\) −45.0296 + 45.0296i −0.131282 + 0.131282i
\(344\) −26.1278 97.5103i −0.0759529 0.283460i
\(345\) 413.744 110.862i 1.19926 0.321340i
\(346\) −168.425 168.425i −0.486776 0.486776i
\(347\) −278.263 + 481.966i −0.801911 + 1.38895i 0.116446 + 0.993197i \(0.462850\pi\)
−0.918357 + 0.395753i \(0.870483\pi\)
\(348\) 82.8139 47.8126i 0.237971 0.137393i
\(349\) 119.978 447.764i 0.343777 1.28299i −0.550258 0.834995i \(-0.685471\pi\)
0.894035 0.447998i \(-0.147863\pi\)
\(350\) 766.480i 2.18994i
\(351\) 19.8135 + 64.5788i 0.0564486 + 0.183985i
\(352\) 92.1254 0.261720
\(353\) −272.941 73.1344i −0.773205 0.207180i −0.149418 0.988774i \(-0.547740\pi\)
−0.623787 + 0.781595i \(0.714407\pi\)
\(354\) −58.3637 101.089i −0.164869 0.285562i
\(355\) 250.474 + 144.611i 0.705562 + 0.407356i
\(356\) 163.639 163.639i 0.459659 0.459659i
\(357\) 41.1564 + 153.598i 0.115284 + 0.430246i
\(358\) 427.630 114.583i 1.19450 0.320064i
\(359\) −280.398 280.398i −0.781054 0.781054i 0.198955 0.980009i \(-0.436245\pi\)
−0.980009 + 0.198955i \(0.936245\pi\)
\(360\) 38.3509 66.4256i 0.106530 0.184516i
\(361\) 227.797 131.519i 0.631018 0.364318i
\(362\) −7.12999 + 26.6095i −0.0196961 + 0.0735069i
\(363\) 249.799i 0.688151i
\(364\) −8.91709 248.323i −0.0244975 0.682205i
\(365\) 123.786 0.339141
\(366\) −166.907 44.7227i −0.456031 0.122193i
\(367\) −295.943 512.588i −0.806384 1.39670i −0.915353 0.402653i \(-0.868088\pi\)
0.108968 0.994045i \(-0.465245\pi\)
\(368\) −94.7718 54.7165i −0.257532 0.148686i
\(369\) −85.8761 + 85.8761i −0.232726 + 0.232726i
\(370\) −69.7494 260.308i −0.188512 0.703536i
\(371\) −360.667 + 96.6405i −0.972149 + 0.260487i
\(372\) 40.0496 + 40.0496i 0.107660 + 0.107660i
\(373\) 255.943 443.306i 0.686174 1.18849i −0.286892 0.957963i \(-0.592622\pi\)
0.973066 0.230525i \(-0.0740445\pi\)
\(374\) 191.606 110.623i 0.512314 0.295785i
\(375\) −128.499 + 479.563i −0.342663 + 1.27884i
\(376\) 102.073i 0.271472i
\(377\) −244.483 + 262.695i −0.648496 + 0.696804i
\(378\) −70.2295 −0.185792
\(379\) 197.686 + 52.9699i 0.521600 + 0.139762i 0.510006 0.860171i \(-0.329643\pi\)
0.0115932 + 0.999933i \(0.496310\pi\)
\(380\) −89.4681 154.963i −0.235442 0.407798i
\(381\) −40.5273 23.3984i −0.106371 0.0614132i
\(382\) −142.951 + 142.951i −0.374218 + 0.374218i
\(383\) 84.9951 + 317.206i 0.221919 + 0.828214i 0.983615 + 0.180280i \(0.0577002\pi\)
−0.761696 + 0.647934i \(0.775633\pi\)
\(384\) −18.9282 + 5.07180i −0.0492922 + 0.0132078i
\(385\) 994.834 + 994.834i 2.58398 + 2.58398i
\(386\) −118.662 + 205.529i −0.307415 + 0.532459i
\(387\) 92.7285 53.5369i 0.239609 0.138338i
\(388\) 18.0850 67.4941i 0.0466108 0.173954i
\(389\) 393.984i 1.01281i 0.862295 + 0.506406i \(0.169026\pi\)
−0.862295 + 0.506406i \(0.830974\pi\)
\(390\) −64.4740 + 280.531i −0.165318 + 0.719310i
\(391\) −262.813 −0.672156
\(392\) 115.666 + 30.9926i 0.295066 + 0.0790628i
\(393\) −55.9177 96.8523i −0.142284 0.246444i
\(394\) 208.680 + 120.481i 0.529644 + 0.305790i
