Properties

Label 78.3.l.c.37.2
Level $78$
Weight $3$
Character 78.37
Analytic conductor $2.125$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 78.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.12534606201\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 82x^{5} + 5053x^{4} - 6736x^{3} + 6728x^{2} + 275384x + 5635876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.2
Root \(5.41254 - 5.41254i\) of defining polynomial
Character \(\chi\) \(=\) 78.37
Dual form 78.3.l.c.19.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.866025 - 1.50000i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(4.41254 + 4.41254i) q^{5} +(2.36603 - 0.633975i) q^{6} +(2.11510 + 7.89367i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.866025 - 1.50000i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(4.41254 + 4.41254i) q^{5} +(2.36603 - 0.633975i) q^{6} +(2.11510 + 7.89367i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +(-7.64274 + 4.41254i) q^{10} +(18.5194 + 4.96225i) q^{11} +3.46410i q^{12} +(-12.9213 - 1.42820i) q^{13} -11.5571 q^{14} +(2.79744 - 10.4402i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-19.9936 - 11.5433i) q^{17} +(-3.00000 - 3.00000i) q^{18} +(0.417587 - 0.111892i) q^{19} +(-3.23020 - 12.0553i) q^{20} +(10.0088 - 10.0088i) q^{21} +(-13.5571 + 23.4816i) q^{22} +(36.4688 - 21.0553i) q^{23} +(-4.73205 - 1.26795i) q^{24} +13.9410i q^{25} +(6.68049 - 17.1281i) q^{26} +5.19615 q^{27} +(4.23020 - 15.7873i) q^{28} +(-3.25785 - 5.64275i) q^{29} +(13.2376 + 7.64274i) q^{30} +(-17.8476 - 17.8476i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(-8.59488 - 32.0765i) q^{33} +(23.0866 - 23.0866i) q^{34} +(-25.4982 + 44.1641i) q^{35} +(5.19615 - 3.00000i) q^{36} +(-1.37988 - 0.369738i) q^{37} +0.611390i q^{38} +(9.04788 + 20.6188i) q^{39} +17.6502 q^{40} +(-10.8187 + 40.3758i) q^{41} +(10.0088 + 17.3357i) q^{42} +(-51.1299 - 29.5199i) q^{43} +(-27.1143 - 27.1143i) q^{44} +(-18.0829 + 4.84531i) q^{45} +(15.4135 + 57.5241i) q^{46} +(15.0543 - 15.0543i) q^{47} +(3.46410 - 6.00000i) q^{48} +(-15.4011 + 8.89182i) q^{49} +(-19.0438 - 5.10277i) q^{50} +39.9872i q^{51} +(20.9522 + 15.3950i) q^{52} +8.90794 q^{53} +(-1.90192 + 7.09808i) q^{54} +(59.8214 + 103.614i) q^{55} +(20.0175 + 11.5571i) q^{56} +(-0.529479 - 0.529479i) q^{57} +(8.90060 - 2.38491i) q^{58} +(11.4200 + 42.6199i) q^{59} +(-15.2855 + 15.2855i) q^{60} +(44.8027 - 77.6005i) q^{61} +(30.9130 - 17.8476i) q^{62} +(-23.6810 - 6.34531i) q^{63} -8.00000i q^{64} +(-50.7138 - 63.3178i) q^{65} +46.9633 q^{66} +(10.2563 - 38.2772i) q^{67} +(23.0866 + 39.9872i) q^{68} +(-63.1659 - 36.4688i) q^{69} +(-50.9963 - 50.9963i) q^{70} +(8.56730 - 2.29560i) q^{71} +(2.19615 + 8.19615i) q^{72} +(-5.92683 + 5.92683i) q^{73} +(1.01014 - 1.74962i) q^{74} +(20.9115 - 12.0733i) q^{75} +(-0.835174 - 0.223784i) q^{76} +156.682i q^{77} +(-31.4776 + 4.81262i) q^{78} +115.826 q^{79} +(-6.46041 + 24.1106i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-51.1945 - 29.5572i) q^{82} +(-34.2340 - 34.2340i) q^{83} +(-27.3445 + 7.32693i) q^{84} +(-37.2872 - 139.158i) q^{85} +(59.0397 - 59.0397i) q^{86} +(-5.64275 + 9.77354i) q^{87} +(46.9633 - 27.1143i) q^{88} +(58.0728 + 15.5606i) q^{89} -26.4752i q^{90} +(-16.0561 - 105.017i) q^{91} -84.2211 q^{92} +(-11.3149 + 42.2280i) q^{93} +(15.0543 + 26.0747i) q^{94} +(2.33635 + 1.34889i) q^{95} +(6.92820 + 6.92820i) q^{96} +(-129.142 + 34.6035i) q^{97} +(-6.50926 - 24.2929i) q^{98} +(-40.6714 + 40.6714i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9} - 6 q^{10} + 24 q^{11} + 4 q^{14} - 12 q^{15} + 16 q^{16} - 84 q^{17} - 24 q^{18} + 10 q^{19} - 12 q^{20} + 18 q^{21} - 12 q^{22} - 12 q^{23} - 24 q^{24} + 26 q^{26} + 20 q^{28} + 36 q^{29} - 18 q^{30} - 94 q^{31} - 16 q^{32} + 60 q^{34} - 204 q^{35} + 140 q^{37} + 66 q^{39} - 24 q^{40} + 72 q^{41} + 18 q^{42} - 222 q^{43} - 24 q^{44} - 84 q^{46} + 300 q^{47} + 42 q^{49} - 62 q^{50} + 44 q^{52} + 84 q^{53} - 36 q^{54} + 396 q^{55} + 36 q^{56} + 24 q^{57} - 66 q^{58} - 60 q^{59} - 12 q^{60} - 90 q^{61} + 198 q^{62} - 24 q^{63} - 108 q^{65} + 72 q^{66} + 304 q^{67} + 60 q^{68} - 216 q^{69} - 408 q^{70} - 192 q^{71} - 24 q^{72} + 16 q^{73} - 46 q^{74} + 312 q^{75} - 20 q^{76} + 114 q^{78} - 96 q^{79} - 24 q^{80} - 36 q^{81} + 114 q^{82} - 12 q^{84} - 390 q^{85} + 168 q^{86} + 30 q^{87} + 72 q^{88} + 354 q^{89} - 218 q^{91} - 288 q^{92} - 42 q^{93} + 300 q^{94} - 576 q^{95} - 460 q^{97} + 58 q^{98} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(67\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) −0.866025 1.50000i −0.288675 0.500000i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 4.41254 + 4.41254i 0.882508 + 0.882508i 0.993789 0.111281i \(-0.0354953\pi\)
−0.111281 + 0.993789i \(0.535495\pi\)
\(6\) 2.36603 0.633975i 0.394338 0.105662i
\(7\) 2.11510 + 7.89367i 0.302157 + 1.12767i 0.935365 + 0.353685i \(0.115071\pi\)
−0.633207 + 0.773982i \(0.718262\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −1.50000 + 2.59808i −0.166667 + 0.288675i
\(10\) −7.64274 + 4.41254i −0.764274 + 0.441254i
\(11\) 18.5194 + 4.96225i 1.68358 + 0.451114i 0.968721 0.248154i \(-0.0798238\pi\)
0.714860 + 0.699268i \(0.246490\pi\)
\(12\) 3.46410i 0.288675i
\(13\) −12.9213 1.42820i −0.993947 0.109862i
\(14\) −11.5571 −0.825509
\(15\) 2.79744 10.4402i 0.186496 0.696012i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −19.9936 11.5433i −1.17609 0.679018i −0.220986 0.975277i \(-0.570927\pi\)
−0.955108 + 0.296259i \(0.904261\pi\)
\(18\) −3.00000 3.00000i −0.166667 0.166667i
\(19\) 0.417587 0.111892i 0.0219783 0.00588906i −0.247813 0.968808i \(-0.579712\pi\)
0.269791 + 0.962919i \(0.413045\pi\)
\(20\) −3.23020 12.0553i −0.161510 0.602764i
\(21\) 10.0088 10.0088i 0.476608 0.476608i
\(22\) −13.5571 + 23.4816i −0.616233 + 1.06735i
\(23\) 36.4688 21.0553i 1.58560 0.915447i 0.591581 0.806245i \(-0.298504\pi\)
0.994020 0.109202i \(-0.0348295\pi\)
\(24\) −4.73205 1.26795i −0.197169 0.0528312i
\(25\) 13.9410i 0.557641i
\(26\) 6.68049 17.1281i 0.256942 0.658772i