\(395\) 358.928 358.928i 0.908678 0.908678i
\(396\) 25.2902 + 94.3842i 0.0638641 + 0.238344i
\(397\) −115.976 + 31.0756i −0.292130 + 0.0782760i −0.401908 0.915680i \(-0.631653\pi\)
0.109778 + 0.993956i \(0.464986\pi\)
\(398\) 161.726 + 161.726i 0.406346 + 0.406346i
\(399\) −81.9186 + 141.887i −0.205310 + 0.355607i
\(400\) 196.451 113.421i 0.491127 0.283552i
\(401\) 85.9977 320.948i 0.214458 0.800368i −0.771899 0.635746i \(-0.780693\pi\)
0.986357 0.164623i \(-0.0526407\pi\)
\(402\) 98.2025i 0.244285i
\(403\) −187.771 99.6019i −0.465933 0.247151i
\(404\) −234.338 −0.580045
\(405\) 78.5824 + 21.0561i 0.194031 + 0.0519903i
\(406\) −186.548 323.110i −0.459477 0.795837i
\(407\) 297.321 + 171.658i 0.730518 + 0.421765i
\(408\) −33.2773 + 33.2773i −0.0815621 + 0.0815621i
\(409\) −113.840 424.856i −0.278337 1.03877i −0.953572 0.301165i \(-0.902625\pi\)
0.675235 0.737603i \(-0.264042\pi\)
\(410\) −499.877 + 133.942i −1.21921 + 0.326687i
\(411\) 250.055 + 250.055i 0.608406 + 0.608406i
\(412\) −184.178 + 319.005i −0.447034 + 0.774285i
\(413\) −394.412 + 227.714i −0.954993 + 0.551366i
\(414\) 30.0415 112.116i 0.0725639 0.270812i
\(415\) 58.7958i 0.141677i
\(416\) 62.3262 39.0313i 0.149823 0.0938253i
\(417\) −110.178 −0.264216
\(418\) 220.187 + 58.9990i 0.526764 + 0.141146i
\(419\) 62.4764 + 108.212i 0.149108 + 0.258263i 0.930898 0.365279i \(-0.119026\pi\)
−0.781790 + 0.623542i \(0.785693\pi\)
\(420\) −259.169 149.631i −0.617069 0.356265i
\(421\) 9.46318 9.46318i 0.0224779 0.0224779i −0.695779 0.718256i \(-0.744940\pi\)
0.718256 + 0.695779i \(0.244940\pi\)
\(422\) 65.8389 + 245.714i 0.156016 + 0.582261i
\(423\) −104.576 + 28.0211i −0.247225 + 0.0662438i
\(424\) −78.1394 78.1394i −0.184291 0.184291i
\(425\) 272.390 471.794i 0.640918 1.11010i
\(426\) 67.8735 39.1868i 0.159327 0.0919877i
\(427\) −174.492 + 651.212i −0.408646 + 1.52509i
\(428\) 14.3040i 0.0334205i
\(429\) −194.627 310.785i −0.453676 0.724441i
\(430\) 456.263 1.06108
\(431\) 698.341 + 187.120i 1.62028 + 0.434153i 0.951084 0.308932i \(-0.0999715\pi\)
0.669197 + 0.743085i \(0.266638\pi\)
\(432\) −10.3923 18.0000i −0.0240563 0.0416667i
\(433\) 35.4730 + 20.4803i 0.0819237 + 0.0472987i 0.540402 0.841407i \(-0.318272\pi\)
−0.458479 + 0.888705i \(0.651605\pi\)
\(434\) 156.259 156.259i 0.360044 0.360044i
\(435\) 111.861 + 417.470i 0.257151 + 0.959701i
\(436\) 22.0648 5.91224i 0.0506073 0.0135602i
\(437\) −191.471 191.471i −0.438148 0.438148i
\(438\) 16.7718 29.0496i 0.0382918 0.0663233i
\(439\) −576.214 + 332.678i −1.31256 + 0.757808i −0.982520 0.186159i \(-0.940396\pi\)
−0.330042 + 0.943966i \(0.607063\pi\)
\(440\) −107.767 + 402.191i −0.244924 + 0.914069i
\(441\) 127.010i 0.288005i
\(442\) 82.7596 156.020i 0.187239 0.352985i
\(443\) 267.578 0.604013 0.302006 0.953306i \(-0.402344\pi\)
0.302006 + 0.953306i \(0.402344\pi\)
\(444\) −70.5383 18.9007i −0.158870 0.0425691i
\(445\) 522.973 + 905.816i 1.17522 + 2.03554i
\(446\) 477.408 + 275.631i 1.07042 + 0.618008i
\(447\) −35.5421 + 35.5421i −0.0795125 + 0.0795125i
\(448\) 19.7883 + 73.8510i 0.0441703 + 0.164846i
\(449\) −543.945 + 145.750i −1.21146 + 0.324610i −0.807335 0.590094i \(-0.799091\pi\)
−0.404125 + 0.914704i \(0.632424\pi\)
\(450\) 170.131 + 170.131i 0.378070 + 0.378070i
\(451\) 329.640 570.953i 0.730909 1.26597i
\(452\) 201.624 116.408i 0.446070 0.257539i
\(453\) −20.0558 + 74.8492i −0.0442732 + 0.165230i
\(454\) 188.550i 0.415308i
\(455\) 1094.53 + 251.554i 2.40556 + 0.552866i
\(456\) −48.4881 −0.106333
\(457\) −643.576 172.446i −1.40826 0.377343i −0.526958 0.849891i \(-0.676668\pi\)
−0.881305 + 0.472548i \(0.843334\pi\)
\(458\) −304.866 528.043i −0.665646 1.15293i
\(459\) −43.2285 24.9580i −0.0941798 0.0543748i
\(460\) 349.738 349.738i 0.760299 0.760299i
\(461\) −92.7172 346.025i −0.201122 0.750597i −0.990597 0.136814i \(-0.956314\pi\)
0.789475 0.613783i \(-0.210353\pi\)
\(462\) 368.253 98.6731i 0.797084 0.213578i
\(463\) −630.292 630.292i −1.36132 1.36132i −0.872236 0.489084i \(-0.837331\pi\)
−0.489084 0.872236i \(-0.662669\pi\)
\(464\) 55.2093 95.6252i 0.118985 0.206089i
\(465\) −221.693 + 127.995i −0.476760 + 0.275257i
\(466\) 16.1569 60.2983i 0.0346714 0.129395i
\(467\) 425.264i 0.910630i 0.890331 + 0.455315i \(0.150473\pi\)
−0.890331 + 0.455315i \(0.849527\pi\)
\(468\) 57.0981 + 53.1395i 0.122004 + 0.113546i
\(469\) 383.151 0.816953
\(470\) −445.621 119.404i −0.948130 0.254051i
\(471\) 209.944 + 363.634i 0.445741 + 0.772047i
\(472\) −116.727 67.3926i −0.247304 0.142781i
\(473\) −411.009 + 411.009i −0.868940 + 0.868940i
\(474\) −35.6004 132.863i −0.0751064 0.280301i
\(475\) 542.171 145.274i 1.14141 0.305841i
\(476\) 129.836 + 129.836i 0.272765 + 0.272765i
\(477\) 58.6046 101.506i 0.122861 0.212801i
\(478\) −27.4441 + 15.8448i −0.0574144 + 0.0331482i
\(479\) −71.3059 + 266.117i −0.148864 + 0.555568i 0.850689 + 0.525670i \(0.176185\pi\)
−0.999553 + 0.0298988i \(0.990481\pi\)
\(480\) 88.5675i 0.184516i
\(481\) 273.876 9.83470i 0.569389 0.0204464i
\(482\) −680.212 −1.41123
\(483\) −437.437 117.211i −0.905667 0.242673i
\(484\) −144.221 249.799i −0.297978 0.516113i
\(485\) 273.502 + 157.907i 0.563923 + 0.325581i
\(486\) 15.5885 15.5885i 0.0320750 0.0320750i
\(487\) −165.703 618.410i −0.340252 1.26984i −0.898062 0.439868i \(-0.855025\pi\)
0.557811 0.829968i \(-0.311641\pi\)
\(488\) −192.728 + 51.6413i −0.394934 + 0.105822i
\(489\) −19.1222 19.1222i −0.0391048 0.0391048i
\(490\) −270.608 + 468.707i −0.552261 + 0.956545i
\(491\) 490.748 283.333i 0.999486 0.577053i 0.0913898 0.995815i \(-0.470869\pi\)
0.908096 + 0.418762i \(0.137536\pi\)
\(492\) −36.2955 + 135.457i −0.0737713 + 0.275318i
\(493\) 265.180i 0.537890i
\(494\) 173.961 53.3732i 0.352148 0.108043i
\(495\) −441.636 −0.892194
\(496\) 63.1722 + 16.9269i 0.127363 + 0.0341269i
\(497\) −152.893 264.818i −0.307631 0.532833i
\(498\) 13.7979 + 7.96623i 0.0277067 + 0.0159965i
\(499\) −409.292 + 409.292i −0.820224 + 0.820224i −0.986140 0.165916i \(-0.946942\pi\)