\(27\) 5.19615 0.192450
\(28\) 4.23020 15.7873i 0.151079 0.563833i
\(29\) −3.25785 5.64275i −0.112340 0.194578i 0.804374 0.594124i \(-0.202501\pi\)
−0.916713 + 0.399546i \(0.869168\pi\)
\(30\) 13.2376 + 7.64274i 0.441254 + 0.254758i
\(31\) −17.8476 17.8476i −0.575730 0.575730i 0.357994 0.933724i \(-0.383461\pi\)
−0.933724 + 0.357994i \(0.883461\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) −8.59488 32.0765i −0.260451 0.972016i
\(34\) 23.0866 23.0866i 0.679018 0.679018i
\(35\) −25.4982 + 44.1641i −0.728519 + 1.26183i
\(36\) 5.19615 3.00000i 0.144338 0.0833333i
\(37\) −1.37988 0.369738i −0.0372940 0.00999291i 0.240124 0.970742i \(-0.422812\pi\)
−0.277418 + 0.960749i \(0.589479\pi\)
\(38\) 0.611390i 0.0160892i
\(39\) 9.04788 + 20.6188i 0.231997 + 0.528688i
\(40\) 17.6502 0.441254
\(41\) −10.8187 + 40.3758i −0.263870 + 0.984776i 0.699068 + 0.715055i \(0.253598\pi\)
−0.962938 + 0.269721i \(0.913068\pi\)
\(42\) 10.0088 + 17.3357i 0.238304 + 0.412755i
\(43\) −51.1299 29.5199i −1.18907 0.686509i −0.230973 0.972960i \(-0.574191\pi\)
−0.958095 + 0.286452i \(0.907524\pi\)
\(44\) −27.1143 27.1143i −0.616233 0.616233i
\(45\) −18.0829 + 4.84531i −0.401843 + 0.107673i
\(46\) 15.4135 + 57.5241i 0.335077 + 1.25052i
\(47\) 15.0543 15.0543i 0.320303 0.320303i −0.528580 0.848883i \(-0.677275\pi\)
0.848883 + 0.528580i \(0.177275\pi\)
\(48\) 3.46410 6.00000i 0.0721688 0.125000i
\(49\) −15.4011 + 8.89182i −0.314308 + 0.181466i
\(50\) −19.0438 5.10277i −0.380876 0.102055i
\(51\) 39.9872i 0.784062i
\(52\) 20.9522 + 15.3950i 0.402926 + 0.296058i
\(53\) 8.90794 0.168074 0.0840372 0.996463i \(-0.473219\pi\)
0.0840372 + 0.996463i \(0.473219\pi\)
\(54\) −1.90192 + 7.09808i −0.0352208 + 0.131446i
\(55\) 59.8214 + 103.614i 1.08766 + 1.88389i
\(56\) 20.0175 + 11.5571i 0.357456 + 0.206377i
\(57\) −0.529479 0.529479i −0.00928910 0.00928910i
\(58\) 8.90060 2.38491i 0.153459 0.0411191i
\(59\) 11.4200 + 42.6199i 0.193559 + 0.722371i 0.992635 + 0.121141i \(0.0386554\pi\)
−0.799077 + 0.601229i \(0.794678\pi\)
\(60\) −15.2855 + 15.2855i −0.254758 + 0.254758i
\(61\) 44.8027 77.6005i 0.734470 1.27214i −0.220485 0.975390i \(-0.570764\pi\)
0.954955 0.296749i \(-0.0959025\pi\)
\(62\) 30.9130 17.8476i 0.498597 0.287865i
\(63\) −23.6810 6.34531i −0.375889 0.100719i
\(64\) 8.00000i 0.125000i
\(65\) −50.7138 63.3178i −0.780212 0.974120i
\(66\) 46.9633 0.711565
\(67\) 10.2563 38.2772i 0.153080 0.571302i −0.846182 0.532893i \(-0.821105\pi\)
0.999262 0.0384081i \(-0.0122287\pi\)
\(68\) 23.0866 + 39.9872i 0.339509 + 0.588047i
\(69\) −63.1659 36.4688i −0.915447 0.528534i
\(70\) −50.9963 50.9963i −0.728519 0.728519i
\(71\) 8.56730 2.29560i 0.120666 0.0323324i −0.197981 0.980206i \(-0.563438\pi\)
0.318647 + 0.947874i \(0.396772\pi\)
\(72\) 2.19615 + 8.19615i 0.0305021 + 0.113835i
\(73\) −5.92683 + 5.92683i −0.0811895 + 0.0811895i −0.746535 0.665346i \(-0.768284\pi\)
0.665346 + 0.746535i \(0.268284\pi\)
\(74\) 1.01014 1.74962i 0.0136506 0.0236435i
\(75\) 20.9115 12.0733i 0.278820 0.160977i
\(76\) −0.835174 0.223784i −0.0109891 0.00294453i
\(77\) 156.682i 2.03483i
\(78\) −31.4776 + 4.81262i −0.403559 + 0.0617002i
\(79\) 115.826 1.46616 0.733078 0.680144i \(-0.238083\pi\)
0.733078 + 0.680144i \(0.238083\pi\)
\(80\) −6.46041 + 24.1106i −0.0807551 + 0.301382i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) −51.1945 29.5572i −0.624323 0.360453i
\(83\) −34.2340 34.2340i −0.412458 0.412458i 0.470136 0.882594i \(-0.344205\pi\)
−0.882594 + 0.470136i \(0.844205\pi\)
\(84\) −27.3445 + 7.32693i −0.325529 + 0.0872253i
\(85\) −37.2872 139.158i −0.438673 1.63715i
\(86\) 59.0397 59.0397i 0.686509 0.686509i
\(87\) −5.64275 + 9.77354i −0.0648592 + 0.112340i
\(88\) 46.9633 27.1143i 0.533674 0.308117i
\(89\) 58.0728 + 15.5606i 0.652503 + 0.174838i 0.569860 0.821741i \(-0.306997\pi\)
0.0826429 + 0.996579i \(0.473664\pi\)
\(90\) 26.4752i 0.294169i
\(91\) −16.0561 105.017i −0.176441 1.15404i
\(92\) −84.2211 −0.915447
\(93\) −11.3149 + 42.2280i −0.121666 + 0.454064i
\(94\) 15.0543 + 26.0747i 0.160152 + 0.277391i
\(95\) 2.33635 + 1.34889i 0.0245931 + 0.0141988i
\(96\) 6.92820 + 6.92820i 0.0721688 + 0.0721688i
\(97\) −129.142 + 34.6035i −1.33136 + 0.356737i −0.853223 0.521547i \(-0.825355\pi\)
−0.478139 + 0.878284i \(0.658688\pi\)
\(98\) −6.50926 24.2929i −0.0664211 0.247887i
\(99\) −40.6714 + 40.6714i −0.410822 + 0.410822i
\(100\) 13.9410 24.1466i 0.139410 0.241466i
\(101\) 33.1291 19.1271i 0.328010 0.189377i −0.326947 0.945043i \(-0.606020\pi\)
0.654957 + 0.755666i \(0.272687\pi\)
\(102\) −54.6235 14.6363i −0.535525 0.143493i
\(103\) 65.9827i 0.640609i 0.947315 + 0.320304i \(0.103785\pi\)
−0.947315 + 0.320304i \(0.896215\pi\)
\(104\) −28.6990 + 22.9862i −0.275952 + 0.221021i
\(105\) 88.3282 0.841221
\(106\) −3.26053 + 12.1685i −0.0307597 + 0.114797i
\(107\) −47.2413 81.8244i −0.441508 0.764714i 0.556294 0.830986i \(-0.312223\pi\)
−0.997802 + 0.0662716i \(0.978890\pi\)
\(108\) −9.00000 5.19615i −0.0833333 0.0481125i
\(109\) −100.935 100.935i −0.926011 0.926011i 0.0714342 0.997445i \(-0.477242\pi\)
−0.997445 + 0.0714342i \(0.977242\pi\)
\(110\) −163.435 + 43.7923i −1.48577 + 0.398112i
\(111\) 0.640404 + 2.39002i 0.00576941 + 0.0215317i
\(112\) −23.1143 + 23.1143i −0.206377 + 0.206377i
\(113\) −15.3509 + 26.5885i −0.135849 + 0.235297i −0.925921 0.377716i \(-0.876709\pi\)
0.790073 + 0.613013i \(0.210043\pi\)
\(114\) 0.917084 0.529479i 0.00804460 0.00464455i
\(115\) 253.827 + 68.0129i 2.20720 + 0.591416i
\(116\) 13.0314i 0.112340i
\(117\) 23.0925 31.4282i 0.197372 0.268617i
\(118\) −62.3998 −0.528812
\(119\) 48.8305 182.238i 0.410341 1.53141i
\(120\) −15.2855 26.4752i −0.127379 0.220627i
\(121\) 213.555 + 123.296i 1.76491 + 1.01897i
\(122\) 89.6053 + 89.6053i 0.734470 + 0.734470i
\(123\) 69.9330 18.7385i 0.568561 0.152345i
\(124\) 13.0654 + 48.7607i 0.105366 + 0.393231i
\(125\) 48.7982 48.7982i 0.390385 0.390385i
\(126\) 17.3357 30.0263i 0.137585 0.238304i
\(127\) −137.861 + 79.5940i −1.08552 + 0.626725i −0.932380 0.361480i \(-0.882272\pi\)