0.165916 + 0.986140i \(0.446942\pi\)
\(500\) 148.377 + 553.752i 0.296755 + 1.10750i
\(501\) 82.8290 22.1940i 0.165327 0.0442993i
\(502\) −211.776 211.776i −0.421865 0.421865i
\(503\) −111.621 + 193.333i −0.221910 + 0.384360i −0.955388 0.295354i \(-0.904563\pi\)
0.733478 + 0.679714i \(0.237896\pi\)
\(504\) −70.2295 + 40.5470i −0.139344 + 0.0804504i
\(505\) 274.125 1023.05i 0.542822 2.02584i
\(506\) 630.097i 1.24525i
\(507\) −263.345 127.799i −0.519418 0.252069i
\(508\) −54.0363 −0.106371
\(509\) −414.332 111.020i −0.814012 0.218114i −0.172285 0.985047i \(-0.555115\pi\)
−0.641727 + 0.766933i \(0.721782\pi\)
\(510\) −106.351 184.206i −0.208532 0.361188i
\(511\) −113.341 65.4375i −0.221802 0.128058i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −13.3109 49.6769i −0.0259472 0.0968361i
\(514\) 372.134 99.7130i 0.723996 0.193994i
\(515\) −1177.23 1177.23i −2.28588 2.28588i
\(516\) 61.8190 107.074i 0.119804 0.207507i
\(517\) 508.983 293.861i 0.984492 0.568397i
\(518\) −73.7436 + 275.215i −0.142362 + 0.531303i
\(519\) 291.720i 0.562081i
\(520\) 97.4906 + 317.755i 0.187482 + 0.611067i
\(521\) −470.908 −0.903854 −0.451927 0.892055i \(-0.649263\pi\)
−0.451927 + 0.892055i \(0.649263\pi\)
\(522\) 113.126 + 30.3120i 0.216716 + 0.0580689i
\(523\) 455.785 + 789.442i 0.871481 + 1.50945i 0.860464 + 0.509511i \(0.170174\pi\)
0.0110172 + 0.999939i \(0.496493\pi\)
\(524\) −111.835 64.5682i −0.213426 0.123222i
\(525\) 663.791 663.791i 1.26436 1.26436i
\(526\) −86.5075 322.851i −0.164463 0.613784i
\(527\) 151.714 40.6515i 0.287881 0.0771376i
\(528\) 79.7829 + 79.7829i 0.151104 + 0.151104i
\(529\) 109.737 190.070i 0.207443 0.359301i
\(530\) 432.539 249.726i 0.816110 0.471182i
\(531\) 37.0011 138.090i 0.0696819 0.260056i
\(532\) 189.183i 0.355607i
\(533\) −18.8858 525.932i −0.0354331 0.986739i
\(534\) 283.430 0.530768
\(535\) 62.4466 + 16.7325i 0.116723 + 0.0312758i
\(536\) 56.6973 + 98.2025i 0.105778 + 0.183214i
\(537\) 469.570 + 271.106i 0.874432 + 0.504854i
\(538\) −466.361 + 466.361i −0.866842 + 0.866842i
\(539\) −178.450 665.986i −0.331077 1.23559i
\(540\) 90.7391 24.3135i 0.168035 0.0450249i
\(541\) −393.572 393.572i −0.727490 0.727490i 0.242629 0.970119i \(-0.421990\pi\)
−0.970119 + 0.242629i \(0.921990\pi\)
\(542\) −326.130 + 564.873i −0.601716 + 1.04220i
\(543\) −29.2193 + 16.8697i −0.0538108 + 0.0310677i
\(544\) −14.0647 + 52.4900i −0.0258542 + 0.0964890i
\(545\) 103.244i 0.189438i
\(546\) 207.331 222.776i 0.379727 0.408015i
\(547\) −388.679 −0.710565 −0.355283 0.934759i \(-0.615615\pi\)
−0.355283 + 0.934759i \(0.615615\pi\)
\(548\) 394.424 + 105.686i 0.719751 + 0.192857i
\(549\) −105.815 183.277i −0.192741 0.333838i
\(550\) −1131.13 653.059i −2.05660 1.18738i
\(551\) 193.195 193.195i 0.350626 0.350626i
\(552\) −34.6889 129.461i −0.0628422 0.234530i
\(553\) −518.382 + 138.900i −0.937399 + 0.251175i
\(554\) −24.5533 24.5533i −0.0443200 0.0443200i
\(555\) 165.029 285.838i 0.297349 0.515024i
\(556\) −110.178 + 63.6113i −0.198162 + 0.114409i