−0.153139 + 0.988205i \(0.548938\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) 102.260i 0.792712i
\(130\) 105.056 46.1004i 0.808125 0.354619i
\(131\) 88.8918 0.678563 0.339282 0.940685i \(-0.389816\pi\)
0.339282 + 0.940685i \(0.389816\pi\)
\(132\) −17.1898 + 64.1530i −0.130225 + 0.486008i
\(133\) 1.76648 + 3.05963i 0.0132818 + 0.0230047i
\(134\) 48.5335 + 28.0209i 0.362191 + 0.209111i
\(135\) 22.9282 + 22.9282i 0.169839 + 0.169839i
\(136\) −63.0738 + 16.9006i −0.463778 + 0.124269i
\(137\) 28.4831 + 106.300i 0.207906 + 0.775915i 0.988544 + 0.150932i \(0.0482274\pi\)
−0.780638 + 0.624983i \(0.785106\pi\)
\(138\) 72.9376 72.9376i 0.528534 0.528534i
\(139\) −124.068 + 214.891i −0.892573 + 1.54598i −0.0557926 + 0.998442i \(0.517769\pi\)
−0.836780 + 0.547539i \(0.815565\pi\)
\(140\) 88.3282 50.9963i 0.630916 0.364259i
\(141\) −35.6188 9.54402i −0.252615 0.0676881i
\(142\) 12.5434i 0.0883338i
\(143\) −232.208 90.5683i −1.62383 0.633345i
\(144\) −12.0000 −0.0833333
\(145\) 10.5235 39.2743i 0.0725759 0.270857i
\(146\) −5.92683 10.2656i −0.0405947 0.0703121i
\(147\) 26.6755 + 15.4011i 0.181466 + 0.104769i
\(148\) 2.02028 + 2.02028i 0.0136506 + 0.0136506i
\(149\) −133.409 + 35.7469i −0.895363 + 0.239912i −0.677024 0.735961i \(-0.736731\pi\)
−0.218339 + 0.975873i \(0.570064\pi\)
\(150\) 8.83825 + 32.9848i 0.0589217 + 0.219899i
\(151\) −19.6390 + 19.6390i −0.130060 + 0.130060i −0.769140 0.639080i \(-0.779315\pi\)
0.639080 + 0.769140i \(0.279315\pi\)
\(152\) 0.611390 1.05896i 0.00402230 0.00696683i
\(153\) 59.9808 34.6299i 0.392031 0.226339i
\(154\) −214.031 57.3494i −1.38981 0.372399i
\(155\) 157.507i 1.01617i
\(156\) 4.94744 44.7607i 0.0317144 0.286928i
\(157\) −121.293 −0.772569 −0.386285 0.922380i \(-0.626242\pi\)
−0.386285 + 0.922380i \(0.626242\pi\)
\(158\) −42.3954 + 158.222i −0.268325 + 1.00140i
\(159\) −7.71450 13.3619i −0.0485189 0.0840372i
\(160\) −30.5710 17.6502i −0.191069 0.110314i
\(161\) 243.339 + 243.339i 1.51142 + 1.51142i
\(162\) 12.2942 3.29423i 0.0758903 0.0203347i
\(163\) 48.9961 + 182.856i 0.300590 + 1.12182i 0.936676 + 0.350198i \(0.113886\pi\)
−0.636086 + 0.771618i \(0.719448\pi\)
\(164\) 59.1143 59.1143i 0.360453 0.360453i
\(165\) 103.614 179.464i 0.627962 1.08766i
\(166\) 59.2950 34.2340i 0.357199 0.206229i
\(167\) −54.7719 14.6761i −0.327976 0.0878808i 0.0910740 0.995844i \(-0.470970\pi\)
−0.419050 + 0.907963i \(0.637637\pi\)
\(168\) 40.0351i 0.238304i
\(169\) 164.920 + 36.9085i 0.975861 + 0.218394i
\(170\) 203.741 1.19848
\(171\) −0.335676 + 1.25276i −0.00196302 + 0.00732608i
\(172\) 59.0397 + 102.260i 0.343254 + 0.594534i
\(173\) −281.887 162.747i −1.62940 0.940736i −0.984271 0.176663i \(-0.943470\pi\)
−0.645130 0.764072i \(-0.723197\pi\)
\(174\) −11.2855 11.2855i −0.0648592 0.0648592i
\(175\) −110.046 + 29.4867i −0.628833 + 0.168495i
\(176\) 19.8490 + 74.0775i 0.112779 + 0.420895i
\(177\) 54.0398 54.0398i 0.305310 0.305310i
\(178\) −42.5122 + 73.6334i −0.238833 + 0.413671i
\(179\) −122.019 + 70.4476i −0.681670 + 0.393562i −0.800484 0.599354i \(-0.795424\pi\)
0.118814 + 0.992917i \(0.462091\pi\)
\(180\) 36.1659 + 9.69061i 0.200921 + 0.0538367i
\(181\) 56.0814i 0.309842i 0.987927 + 0.154921i \(0.0495123\pi\)
−0.987927 + 0.154921i \(0.950488\pi\)
\(182\) 149.333 + 16.5059i 0.820512 + 0.0906919i
\(183\) −155.201 −0.848093
\(184\) 30.8271 115.048i 0.167538 0.625262i
\(185\) −4.45729 7.72026i −0.0240935 0.0417311i
\(186\) −53.5429 30.9130i −0.287865 0.166199i
\(187\) −312.988 312.988i −1.67373 1.67373i
\(188\) −41.1290 + 11.0205i −0.218771 + 0.0586196i
\(189\) 10.9904 + 41.0167i 0.0581502 + 0.217020i
\(190\) −2.69778 + 2.69778i −0.0141988 + 0.0141988i
\(191\) 80.6165 139.632i 0.422076 0.731057i −0.574067 0.818809i \(-0.694635\pi\)
0.996142 + 0.0877520i \(0.0279683\pi\)
\(192\) −12.0000 + 6.92820i −0.0625000 + 0.0360844i
\(193\) 162.089 + 43.4316i 0.839838 + 0.225034i 0.653001 0.757357i \(-0.273510\pi\)
0.186837 + 0.982391i \(0.440176\pi\)
\(194\) 189.077i 0.974624i
\(195\) −51.0573 + 130.906i −0.261832 + 0.671310i
\(196\) 35.5673 0.181466
\(197\) 52.3324 195.307i 0.265647 0.991407i −0.696207 0.717841i \(-0.745130\pi\)
0.961853 0.273565i \(-0.0882030\pi\)
\(198\) −40.6714 70.4449i −0.205411 0.355782i
\(199\) 80.8275 + 46.6658i 0.406168 + 0.234501i 0.689142 0.724626i \(-0.257988\pi\)
−0.282974 + 0.959128i \(0.591321\pi\)
\(200\) 27.8820 + 27.8820i 0.139410 + 0.139410i
\(201\) −66.2981 + 17.7645i −0.329841 + 0.0883807i
\(202\) 14.0020 + 52.2561i 0.0693168 + 0.258694i
\(203\) 37.6513 37.6513i 0.185475 0.185475i
\(204\) 39.9872 69.2598i 0.196016 0.339509i
\(205\) −225.898 + 130.422i −1.10194 + 0.636206i
\(206\) −90.1341 24.1514i −0.437544 0.117240i
\(207\) 126.332i 0.610298i
\(208\) −20.8952 47.6171i −0.100458 0.228929i
\(209\) 8.28869 0.0396588
\(210\) −32.3304 + 120.659i −0.153954 + 0.574565i
\(211\) −158.226 274.055i −0.749885 1.29884i −0.947877 0.318635i \(-0.896776\pi\)
0.197993 0.980203i \(-0.436558\pi\)
\(212\) −15.4290 8.90794i −0.0727783 0.0420186i
\(213\) −10.8629 10.8629i −0.0509995 0.0509995i
\(214\) 129.066 34.5831i 0.603111 0.161603i
\(215\) −95.3552 355.870i −0.443513 1.65521i
\(216\) 10.3923 10.3923i 0.0481125 0.0481125i
\(217\) 103.134 178.633i 0.475271 0.823193i
\(218\) 174.825 100.935i 0.801949 0.463006i
\(219\) 14.0230 + 3.75746i 0.0640321 + 0.0171574i
\(220\) 239.286i 1.08766i
\(221\) 241.857 + 177.710i 1.09438 + 0.804116i
\(222\) −3.49923 −0.0157623
\(223\) 17.6758 65.9671i 0.0792638 0.295817i −0.914902 0.403675i \(-0.867733\pi\)
0.994166 + 0.107858i \(0.0343993\pi\)
\(224\) −23.1143 40.0351i −0.103189 0.178728i
\(225\) −36.2198 20.9115i −0.160977 0.0929401i
\(226\) −30.7018 30.7018i −0.135849 0.135849i
\(227\) 24.3066 6.51292i 0.107077 0.0286913i −0.204882 0.978787i \(-0.565681\pi\)
0.311960 + 0.950095i \(0.399015\pi\)
\(228\) 0.387605 + 1.44656i 0.00170002 + 0.00634458i
\(229\) −274.910 + 274.910i −1.20048 + 1.20048i −0.226461 + 0.974020i \(0.572716\pi\)
−0.974020 + 0.226461i \(0.927284\pi\)
\(230\) −185.815 + 321.840i −0.807889 + 1.39931i
\(231\) 235.022 135.690i 1.01741 0.587403i