\(557\) 183.042 683.123i 0.328622 1.22643i −0.581999 0.813190i \(-0.697729\pi\)
0.910621 0.413244i \(-0.135604\pi\)
\(558\) 69.3679i 0.124315i
\(559\) −103.928 + 452.197i −0.185917 + 0.808939i
\(560\) −345.558 −0.617069
\(561\) 261.738 + 70.1325i 0.466556 + 0.125013i
\(562\) 276.591 + 479.071i 0.492156 + 0.852439i
\(563\) −514.657 297.138i −0.914134 0.527776i −0.0323751 0.999476i \(-0.510307\pi\)
−0.881759 + 0.471700i \(0.843640\pi\)
\(564\) −88.3982 + 88.3982i −0.156734 + 0.156734i
\(565\) 272.343 + 1016.40i 0.482023 + 1.79893i
\(566\) 535.087 143.376i 0.945383 0.253314i
\(567\) −60.8205 60.8205i −0.107267 0.107267i
\(568\) 45.2490 78.3735i 0.0796637 0.137982i
\(569\) 101.268 58.4673i 0.177976 0.102754i −0.408365 0.912819i \(-0.633901\pi\)
0.586341 + 0.810064i \(0.300568\pi\)
\(570\) 56.7205 211.684i 0.0995096 0.371375i
\(571\) 137.505i 0.240815i 0.992725 + 0.120408i \(0.0384201\pi\)
−0.992725 + 0.120408i \(0.961580\pi\)
\(572\) −374.059 198.417i −0.653949 0.346883i
\(573\) −247.599 −0.432109
\(574\) 528.503 + 141.612i 0.920736 + 0.246711i
\(575\) 775.750 + 1343.64i 1.34913 + 2.33676i
\(576\) −20.7846 12.0000i −0.0360844 0.0208333i
\(577\) −617.016 + 617.016i −1.06935 + 1.06935i −0.0719422 + 0.997409i \(0.522920\pi\)
−0.997409 + 0.0719422i \(0.977080\pi\)
\(578\) −72.0038 268.722i −0.124574 0.464917i
\(579\) −280.758 + 75.2289i −0.484901 + 0.129929i
\(580\) 352.887 + 352.887i 0.608426 + 0.608426i
\(581\) 31.0814 53.8345i 0.0534963 0.0926583i
\(582\) 74.1136 42.7895i 0.127343 0.0735215i
\(583\) −164.680 + 614.594i −0.282470 + 1.05419i
\(584\) 38.7328i 0.0663233i
\(585\) −298.783 + 187.111i −0.510740 + 0.319847i
\(586\) 419.143 0.715261
\(587\) 373.261 + 100.015i 0.635878 + 0.170383i 0.562336 0.826909i \(-0.309903\pi\)
0.0735425 + 0.997292i \(0.476570\pi\)
\(588\) 73.3293 + 127.010i 0.124710 + 0.216003i
\(589\) 140.146 + 80.9136i 0.237940 + 0.137375i
\(590\) 430.761 430.761i 0.730103 0.730103i
\(591\) 76.3821 + 285.062i 0.129242 + 0.482338i
\(592\) −81.4506 + 21.8246i −0.137585 + 0.0368659i
\(593\) 536.353 + 536.353i 0.904473 + 0.904473i 0.995819 0.0913459i \(-0.0291169\pi\)
−0.0913459 + 0.995819i \(0.529117\pi\)
\(594\) −59.8372 + 103.641i −0.100736 + 0.174480i
\(595\) −718.704 + 414.944i −1.20791 + 0.697385i
\(596\) −15.0219 + 56.0623i −0.0252045 + 0.0940643i
\(597\) 280.117i 0.469208i
\(598\) 266.957 + 426.284i 0.446417 + 0.712850i
\(599\) 344.623 0.575331 0.287666 0.957731i \(-0.407121\pi\)
0.287666 + 0.957731i \(0.407121\pi\)
\(600\) 268.357 + 71.9060i 0.447261 + 0.119843i
\(601\) −445.870 772.269i −0.741879 1.28497i −0.951639 0.307220i \(-0.900601\pi\)
0.209759 0.977753i \(-0.432732\pi\)
\(602\) −417.763 241.195i −0.693958 0.400657i
\(603\) −85.0459 + 85.0459i −0.141038 + 0.141038i
\(604\) 23.1584 + 86.4284i 0.0383417 + 0.143093i
\(605\) 1259.25 337.415i 2.08141 0.557711i
\(606\) −202.943 202.943i −0.334889 0.334889i
\(607\) −232.733 + 403.106i −0.383416 + 0.664096i −0.991548 0.129740i \(-0.958586\pi\)
0.608132 + 0.793836i \(0.291919\pi\)
\(608\) −48.4881 + 27.9946i −0.0797501 + 0.0460437i
\(609\) 118.266 441.376i 0.194198 0.724756i
\(610\) 901.799i 1.47836i
\(611\) 219.843 414.452i 0.359809 0.678317i
\(612\) −57.6381 −0.0941798
\(613\) 851.290 + 228.103i 1.38873 + 0.372109i 0.874284 0.485415i \(-0.161332\pi\)
0.514444 + 0.857524i \(0.327998\pi\)
\(614\) 221.215 + 383.156i 0.360286 + 0.624033i
\(615\) −548.903 316.910i −0.892526 0.515300i
\(616\) 311.284 311.284i 0.505331 0.505331i
\(617\) 293.787 + 1096.43i 0.476154 + 1.77703i 0.616960 + 0.786995i \(0.288364\pi\)
−0.140805 + 0.990037i \(0.544969\pi\)
\(618\) −435.769 + 116.764i −0.705129 + 0.188939i
\(619\) 69.6384 + 69.6384i 0.112501 + 0.112501i 0.761117 0.648615i \(-0.224651\pi\)
−0.648615 + 0.761117i \(0.724651\pi\)
\(620\) −147.796 + 255.989i −0.238380 + 0.412886i
\(621\) 123.112 71.0788i 0.198248 0.114459i
\(622\) −4.59566 + 17.1512i −0.00738852 + 0.0275743i
\(623\) 1105.84i 1.77503i
\(624\) 87.7782 + 20.1739i 0.140670 + 0.0323300i
\(625\) −1173.32 −1.87731
\(626\) 807.260 + 216.305i 1.28955 + 0.345535i
\(627\) 139.593 + 241.782i 0.222637 + 0.385618i
\(628\) 419.888 + 242.423i 0.668612 + 0.386023i
\(629\) −143.197 + 143.197i −0.227658 + 0.227658i
\(630\) −94.8624 354.031i −0.150575 0.561954i
\(631\) 616.962 165.314i 0.977752 0.261988i 0.265655 0.964068i \(-0.414412\pi\)
0.712098 + 0.702080i \(0.247745\pi\)
\(632\) −112.309 112.309i −0.177704 0.177704i
\(633\) −155.777 + 269.813i −0.246093 + 0.426245i
\(634\) 94.7669 54.7137i 0.149475 0.0862992i
\(635\) 63.2108 235.906i 0.0995445 0.371505i
\(636\) 135.341i 0.212801i
\(637\) −402.891 374.959i −0.632481 0.588632i
\(638\) −635.772 −0.996507
\(639\) 92.7169 + 24.8434i 0.145097 + 0.0388786i
\(640\) −51.1345 88.5675i −0.0798976 0.138387i
\(641\) −792.951 457.811i −1.23705 0.714213i −0.268563 0.963262i \(-0.586549\pi\)
−0.968491 + 0.249049i \(0.919882\pi\)
\(642\) 12.3876 12.3876i 0.0192953 0.0192953i
\(643\) 109.397 + 408.276i 0.170136 + 0.634955i 0.997329 + 0.0730378i \(0.0232694\pi\)
−0.827194 + 0.561917i \(0.810064\pi\)
\(644\) −505.109 + 135.343i −0.784330 + 0.210161i
\(645\) 395.135 + 395.135i 0.612613 + 0.612613i
\(646\) −67.2314 + 116.448i −0.104073 + 0.180260i
\(647\) 557.382 321.805i 0.861487 0.497380i −0.00302290 0.999995i \(-0.500962\pi\)
0.864510 + 0.502616i \(0.167629\pi\)
\(648\) 6.58846 24.5885i 0.0101674 0.0379452i
\(649\) 776.071i 1.19579i
\(650\) −1041.94 + 37.4153i −1.60298 + 0.0575619i
\(651\) 270.649 0.415743
\(652\) −30.1624 8.08200i −0.0462614 0.0123957i
\(653\) 149.123 + 258.289i 0.228366 + 0.395542i 0.957324 0.289016i \(-0.0933282\pi\)
−0.728958 + 0.684559i \(0.759995\pi\)
\(654\) 24.2288 + 13.9885i 0.0370471 + 0.0213892i
\(655\) 412.708 412.708i 0.630088 0.630088i
\(656\) 41.9104 + 156.412i 0.0638878 + 0.238433i
\(657\) 39.6825 10.6329i 0.0603995 0.0161840i
\(658\) 344.898 + 344.898i 0.524161 + 0.524161i
\(659\) 322.944 559.356i 0.490052 0.848794i −0.509883 0.860244i \(-0.670311\pi\)