\(232\) −17.8012 4.76982i −0.0767293 0.0205596i
\(233\) 401.576i 1.72350i 0.507333 + 0.861750i \(0.330631\pi\)
−0.507333 + 0.861750i \(0.669369\pi\)
\(234\) 34.4793 + 43.0485i 0.147348 + 0.183968i
\(235\) 132.855 0.565341
\(236\) 22.8399 85.2397i 0.0967793 0.361185i
\(237\) −100.309 173.740i −0.423243 0.733078i
\(238\) 231.069 + 133.407i 0.970876 + 0.560536i
\(239\) 305.397 + 305.397i 1.27781 + 1.27781i 0.941891 + 0.335919i \(0.109047\pi\)
0.335919 + 0.941891i \(0.390953\pi\)
\(240\) 41.7607 11.1898i 0.174003 0.0466240i
\(241\) −28.8074 107.511i −0.119533 0.446102i 0.880053 0.474875i \(-0.157507\pi\)
−0.999586 + 0.0287729i \(0.990840\pi\)
\(242\) −246.592 + 246.592i −1.01897 + 1.01897i
\(243\) −7.79423 + 13.5000i −0.0320750 + 0.0555556i
\(244\) −155.201 + 89.6053i −0.636070 + 0.367235i
\(245\) −107.193 28.7224i −0.437524 0.117234i
\(246\) 102.389i 0.416215i
\(247\) −5.55557 + 0.849393i −0.0224922 + 0.00343884i
\(248\) −71.3905 −0.287865
\(249\) −21.7035 + 80.9985i −0.0871625 + 0.325295i
\(250\) 48.7982 + 84.5209i 0.195193 + 0.338084i
\(251\) 75.9010 + 43.8214i 0.302394 + 0.174587i 0.643518 0.765431i \(-0.277474\pi\)
−0.341124 + 0.940018i \(0.610808\pi\)
\(252\) 34.6714 + 34.6714i 0.137585 + 0.137585i
\(253\) 779.862 208.963i 3.08246 0.825942i
\(254\) −58.2669 217.455i −0.229397 0.856122i
\(255\) −176.445 + 176.445i −0.691941 + 0.691941i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −151.909 + 87.7045i −0.591084 + 0.341263i −0.765526 0.643405i \(-0.777521\pi\)
0.174442 + 0.984667i \(0.444188\pi\)
\(258\) −139.690 37.4297i −0.541432 0.145076i
\(259\) 11.6743i 0.0450747i
\(260\) 24.5211 + 160.383i 0.0943118 + 0.616859i
\(261\) 19.5471 0.0748930
\(262\) −32.5366 + 121.428i −0.124186 + 0.463467i
\(263\) 63.6818 + 110.300i 0.242136 + 0.419392i 0.961323 0.275425i \(-0.0888186\pi\)
−0.719186 + 0.694817i \(0.755485\pi\)
\(264\) −81.3428 46.9633i −0.308117 0.177891i
\(265\) 39.3066 + 39.3066i 0.148327 + 0.148327i
\(266\) −4.82611 + 1.29315i −0.0181433 + 0.00486147i
\(267\) −26.9517 100.585i −0.100943 0.376723i
\(268\) −56.0417 + 56.0417i −0.209111 + 0.209111i
\(269\) 104.127 180.352i 0.387087 0.670455i −0.604969 0.796249i \(-0.706814\pi\)
0.992056 + 0.125794i \(0.0401478\pi\)
\(270\) −39.7129 + 22.9282i −0.147085 + 0.0849194i
\(271\) 3.66031 + 0.980776i 0.0135067 + 0.00361910i 0.265566 0.964093i \(-0.414441\pi\)
−0.252059 + 0.967712i \(0.581108\pi\)
\(272\) 92.3464i 0.339509i
\(273\) −143.621 + 115.032i −0.526084 + 0.421362i
\(274\) −155.634 −0.568009
\(275\) −69.1789 + 258.179i −0.251560 + 0.938833i
\(276\) 72.9376 + 126.332i 0.264267 + 0.457724i
\(277\) 59.5357 + 34.3730i 0.214930 + 0.124090i 0.603601 0.797287i \(-0.293732\pi\)
−0.388670 + 0.921377i \(0.627065\pi\)
\(278\) −248.135 248.135i −0.892573 0.892573i
\(279\) 73.1410 19.5981i 0.262154 0.0702440i
\(280\) 37.3319 + 139.324i 0.133328 + 0.497587i
\(281\) −19.5583 + 19.5583i −0.0696025 + 0.0696025i −0.741051 0.671449i \(-0.765672\pi\)
0.671449 + 0.741051i \(0.265672\pi\)
\(282\) 26.0747 45.1628i 0.0924636 0.160152i
\(283\) −109.532 + 63.2384i −0.387039 + 0.223457i −0.680876 0.732398i \(-0.738401\pi\)
0.293837 + 0.955855i \(0.405068\pi\)
\(284\) −17.1346 4.59120i −0.0603331 0.0161662i
\(285\) 4.67269i 0.0163954i
\(286\) 208.712 284.051i 0.729764 0.993186i
\(287\) −341.596 −1.19023
\(288\) 4.39230 16.3923i 0.0152511 0.0569177i
\(289\) 121.996 + 211.303i 0.422131 + 0.731152i
\(290\) 49.7978 + 28.7507i 0.171716 + 0.0991405i
\(291\) 163.746 + 163.746i 0.562700 + 0.562700i
\(292\) 16.1924 4.33874i 0.0554534 0.0148587i
\(293\) 96.4402 + 359.920i 0.329148 + 1.22840i 0.910076 + 0.414441i \(0.136023\pi\)
−0.580929 + 0.813954i \(0.697311\pi\)
\(294\) −30.8022 + 30.8022i −0.104769 + 0.104769i
\(295\) −137.671 + 238.453i −0.466681 + 0.808315i
\(296\) −3.49923 + 2.02028i −0.0118217 + 0.00682528i
\(297\) 96.2296 + 25.7846i 0.324005 + 0.0868169i
\(298\) 195.325i 0.655452i
\(299\) −501.296 + 219.977i −1.67658 + 0.735709i
\(300\) −48.2931 −0.160977
\(301\) 124.875 466.040i 0.414867 1.54831i
\(302\) −19.6390 34.0158i −0.0650299 0.112635i
\(303\) −57.3812 33.1291i −0.189377 0.109337i
\(304\) 1.22278 + 1.22278i 0.00402230 + 0.00402230i
\(305\) 540.109 144.722i 1.77085 0.474498i
\(306\) 25.3509 + 94.6107i 0.0828459 + 0.309185i
\(307\) 259.830 259.830i 0.846352 0.846352i −0.143324 0.989676i \(-0.545779\pi\)
0.989676 + 0.143324i \(0.0457792\pi\)
\(308\) 156.682 271.380i 0.508706 0.881105i
\(309\) 98.9741 57.1427i 0.320304 0.184928i
\(310\) 215.158 + 57.6515i 0.694059 + 0.185973i
\(311\) 356.838i 1.14739i −0.819069 0.573695i \(-0.805509\pi\)
0.819069 0.573695i \(-0.194491\pi\)
\(312\) 59.3334 + 23.1419i 0.190171 + 0.0741727i
\(313\) −19.6152 −0.0626683 −0.0313342 0.999509i \(-0.509976\pi\)
−0.0313342 + 0.999509i \(0.509976\pi\)
\(314\) 44.3965 165.690i 0.141390 0.527675i
\(315\) −76.4945 132.492i −0.242840 0.420610i
\(316\) −200.617 115.826i −0.634865 0.366539i
\(317\) −139.801 139.801i −0.441011 0.441011i 0.451341 0.892352i \(-0.350946\pi\)
−0.892352 + 0.451341i \(0.850946\pi\)
\(318\) 21.0764 5.64741i 0.0662780 0.0177591i
\(319\) −32.3325 120.667i −0.101356 0.378265i
\(320\) 35.3003 35.3003i 0.110314 0.110314i
\(321\) −81.8244 + 141.724i −0.254905 + 0.441508i
\(322\) −421.475 + 243.339i −1.30893 + 0.755710i
\(323\) −9.64066 2.58321i −0.0298473 0.00799755i
\(324\) 18.0000i 0.0555556i
\(325\) 19.9106 180.136i 0.0612634 0.554265i
\(326\) −267.720 −0.821226
\(327\) −63.9904 + 238.815i −0.195689 + 0.730322i
\(328\) 59.1143 + 102.389i 0.180227 + 0.312162i
\(329\) 150.675 + 86.9920i 0.457978 + 0.264413i
\(330\) 207.227 + 207.227i 0.627962 + 0.627962i
\(331\) 265.737 71.2040i 0.802830 0.215118i 0.166004 0.986125i \(-0.446914\pi\)
0.636826 + 0.771007i \(0.280247\pi\)
\(332\) 25.0610 + 93.5290i 0.0754850 + 0.281714i
\(333\) 3.03043 3.03043i 0.00910038 0.00910038i
\(334\) 40.0958 69.4480i 0.120047 0.207928i
\(335\) 214.156 123.643i 0.639272 0.369084i
\(336\) 54.6889 + 14.6539i 0.162765 + 0.0436127i
\(337\) 625.952i 1.85743i −0.370800 0.928713i \(-0.620916\pi\)
0.370800 0.928713i \(-0.379084\pi\)
\(338\) −110.783 + 211.776i −0.327760 + 0.626557i
\(339\) 53.1771 0.156864
\(340\) −74.5745 + 278.316i −0.219337 + 0.818575i
\(341\) −241.963 419.092i −0.709568 1.22901i
\(342\) −1.58844 0.917084i −0.00464455 0.00268153i
\(343\) 180.386 + 180.386i 0.525906 + 0.525906i
\(344\) −161.300 + 43.2201i −0.468894 + 0.125640i
\(345\) −117.802 439.642i −0.341454 1.27432i
\(346\) 325.495 325.495i 0.940736 0.940736i
\(347\) 52.8438 91.5282i 0.152288 0.263770i −0.779780 0.626053i \(-0.784669\pi\)
0.932068 + 0.362283i \(0.118003\pi\)
\(348\) 19.5471 11.2855i 0.0561698 0.0324296i
\(349\) −418.494 112.135i −1.19912 0.321304i −0.396637 0.917976i \(-0.629823\pi\)
−0.802485 + 0.596672i \(0.796489\pi\)
\(350\) 161.118i 0.460338i
\(351\) −67.1411 7.42116i −0.191285 0.0211429i
\(352\) −108.457 −0.308117
\(353\) −152.231 + 568.133i −0.431248 + 1.60944i 0.318639 + 0.947876i \(0.396774\pi\)
−0.749888 + 0.661565i \(0.769892\pi\)
\(354\) 54.0398 + 93.5997i 0.152655 + 0.264406i
\(355\) 47.9330 + 27.6741i 0.135023 + 0.0779553i
\(356\) −85.0245 85.0245i −0.238833 0.238833i
\(357\) −315.646 + 84.5770i −0.884161 + 0.236910i
\(358\) −51.5712 192.466i −0.144054 0.537616i
\(359\) 172.896 172.896i 0.481604 0.481604i −0.424040 0.905644i \(-0.639388\pi\)
0.905644 + 0.424040i \(0.139388\pi\)
\(360\) −26.4752 + 45.8565i −0.0735423 + 0.127379i
\(361\) −312.473 + 180.407i −0.865577 + 0.499741i
\(362\) −76.6086 20.5272i −0.211626 0.0567050i
\(363\) 427.109i 1.17661i
\(364\) −77.2073 + 197.951i −0.212108 + 0.543823i
\(365\) −52.3048 −0.143301
\(366\) 56.8075 212.009i 0.155212 0.579258i
\(367\) 172.613 + 298.974i 0.470335 + 0.814644i 0.999424 0.0339223i \(-0.0107999\pi\)
−0.529090 + 0.848566i \(0.677467\pi\)
\(368\) 145.875 + 84.2211i 0.396400 + 0.228862i
\(369\) −88.6715 88.6715i −0.240302 0.240302i
\(370\) 12.1775 3.26296i 0.0329123 0.00881882i
\(371\) 18.8412 + 70.3163i 0.0507849 + 0.189532i
\(372\) 61.8260 61.8260i 0.166199 0.166199i
\(373\) −223.291 + 386.751i −0.598635 + 1.03687i 0.394388 + 0.918944i \(0.370957\pi\)
−0.993023 + 0.117922i \(0.962377\pi\)
\(374\) 542.111 312.988i 1.44950 0.836867i
\(375\) −115.458 30.9368i −0.307887 0.0824982i
\(376\) 60.2170i 0.160152i
\(377\) 34.0366 + 77.5646i 0.0902828 + 0.205742i
\(378\) −60.0526 −0.158869
\(379\) 58.0212 216.538i 0.153090 0.571340i −0.846171 0.532911i \(-0.821098\pi\)
0.999261 0.0384290i \(-0.0122353\pi\)
\(380\) −2.69778 4.67269i −0.00709942 0.0122966i
\(381\) 238.782 + 137.861i 0.626725 + 0.361840i
\(382\) 161.233 + 161.233i 0.422076 + 0.422076i
\(383\) 275.080 73.7074i 0.718224 0.192448i 0.118845 0.992913i \(-0.462081\pi\)
0.599379 + 0.800465i \(0.295414\pi\)
\(384\) −5.07180 18.9282i −0.0132078 0.0492922i
\(385\) −691.364 + 691.364i −1.79575 + 1.79575i
\(386\) −118.657 + 205.520i −0.307402 + 0.532436i
\(387\) 153.390 88.5596i 0.396356 0.228836i
\(388\) 258.284 + 69.2070i 0.665681 + 0.178369i
\(389\) 55.5965i 0.142922i −0.997443 0.0714608i \(-0.977234\pi\)
0.997443 0.0714608i \(-0.0227661\pi\)
\(390\) −160.132 117.660i −0.410595 0.301693i
\(391\) −972.190 −2.48642
\(392\) −13.0185 + 48.5858i −0.0332105 + 0.123943i
\(393\) −76.9825 133.338i −0.195884 0.339282i
\(394\) 247.640 + 142.975i 0.628527 + 0.362880i
\(395\) 511.089 + 511.089i 1.29390 + 1.29390i
\(396\) 111.116 29.7735i 0.280597 0.0751857i
\(397\) −60.5246 225.881i −0.152455 0.568969i −0.999310 0.0371454i \(-0.988174\pi\)
0.846855 0.531824i \(-0.178493\pi\)
\(398\) −93.3316 + 93.3316i −0.234501 + 0.234501i
\(399\) 3.05963 5.29943i 0.00766824 0.0132818i
\(400\) −48.2931 + 27.8820i −0.120733 + 0.0697051i
\(401\) −139.942 37.4974i −0.348983 0.0935096i 0.0800696 0.996789i \(-0.474486\pi\)
−0.429052 + 0.903280i \(0.641152\pi\)
\(402\) 97.0671i 0.241460i
\(403\) 205.125 + 256.105i 0.508995 + 0.635496i
\(404\) −76.5083 −0.189377
\(405\) 14.5359 54.2488i 0.0358912 0.133948i
\(406\) 37.6513 + 65.2140i 0.0927373 + 0.160626i
\(407\) −23.7198 13.6946i −0.0582796 0.0336477i
\(408\) 79.9744 + 79.9744i 0.196016 + 0.196016i
\(409\) −666.035 + 178.463i −1.62845 + 0.436341i −0.953468 0.301496i \(-0.902514\pi\)
−0.674979 + 0.737837i \(0.735847\pi\)
\(410\) −95.4756 356.320i −0.232867 0.869073i
\(411\) 134.783 134.783i 0.327940 0.327940i
\(412\) 65.9827 114.285i 0.160152 0.277392i
\(413\) −312.273 + 180.291i −0.756108 + 0.436539i
\(414\) −172.572 46.2406i −0.416841 0.111692i
\(415\) 302.118i 0.727994i
\(416\) 72.6944 11.1143i 0.174746 0.0267170i
\(417\) 429.783 1.03065
\(418\) −3.03387 + 11.3226i −0.00725806 + 0.0270875i
\(419\) 35.3241 + 61.1831i 0.0843056 + 0.146022i 0.905095 0.425209i \(-0.139799\pi\)
−0.820789 + 0.571231i \(0.806466\pi\)
\(420\) −152.989 88.3282i −0.364259 0.210305i
\(421\) −269.923 269.923i −0.641148 0.641148i 0.309690 0.950838i \(-0.399775\pi\)
−0.950838 + 0.309690i \(0.899775\pi\)
\(422\) 432.281 115.829i 1.02436 0.274477i
\(423\) 16.5307 + 61.6935i 0.0390797 + 0.145848i
\(424\) 17.8159 17.8159i 0.0420186 0.0420186i
\(425\) 160.925 278.731i 0.378648 0.655838i
\(426\) 18.8151 10.8629i 0.0441669 0.0254998i
\(427\) 707.315 + 189.524i 1.65647 + 0.443851i
\(428\) 188.965i 0.441508i
\(429\) 65.2453 + 426.746i 0.152087 + 0.994746i
\(430\) 521.030 1.21170
\(431\) −167.809 + 626.272i −0.389348 + 1.45307i 0.441848 + 0.897090i \(0.354323\pi\)
−0.831197 + 0.555978i \(0.812344\pi\)
\(432\) 10.3923 + 18.0000i 0.0240563 + 0.0416667i
\(433\) 330.115 + 190.592i 0.762391 + 0.440166i 0.830153 0.557535i \(-0.188253\pi\)
−0.0677628 + 0.997701i \(0.521586\pi\)
\(434\) 206.267 + 206.267i 0.475271 + 0.475271i
\(435\) −68.0250 + 18.2272i −0.156379 + 0.0419017i
\(436\) 73.8897 + 275.760i 0.169472 + 0.632477i
\(437\) 12.8730 12.8730i 0.0294576 0.0294576i
\(438\) −10.2656 + 17.7805i −0.0234374 + 0.0405947i
\(439\) 96.4945 55.7111i 0.219805 0.126905i −0.386055 0.922476i \(-0.626162\pi\)
0.605860 + 0.795571i \(0.292829\pi\)
\(440\) 326.870 + 87.5846i 0.742887 + 0.199056i
\(441\) 53.3509i 0.120977i
\(442\) −331.282 + 265.337i −0.749506 + 0.600310i
\(443\) 480.157 1.08388 0.541938 0.840418i \(-0.317691\pi\)
0.541938 + 0.840418i \(0.317691\pi\)