0.999934 + 0.0114495i \(0.00364456\pi\)
\(660\) −441.636 + 254.979i −0.669145 + 0.386331i
\(661\) 251.425 938.332i 0.380371 1.41956i −0.464965 0.885329i \(-0.653933\pi\)
0.845336 0.534235i \(-0.179400\pi\)
\(662\) 28.9091i 0.0436693i
\(663\) 206.789 63.4450i 0.311899 0.0956938i
\(664\) 18.3972 0.0277067
\(665\) −825.913 221.303i −1.24197 0.332786i
\(666\) −44.7195 77.4564i −0.0671464 0.116301i
\(667\) 654.035 + 377.607i 0.980562 + 0.566128i
\(668\) 70.0153 70.0153i 0.104813 0.104813i
\(669\) 174.743 + 652.151i 0.261201 + 0.974814i
\(670\) −495.045 + 132.647i −0.738873 + 0.197981i
\(671\) 812.354 + 812.354i 1.21066 + 1.21066i
\(672\) −46.8197 + 81.0940i −0.0696721 + 0.120676i
\(673\) −712.407 + 411.308i −1.05855 + 0.611156i −0.925032 0.379890i \(-0.875962\pi\)
−0.133522 + 0.991046i \(0.542629\pi\)
\(674\) 74.0566 276.383i 0.109876 0.410064i
\(675\) 294.676i 0.436557i
\(676\) −337.129 + 24.2434i −0.498712 + 0.0358631i
\(677\) 195.713 0.289089 0.144544 0.989498i \(-0.453828\pi\)
0.144544 + 0.989498i \(0.453828\pi\)
\(678\) 275.423 + 73.7994i 0.406229 + 0.108849i
\(679\) −166.949 289.165i −0.245875 0.425868i
\(680\) −212.702 122.804i −0.312798 0.180594i
\(681\) −163.289 + 163.289i −0.239778 + 0.239778i
\(682\) −97.4626 363.735i −0.142907 0.533336i
\(683\) −628.395 + 168.378i −0.920052 + 0.246527i −0.687607 0.726083i \(-0.741339\pi\)
−0.232444 + 0.972610i \(0.574672\pi\)
\(684\) −41.9919 41.9919i −0.0613917 0.0613917i
\(685\) −922.780 + 1598.30i −1.34712 + 2.33329i
\(686\) −77.9936 + 45.0296i −0.113693 + 0.0656408i
\(687\) 193.277 721.320i 0.281335 1.04996i
\(688\) 142.765i 0.207507i
\(689\) 148.977 + 485.566i 0.216222 + 0.704741i
\(690\) 605.763 0.877918
\(691\) −303.752 81.3900i −0.439583 0.117786i 0.0322384 0.999480i \(-0.489736\pi\)
−0.471821 + 0.881694i \(0.656403\pi\)
\(692\) −168.425 291.720i −0.243388 0.421561i
\(693\) 404.370 + 233.463i 0.583506 + 0.336887i
\(694\) −556.526 + 556.526i −0.801911 + 0.801911i
\(695\) −148.823 555.414i −0.214134 0.799157i
\(696\) 130.627 35.0013i 0.187682 0.0502892i
\(697\) 274.985 + 274.985i 0.394526 + 0.394526i
\(698\) 327.786 567.742i 0.469608 0.813385i
\(699\) 66.2121 38.2276i 0.0947240 0.0546889i
\(700\) 280.551 1047.03i 0.400787 1.49576i
\(701\) 769.901i 1.09829i 0.835727 + 0.549145i \(0.185046\pi\)
−0.835727 + 0.549145i \(0.814954\pi\)
\(702\) 3.42821 + 95.4686i 0.00488349 + 0.135995i
\(703\) −208.651 −0.296800
\(704\) 125.846 + 33.7202i 0.178758 + 0.0478980i
\(705\) −282.512 489.326i −0.400727 0.694079i
\(706\) −346.076 199.807i −0.490192 0.283013i
\(707\) −791.810 + 791.810i −1.11996 + 1.11996i
\(708\) −42.7252 159.453i −0.0603463 0.225215i
\(709\) 918.547 246.124i 1.29555 0.347142i 0.455786 0.890089i \(-0.349358\pi\)
0.839767 + 0.542947i \(0.182692\pi\)
\(710\) 289.223 + 289.223i 0.407356 + 0.407356i
\(711\) 84.2315 145.893i 0.118469 0.205194i
\(712\) 283.430 163.639i 0.398076 0.229829i
\(713\) −115.773 + 432.071i −0.162374 + 0.605990i