\(444\) 1.28081 4.78004i 0.00288470 0.0107659i
\(445\) 187.587 + 324.910i 0.421544 + 0.730135i
\(446\) 83.6430 + 48.2913i 0.187540 + 0.108276i
\(447\) 169.156 + 169.156i 0.378425 + 0.378425i
\(448\) 63.1493 16.9208i 0.140958 0.0377697i
\(449\) −105.379 393.279i −0.234697 0.875900i −0.978285 0.207263i \(-0.933545\pi\)
0.743589 0.668637i \(-0.233122\pi\)
\(450\) 41.8231 41.8231i 0.0929401 0.0929401i
\(451\) −400.710 + 694.051i −0.888493 + 1.53891i
\(452\) 53.1771 30.7018i 0.117648 0.0679243i
\(453\) 46.4665 + 12.4507i 0.102575 + 0.0274849i
\(454\) 35.5873i 0.0783861i
\(455\) 392.545 534.241i 0.862736 1.17416i
\(456\) −2.11792 −0.00464455
\(457\) −5.25408 + 19.6085i −0.0114969 + 0.0429069i −0.971436 0.237302i \(-0.923737\pi\)
0.959939 + 0.280209i \(0.0904037\pi\)
\(458\) −274.910 476.159i −0.600241 1.03965i
\(459\) −103.890 59.9808i −0.226339 0.130677i
\(460\) −371.629 371.629i −0.807889 0.807889i
\(461\) 457.719 122.645i 0.992882 0.266042i 0.274421 0.961610i \(-0.411514\pi\)
0.718461 + 0.695568i \(0.244847\pi\)
\(462\) 99.3321 + 370.713i 0.215005 + 0.802408i
\(463\) 266.154 266.154i 0.574846 0.574846i −0.358633 0.933479i \(-0.616757\pi\)
0.933479 + 0.358633i \(0.116757\pi\)
\(464\) 13.0314 22.5710i 0.0280849 0.0486444i
\(465\) −236.260 + 136.405i −0.508087 + 0.293344i
\(466\) −548.562 146.987i −1.17717 0.315422i
\(467\) 231.396i 0.495494i 0.968825 + 0.247747i \(0.0796901\pi\)
−0.968825 + 0.247747i \(0.920310\pi\)
\(468\) −71.4257 + 31.3428i −0.152619 + 0.0669717i
\(469\) 323.841 0.690492
\(470\) −48.6283 + 181.483i −0.103465 + 0.386135i
\(471\) 105.043 + 181.940i 0.223022 + 0.386285i
\(472\) 108.080 + 62.3998i 0.228982 + 0.132203i
\(473\) −800.410 800.410i −1.69220 1.69220i
\(474\) 274.048 73.4310i 0.578161 0.154918i
\(475\) 1.55989 + 5.82159i 0.00328398 + 0.0122560i
\(476\) −266.815 + 266.815i −0.560536 + 0.560536i
\(477\) −13.3619 + 23.1435i −0.0280124 + 0.0485189i
\(478\) −528.962 + 305.397i −1.10662 + 0.638905i
\(479\) −81.0183 21.7088i −0.169140 0.0453210i 0.173255 0.984877i \(-0.444572\pi\)
−0.342395 + 0.939556i \(0.611238\pi\)
\(480\) 61.1420i 0.127379i
\(481\) 17.3018 + 6.74824i 0.0359705 + 0.0140296i
\(482\) 157.406 0.326569
\(483\) 154.271 575.745i 0.319401 1.19202i
\(484\) −246.592 427.109i −0.509487 0.882457i
\(485\) −722.534 417.155i −1.48976 0.860114i
\(486\) −15.5885 15.5885i −0.0320750 0.0320750i
\(487\) −51.6346 + 13.8354i −0.106026 + 0.0284095i −0.311442 0.950265i \(-0.600812\pi\)
0.205416 + 0.978675i \(0.434145\pi\)
\(488\) −65.5957 244.806i −0.134417 0.501652i
\(489\) 231.852 231.852i 0.474135 0.474135i
\(490\) 78.4710 135.916i 0.160145 0.277379i
\(491\) −755.689 + 436.297i −1.53908 + 0.888589i −0.540188 + 0.841544i \(0.681647\pi\)
−0.998893 + 0.0470443i \(0.985020\pi\)
\(492\) −139.866 37.4770i −0.284280 0.0761727i
\(493\) 150.425i 0.305122i
\(494\) 0.873189 7.89995i 0.00176759 0.0159918i
\(495\) −358.928 −0.725108
\(496\) 26.1308 97.5213i 0.0526830 0.196616i
\(497\) 36.2414 + 62.7720i 0.0729204 + 0.126302i
\(498\) −102.702 59.2950i −0.206229 0.119066i
\(499\) 178.607 + 178.607i 0.357929 + 0.357929i 0.863049 0.505120i \(-0.168552\pi\)
−0.505120 + 0.863049i \(0.668552\pi\)
\(500\) −133.319 + 35.7228i −0.266638 + 0.0714455i
\(501\) 25.4197 + 94.8678i 0.0507380 + 0.189357i
\(502\) −87.6429 + 87.6429i −0.174587 + 0.174587i
\(503\) 290.935 503.915i 0.578401 1.00182i −0.417262 0.908786i \(-0.637010\pi\)
0.995663 0.0930331i \(-0.0296562\pi\)
\(504\) −60.0526 + 34.6714i −0.119152 + 0.0687924i
\(505\) 230.582 + 61.7843i 0.456599 + 0.122345i
\(506\) 1141.80i 2.25652i
\(507\) −87.4626 279.344i −0.172510 0.550975i
\(508\) 318.376 0.626725
\(509\) −80.3135 + 299.734i −0.157787 + 0.588868i 0.841064 + 0.540936i \(0.181930\pi\)
−0.998851 + 0.0479323i \(0.984737\pi\)
\(510\) −176.445 305.612i −0.345971 0.599239i
\(511\) −59.3203 34.2486i −0.116087 0.0670227i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 2.16984 0.581408i 0.00422972 0.00113335i
\(514\) −64.2041 239.613i −0.124911 0.466173i
\(515\) −291.151 + 291.151i −0.565343 + 0.565343i
\(516\) 102.260 177.119i 0.198178 0.343254i
\(517\) 353.499 204.093i 0.683750 0.394763i
\(518\) 15.9474 + 4.27311i 0.0307866 + 0.00824924i
\(519\) 563.773i 1.08627i
\(520\) −228.063 25.2080i −0.438583 0.0484770i
\(521\) 400.878 0.769440 0.384720 0.923033i \(-0.374298\pi\)
0.384720 + 0.923033i \(0.374298\pi\)
\(522\) −7.15473 + 26.7018i −0.0137064 + 0.0511529i
\(523\) −255.340 442.262i −0.488222 0.845626i 0.511686 0.859173i \(-0.329021\pi\)
−0.999908 + 0.0135467i \(0.995688\pi\)
\(524\) −153.965 88.8918i −0.293826 0.169641i
\(525\) 139.532 + 139.532i 0.265776 + 0.265776i
\(526\) −173.982 + 46.6183i −0.330764 + 0.0886279i
\(527\) 150.818 + 562.859i 0.286181 + 1.06804i
\(528\) 93.9266 93.9266i 0.177891 0.177891i
\(529\) 622.150 1077.60i 1.17609 2.03704i
\(530\) −68.0811 + 39.3066i −0.128455 + 0.0741635i
\(531\) −127.860 34.2599i −0.240790 0.0645195i
\(532\) 7.06591i 0.0132818i
\(533\) 197.456 506.257i 0.370462 0.949826i
\(534\) 147.267 0.275780
\(535\) 152.599 569.508i 0.285232 1.06450i
\(536\) −56.0417 97.0671i −0.104555 0.181095i
\(537\) 211.343 + 122.019i 0.393562 + 0.227223i
\(538\) 208.253 + 208.253i 0.387087 + 0.387087i
\(539\) −329.342 + 88.2469i −0.611024 + 0.163723i
\(540\) −16.7846 62.6411i −0.0310826 0.116002i
\(541\) 75.0411 75.0411i 0.138708 0.138708i −0.634343 0.773051i \(-0.718729\pi\)
0.773051 + 0.634343i \(0.218729\pi\)
\(542\) −2.67953 + 4.64108i −0.00494378 + 0.00856288i
\(543\) 84.1221 48.5679i 0.154921 0.0894437i
\(544\) 126.148 + 33.8011i 0.231889 + 0.0621345i
\(545\) 890.761i 1.63442i
\(546\) −104.568 238.294i −0.191516 0.436437i
\(547\) −328.719 −0.600950 −0.300475 0.953790i \(-0.597145\pi\)
−0.300475 + 0.953790i \(0.597145\pi\)
\(548\) 56.9662 212.601i 0.103953 0.387957i
\(549\) 134.408 + 232.802i 0.244823 + 0.424046i
\(550\) −327.358 189.000i −0.595196 0.343637i
\(551\) −1.99181 1.99181i −0.00361491 0.00361491i
\(552\) −199.269 + 53.3941i −0.360995 + 0.0967284i
\(553\) 244.985 + 914.295i 0.443010 + 1.65334i