\(714\) 224.883i 0.314962i
\(715\) 1303.80 1400.92i 1.82349 1.95933i
\(716\) 626.093 0.874432
\(717\) −37.4893 10.0452i −0.0522863 0.0140101i
\(718\) −280.398 485.664i −0.390527 0.676412i
\(719\) −1165.21 672.733i −1.62060 0.935651i −0.986761 0.162183i \(-0.948146\pi\)
−0.633835 0.773468i \(-0.718520\pi\)
\(720\) 76.7017 76.7017i 0.106530 0.106530i
\(721\) 455.571 + 1700.21i 0.631860 + 2.35813i
\(722\) 359.316 96.2785i 0.497668 0.133350i
\(723\) −589.081 589.081i −0.814773 0.814773i
\(724\) −19.4795 + 33.7395i −0.0269054 + 0.0466015i
\(725\) −1355.74 + 782.736i −1.86998 + 1.07964i
\(726\) 91.4327 341.231i 0.125940 0.470016i
\(727\) 681.807i 0.937837i −0.883241 0.468918i \(-0.844644\pi\)
0.883241 0.468918i \(-0.155356\pi\)
\(728\) 78.7114 342.479i 0.108120 0.470438i
\(729\) 27.0000 0.0370370
\(730\) 169.095 + 45.3090i 0.231637 + 0.0620671i
\(731\) −171.431 296.927i −0.234516 0.406193i
\(732\) −211.630 122.185i −0.289112 0.166919i
\(733\) 760.545 760.545i 1.03758 1.03758i 0.0383126 0.999266i \(-0.487802\pi\)
0.999266 0.0383126i \(-0.0121983\pi\)
\(734\) −216.645 808.531i −0.295157 1.10154i
\(735\) −640.265 + 171.559i −0.871109 + 0.233413i
\(736\) −109.433 109.433i −0.148686 0.148686i
\(737\) 326.454 565.434i 0.442949 0.767210i
\(738\) −148.742 + 85.8761i −0.201547 + 0.116363i
\(739\) 202.762 756.716i 0.274373 1.02397i −0.681888 0.731457i \(-0.738841\pi\)
0.956260 0.292517i \(-0.0944927\pi\)
\(740\) 381.118i 0.515024i
\(741\) 196.877 + 104.432i 0.265691 + 0.140934i
\(742\) −528.053 −0.711662
\(743\) 779.633 + 208.902i 1.04930 + 0.281160i 0.741964 0.670440i \(-0.233894\pi\)
0.307340 + 0.951600i \(0.400561\pi\)
\(744\) 40.0496 + 69.3679i 0.0538301 + 0.0932365i
\(745\) −227.178 131.161i −0.304937 0.176056i
\(746\) 511.886 511.886i 0.686174 0.686174i
\(747\) 5.05039 + 18.8483i 0.00676090 + 0.0252320i
\(748\) 302.229 80.9820i 0.404049 0.108265i
\(749\) −48.3319 48.3319i −0.0645286 0.0645286i
\(750\) −351.065 + 608.062i −0.468086 + 0.810749i
\(751\) 858.524 495.669i 1.14317 0.660012i 0.195959 0.980612i \(-0.437218\pi\)
0.947215 + 0.320600i \(0.103885\pi\)
\(752\) −37.3615 + 139.435i −0.0496828 + 0.185419i
\(753\) 366.807i 0.487127i
\(754\) −430.123 + 269.361i −0.570455 + 0.357243i
\(755\) −404.410 −0.535642
\(756\) −95.9353 25.7058i −0.126898 0.0340023i
\(757\) −370.164 641.143i −0.488988 0.846952i 0.510932 0.859621i \(-0.329301\pi\)
−0.999920 + 0.0126691i \(0.995967\pi\)
\(758\) 250.656 + 144.716i 0.330681 + 0.190919i
\(759\) −545.680 + 545.680i −0.718946 + 0.718946i
\(760\) −65.4952 244.431i −0.0861778 0.321620i
\(761\) 762.920 204.424i 1.00252 0.268625i 0.280021 0.959994i \(-0.409659\pi\)
0.722502 + 0.691368i \(0.242992\pi\)
\(762\) −46.7968 46.7968i −0.0614132 0.0614132i
\(763\) 54.5781 94.5320i 0.0715309 0.123895i
\(764\) −247.599 + 142.951i −0.324082 + 0.187109i
\(765\) 67.4240 251.630i 0.0881359 0.328928i
\(766\) 464.422i 0.606295i
\(767\) 328.803 + 525.040i 0.428687 + 0.684538i
\(768\) −27.7128 −0.0360844