\(554\) −68.7460 + 68.7460i −0.124090 + 0.124090i
\(555\) −7.72026 + 13.3719i −0.0139104 + 0.0240935i
\(556\) 429.783 248.135i 0.772991 0.446286i
\(557\) −331.165 88.7354i −0.594551 0.159309i −0.0510186 0.998698i \(-0.516247\pi\)
−0.543532 + 0.839388i \(0.682913\pi\)
\(558\) 107.086i 0.191910i
\(559\) 618.505 + 454.459i 1.10645 + 0.812986i
\(560\) −203.985 −0.364259
\(561\) −198.427 + 740.538i −0.353702 + 1.32003i
\(562\) −19.5583 33.8760i −0.0348013 0.0602776i
\(563\) −314.882 181.797i −0.559293 0.322908i 0.193569 0.981087i \(-0.437994\pi\)
−0.752862 + 0.658179i \(0.771327\pi\)
\(564\) 52.1495 + 52.1495i 0.0924636 + 0.0924636i
\(565\) −185.059 + 49.5865i −0.327539 + 0.0877637i
\(566\) −46.2937 172.770i −0.0817910 0.305248i
\(567\) 52.0071 52.0071i 0.0917233 0.0917233i
\(568\) 12.5434 21.7258i 0.0220835 0.0382497i
\(569\) 548.662 316.770i 0.964256 0.556714i 0.0667758 0.997768i \(-0.478729\pi\)
0.897480 + 0.441054i \(0.145395\pi\)
\(570\) 6.38302 + 1.71032i 0.0111983 + 0.00300057i
\(571\) 54.2364i 0.0949849i −0.998872 0.0474925i \(-0.984877\pi\)
0.998872 0.0474925i \(-0.0151230\pi\)
\(572\) 311.627 + 389.076i 0.544803 + 0.680204i
\(573\) −279.264 −0.487371
\(574\) 125.033 466.629i 0.217827 0.812942i
\(575\) 293.532 + 508.413i 0.510491 + 0.884196i
\(576\) 20.7846 + 12.0000i 0.0360844 + 0.0208333i
\(577\) −704.420 704.420i −1.22083 1.22083i −0.967337 0.253495i \(-0.918420\pi\)
−0.253495 0.967337i \(-0.581580\pi\)
\(578\) −333.299 + 89.3071i −0.576641 + 0.154511i
\(579\) −75.2257 280.746i −0.129923 0.484881i
\(580\) −57.5015 + 57.5015i −0.0991405 + 0.0991405i
\(581\) 197.823 342.640i 0.340488 0.589742i
\(582\) −283.616 + 163.746i −0.487312 + 0.281350i
\(583\) 164.970 + 44.2035i 0.282967 + 0.0758207i
\(584\) 23.7073i 0.0405947i
\(585\) 240.575 36.7816i 0.411240 0.0628745i
\(586\) −526.959 −0.899248
\(587\) 243.773 909.773i 0.415286 1.54987i −0.368975 0.929439i \(-0.620291\pi\)
0.784262 0.620430i \(-0.213042\pi\)
\(588\) −30.8022 53.3509i −0.0523846 0.0907329i
\(589\) −9.44995 5.45593i −0.0160441 0.00926304i
\(590\) −275.342 275.342i −0.466681 0.466681i
\(591\) −338.282 + 90.6424i −0.572389 + 0.153371i
\(592\) −1.47895 5.51952i −0.00249823 0.00932351i
\(593\) −457.589 + 457.589i −0.771650 + 0.771650i −0.978395 0.206745i \(-0.933713\pi\)
0.206745 + 0.978395i \(0.433713\pi\)
\(594\) −70.4449 + 122.014i −0.118594 + 0.205411i
\(595\) 1019.60 588.666i 1.71361 0.989354i
\(596\) 266.818 + 71.4937i 0.447682 + 0.119956i
\(597\) 161.655i 0.270779i
\(598\) −117.007 765.300i −0.195664 1.27977i
\(599\) −78.9882 −0.131867 −0.0659334 0.997824i \(-0.521002\pi\)
−0.0659334 + 0.997824i \(0.521002\pi\)
\(600\) 17.6765 65.9696i 0.0294608 0.109949i
\(601\) 182.344 + 315.829i 0.303401 + 0.525506i 0.976904 0.213678i \(-0.0685445\pi\)
−0.673503 + 0.739185i \(0.735211\pi\)
\(602\) 590.915 + 341.165i 0.981587 + 0.566719i
\(603\) 84.0626 + 84.0626i 0.139407 + 0.139407i
\(604\) 53.6549 14.3768i 0.0888325 0.0238026i
\(605\) 398.271 + 1486.37i 0.658298 + 2.45680i
\(606\) 66.2581 66.2581i 0.109337 0.109337i
\(607\) −295.511 + 511.839i −0.486838 + 0.843228i −0.999886 0.0151322i \(-0.995183\pi\)
0.513048 + 0.858360i \(0.328516\pi\)
\(608\) −2.11792 + 1.22278i −0.00348341 + 0.00201115i
\(609\) −89.0840 23.8700i −0.146279 0.0391954i
\(610\) 790.774i 1.29635i
\(611\) −216.021 + 173.020i −0.353554 + 0.283175i
\(612\) −138.520 −0.226339
\(613\) −112.817 + 421.040i −0.184041 + 0.686852i 0.810792 + 0.585334i \(0.199037\pi\)
−0.994834 + 0.101518i \(0.967630\pi\)
\(614\) 259.830 + 450.039i 0.423176 + 0.732962i
\(615\) 391.266 + 225.898i 0.636206 + 0.367313i
\(616\) 313.363 + 313.363i 0.508706 + 0.508706i
\(617\) −288.834 + 77.3930i −0.468127 + 0.125434i −0.485169 0.874420i \(-0.661242\pi\)
0.0170417 + 0.999855i \(0.494575\pi\)
\(618\) 41.8314 + 156.117i 0.0676883 + 0.252616i
\(619\) 84.5481 84.5481i 0.136588 0.136588i −0.635507 0.772095i \(-0.719209\pi\)
0.772095 + 0.635507i \(0.219209\pi\)
\(620\) −157.507 + 272.810i −0.254043 + 0.440016i
\(621\) 189.498 109.406i 0.305149 0.176178i
\(622\) 487.450 + 130.612i 0.783682 + 0.209987i
\(623\) 491.319i 0.788635i
\(624\) −53.3299 + 72.5804i −0.0854647 + 0.116315i
\(625\) 779.173 1.24668
\(626\) 7.17966 26.7948i 0.0114691 0.0428033i
\(627\) −7.17821 12.4330i −0.0114485 0.0198294i
\(628\) 210.086 + 121.293i 0.334532 + 0.193142i
\(629\) 23.3208 + 23.3208i 0.0370759 + 0.0370759i
\(630\) 208.987 55.9978i 0.331725 0.0888854i
\(631\) −195.299 728.867i −0.309508 1.15510i −0.928995 0.370092i \(-0.879326\pi\)
0.619488 0.785006i \(-0.287340\pi\)
\(632\) 231.653 231.653i 0.366539 0.366539i
\(633\) −274.055 + 474.677i −0.432946 + 0.749885i
\(634\) 242.142 139.801i 0.381927 0.220506i
\(635\) −959.529 257.105i −1.51107 0.404890i
\(636\) 30.8580i 0.0485189i
\(637\) 211.702 92.8981i 0.332341 0.145837i
\(638\) 176.668 0.276909
\(639\) −6.88680 + 25.7019i −0.0107775 + 0.0402221i
\(640\) 35.3003 + 61.1420i 0.0551568 + 0.0955343i
\(641\) 326.603 + 188.565i 0.509522 + 0.294172i 0.732637 0.680620i \(-0.238289\pi\)
−0.223115 + 0.974792i \(0.571623\pi\)
\(642\) −163.649 163.649i −0.254905 0.254905i
\(643\) −1166.74 + 312.627i −1.81452 + 0.486200i −0.996086 0.0883945i \(-0.971826\pi\)
−0.818438 + 0.574595i \(0.805160\pi\)
\(644\) −178.136 664.814i −0.276609 1.03232i
\(645\) −451.226 + 451.226i −0.699575 + 0.699575i
\(646\) 7.05746 12.2239i 0.0109249 0.0189224i
\(647\) 219.028 126.456i 0.338529 0.195450i −0.321093 0.947048i \(-0.604050\pi\)
0.659621 + 0.751598i \(0.270717\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) 845.962i 1.30349i
\(650\) 238.783 + 93.1328i 0.367358 + 0.143281i
\(651\) −357.266 −0.548795
\(652\) 97.9922 365.712i 0.150295 0.560908i
\(653\) −216.293 374.631i −0.331230 0.573707i 0.651523 0.758629i \(-0.274130\pi\)
−0.982753 + 0.184921i \(0.940797\pi\)
\(654\) −302.806 174.825i −0.463006 0.267316i
\(655\) 392.239 + 392.239i 0.598837 + 0.598837i
\(656\) −161.503 + 43.2747i −0.246194 + 0.0659675i
\(657\) −6.50811 24.2886i −0.00990580 0.0369690i
\(658\) −173.984 + 173.984i −0.264413 + 0.264413i
\(659\) −604.428 + 1046.90i −0.917190 + 1.58862i −0.113527 + 0.993535i \(0.536215\pi\)
−0.803663 + 0.595085i \(0.797118\pi\)
\(660\) −358.928 + 207.227i −0.543831 + 0.313981i
\(661\) −1018.51 272.908i −1.54086 0.412872i −0.614316 0.789060i \(-0.710568\pi\)
−0.926543 + 0.376188i \(0.877235\pi\)
\(662\) 389.066i 0.587713i
\(663\) 57.1098 516.687i 0.0861385 0.779316i
\(664\) −136.936 −0.206229
\(665\) −5.70608 + 21.2954i −0.00858057 + 0.0320231i
\(666\) 3.03043 + 5.24885i 0.00455019 + 0.00788116i
\(667\) −237.620 137.190i −0.356251 0.205682i
\(668\) 80.1917 + 80.1917i 0.120047 + 0.120047i
\(669\) −114.258 + 30.6154i −0.170790 + 0.0457630i
\(670\) 90.5131 + 337.799i 0.135094 + 0.504178i
\(671\) 1214.79 1214.79i 1.81042 1.81042i
\(672\) −40.0351 + 69.3428i −0.0595760 + 0.103189i
\(673\) 688.514 397.514i 1.02305 0.590659i 0.108065 0.994144i \(-0.465534\pi\)
0.914986 + 0.403484i \(0.132201\pi\)
\(674\) 855.067 + 229.114i 1.26865 + 0.339932i
\(675\) 72.4397i 0.107318i
\(676\) −248.742 228.848i −0.367962 0.338532i
\(677\) 642.236 0.948649 0.474325 0.880350i \(-0.342692\pi\)
0.474325 + 0.880350i \(0.342692\pi\)
\(678\) −19.4642 + 72.6412i −0.0287082 + 0.107140i
\(679\) −546.297 946.214i −0.804561 1.39354i
\(680\) −352.890 203.741i −0.518956 0.299619i
\(681\) −30.8195 30.8195i −0.0452562 0.0452562i
\(682\) 661.055 177.129i 0.969288 0.259720i
\(683\) 168.964 + 630.582i 0.247385 + 0.923253i 0.972170 + 0.234277i \(0.0752724\pi\)
−0.724785 + 0.688975i \(0.758061\pi\)
\(684\) 1.83417 1.83417i 0.00268153 0.00268153i
\(685\) −343.372 + 594.737i −0.501272 + 0.868229i
\(686\) −312.437 + 180.386i −0.455448 + 0.262953i
\(687\) 650.445 + 174.286i 0.946790 + 0.253692i
\(688\) 236.159i 0.343254i
\(689\) −115.102 12.7223i −0.167057 0.0184649i
\(690\) 643.681 0.932870
\(691\) −199.113 + 743.100i −0.288152 + 1.07540i 0.658353 + 0.752709i \(0.271253\pi\)
−0.946505 + 0.322689i \(0.895413\pi\)
\(692\) 325.495 + 563.773i 0.470368 + 0.814701i
\(693\) −407.071 235.022i −0.587403 0.339138i
\(694\) 105.688 + 105.688i 0.152288 + 0.152288i
\(695\) −1495.67 + 400.764i −2.15204 + 0.576638i
\(696\) 8.26157 + 30.8326i 0.0118701 + 0.0442997i
\(697\) 682.375 682.375i 0.979017 0.979017i
\(698\) 306.359 530.629i 0.438909 0.760213i
\(699\) 602.363 347.775i 0.861750 0.497532i
\(700\) 220.092 + 58.9734i 0.314417 + 0.0842477i
\(701\) 415.401i 0.592584i 0.955097 + 0.296292i \(0.0957502\pi\)
−0.955097 + 0.296292i \(0.904250\pi\)
\(702\) 34.7128 89.0001i 0.0494485 0.126781i
\(703\) −0.617590 −0.000878507
\(704\) 39.6980 148.155i 0.0563893 0.210448i
\(705\) −115.056 199.283i −0.163200 0.282670i
\(706\) −720.363 415.902i −1.02034 0.589096i
\(707\) 221.054 + 221.054i 0.312665 + 0.312665i
\(708\) −147.640 + 39.5599i −0.208530 + 0.0558756i
\(709\) 81.1586 + 302.888i 0.114469 + 0.427204i 0.999247 0.0388092i \(-0.0123565\pi\)
−0.884778 + 0.466014i \(0.845690\pi\)
\(710\) −55.3483 + 55.3483i −0.0779553 + 0.0779553i
\(711\) −173.740 + 300.926i −0.244359 + 0.423243i
\(712\) 147.267 85.0245i 0.206835 0.119416i
\(713\) −1026.67 275.095i −1.43993 0.385828i
\(714\) 462.137i 0.647251i
\(715\) −624.989 1424.26i −0.874111 1.99197i
\(716\) 281.790 0.393562
\(717\) 193.614 722.576i 0.270033 1.00778i
\(718\) 172.896 + 299.464i 0.240802 + 0.417081i
\(719\) 205.104 + 118.417i 0.285263 + 0.164697i 0.635804 0.771851i \(-0.280669\pi\)
−0.350541 + 0.936547i \(0.614002\pi\)
\(720\) −52.9505 52.9505i −0.0735423 0.0735423i
\(721\) −520.846 + 139.560i −0.722393 + 0.193565i
\(722\) −132.067 492.880i −0.182918 0.682659i
\(723\) −136.318 + 136.318i −0.188545 + 0.188545i
\(724\) 56.0814 97.1359i 0.0774605 0.134166i
\(725\) 78.6658 45.4177i 0.108504 0.0626451i
\(726\) 583.442 + 156.333i 0.803639 + 0.215334i
\(727\) 919.030i 1.26414i −0.774911 0.632070i \(-0.782206\pi\)
0.774911 0.632070i \(-0.217794\pi\)
\(728\) −242.147 177.922i −0.332619 0.244399i
\(729\) 27.0000 0.0370370
\(730\) 19.1449 71.4496i 0.0262258 0.0978762i
\(731\) 681.514 + 1180.42i 0.932303 + 1.61480i
\(732\) 268.816 + 155.201i 0.367235 + 0.212023i
\(733\) 709.566 + 709.566i 0.968030 + 0.968030i 0.999505 0.0314750i \(-0.0100205\pi\)
−0.0314750 + 0.999505i \(0.510020\pi\)
\(734\) −471.587 + 126.361i −0.642489 + 0.172154i
\(735\) 49.7486 + 185.664i 0.0676852 + 0.252605i
\(736\) −168.442 + 168.442i −0.228862 + 0.228862i
\(737\) 379.882 657.976i 0.515444 0.892776i
\(738\) 153.584 88.6715i 0.208108 0.120151i
\(739\) 118.782 + 31.8276i 0.160734 + 0.0430685i 0.338289 0.941042i \(-0.390152\pi\)
−0.177555 + 0.984111i \(0.556819\pi\)
\(740\) 17.8292i 0.0240935i
\(741\) 6.08536 + 7.59776i 0.00821236 + 0.0102534i
\(742\) −102.950 −0.138747
\(743\) 344.461 1285.55i 0.463609 1.73021i −0.197852 0.980232i \(-0.563396\pi\)
0.661461 0.749980i \(-0.269937\pi\)
\(744\) 61.8260 + 107.086i 0.0830995 + 0.143933i
\(745\) −746.408 430.939i −1.00189 0.578441i
\(746\) −446.582 446.582i −0.598635 0.598635i
\(747\) 140.293 37.5915i 0.187809 0.0503233i
\(748\) 229.123 + 855.100i 0.306315 + 1.14318i
\(749\) 545.974 545.974i 0.728938 0.728938i
\(750\) 84.5209 146.395i 0.112695 0.195193i
\(751\) −1177.85 + 680.031i −1.56837 + 0.905501i −0.572014 + 0.820244i \(0.693838\pi\)
−0.996359 + 0.0852568i \(0.972829\pi\)
\(752\) 82.2580 + 22.0410i 0.109386 + 0.0293098i
\(753\) 151.802i 0.201596i
\(754\) −118.414 + 18.1043i −0.157047 + 0.0240110i
\(755\) −173.316 −0.229558
\(756\) 21.9808 82.0334i 0.0290751 0.108510i
\(757\) 541.869 + 938.545i 0.715812 + 1.23982i 0.962646 + 0.270764i \(0.0872764\pi\)
−0.246834 + 0.969058i \(0.579390\pi\)
\(758\) 274.559 + 158.517i 0.362215 + 0.209125i
\(759\) −988.825 988.825i −1.30280 1.30280i
\(760\) 7.37047 1.97491i 0.00969799 0.00259857i
\(761\) −301.591 1125.55i −0.396309 1.47905i −0.819538 0.573024i \(-0.805770\pi\)
0.423229 0.906023i \(-0.360897\pi\)
\(762\) −275.722 + 275.722i −0.361840 + 0.361840i
\(763\) 583.261 1010.24i 0.764431 1.32403i
\(764\) −279.264 + 161.233i −0.365528 + 0.211038i
\(765\) 417.473 + 111.862i 0.545717 + 0.146224i
\(766\) 402.745i 0.525776i
\(767\) −86.6910 567.014i −0.113026 0.739263i
\(768\) 27.7128 0.0360844