Properties

Label 78.3.l.c.37.1
Level $78$
Weight $3$
Character 78.37
Analytic conductor $2.125$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 78.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.12534606201\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 82x^{5} + 5053x^{4} - 6736x^{3} + 6728x^{2} + 275384x + 5635876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.1
Root \(-4.04651 + 4.04651i\) of defining polynomial
Character \(\chi\) \(=\) 78.37
Dual form 78.3.l.c.19.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.866025 - 1.50000i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-5.04651 - 5.04651i) q^{5} +(2.36603 - 0.633975i) q^{6} +(-1.34715 - 5.02764i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.866025 - 1.50000i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-5.04651 - 5.04651i) q^{5} +(2.36603 - 0.633975i) q^{6} +(-1.34715 - 5.02764i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +(8.74082 - 5.04651i) q^{10} +(-7.32323 - 1.96225i) q^{11} +3.46410i q^{12} +(12.9213 - 1.42820i) q^{13} +7.36098 q^{14} +(-3.19936 + 11.9402i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-13.9968 - 8.08105i) q^{17} +(-3.00000 - 3.00000i) q^{18} +(9.87664 - 2.64644i) q^{19} +(3.69431 + 13.7873i) q^{20} +(-6.37479 + 6.37479i) q^{21} +(5.36098 - 9.28549i) q^{22} +(-8.29191 + 4.78733i) q^{23} +(-4.73205 - 1.26795i) q^{24} +25.9346i q^{25} +(-2.77857 + 18.1736i) q^{26} +5.19615 q^{27} +(-2.69431 + 10.0553i) q^{28} +(16.5880 + 28.7312i) q^{29} +(-15.1395 - 8.74082i) q^{30} +(-34.2312 - 34.2312i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(3.39872 + 12.6842i) q^{33} +(16.1621 - 16.1621i) q^{34} +(-18.5736 + 32.1705i) q^{35} +(5.19615 - 3.00000i) q^{36} +(63.2267 + 16.9415i) q^{37} +14.4604i q^{38} +(-13.3325 - 18.1451i) q^{39} -20.1861 q^{40} +(14.0962 - 52.6079i) q^{41} +(-6.37479 - 11.0415i) q^{42} +(-40.7432 - 23.5231i) q^{43} +(10.7220 + 10.7220i) q^{44} +(20.6810 - 5.54146i) q^{45} +(-3.50457 - 13.0792i) q^{46} +(47.8214 - 47.8214i) q^{47} +(3.46410 - 6.00000i) q^{48} +(18.9729 - 10.9540i) q^{49} +(-35.4274 - 9.49273i) q^{50} +27.9936i q^{51} +(-23.8086 - 10.4476i) q^{52} +67.5177 q^{53} +(-1.90192 + 7.09808i) q^{54} +(27.0543 + 46.8594i) q^{55} +(-12.7496 - 7.36098i) q^{56} +(-12.5231 - 12.5231i) q^{57} +(-45.3192 + 12.1432i) q^{58} +(-19.4918 - 72.7442i) q^{59} +(17.4816 - 17.4816i) q^{60} +(-35.2597 + 61.0716i) q^{61} +(59.2902 - 34.2312i) q^{62} +(15.0829 + 4.04146i) q^{63} -8.00000i q^{64} +(-72.4150 - 58.0001i) q^{65} -18.5710 q^{66} +(11.1841 - 41.7395i) q^{67} +(16.1621 + 27.9936i) q^{68} +(14.3620 + 8.29191i) q^{69} +(-37.1473 - 37.1473i) q^{70} +(-106.797 + 28.6161i) q^{71} +(2.19615 + 8.19615i) q^{72} +(-36.8385 + 36.8385i) q^{73} +(-46.2851 + 80.1682i) q^{74} +(38.9019 - 22.4600i) q^{75} +(-19.7533 - 5.29288i) q^{76} +39.4621i q^{77} +(29.6667 - 11.5709i) q^{78} -13.3867 q^{79} +(7.38861 - 27.5747i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(66.7041 + 38.5116i) q^{82} +(93.1237 + 93.1237i) q^{83} +(17.4163 - 4.66667i) q^{84} +(29.8539 + 111.416i) q^{85} +(47.0461 - 47.0461i) q^{86} +(28.7312 - 49.7639i) q^{87} +(-18.5710 + 10.7220i) q^{88} +(48.6137 + 13.0260i) q^{89} +30.2791i q^{90} +(-24.5875 - 63.0397i) q^{91} +19.1493 q^{92} +(-21.7017 + 80.9919i) q^{93} +(47.8214 + 82.8291i) q^{94} +(-63.1979 - 36.4873i) q^{95} +(6.92820 + 6.92820i) q^{96} +(-52.5419 + 14.0786i) q^{97} +(8.01888 + 29.9269i) q^{98} +(16.0829 - 16.0829i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - 6 q^{5} + 12 q^{6} + 10 q^{7} + 16 q^{8} - 12 q^{9} - 6 q^{10} + 24 q^{11} + 4 q^{14} - 12 q^{15} + 16 q^{16} - 84 q^{17} - 24 q^{18} + 10 q^{19} - 12 q^{20} + 18 q^{21} - 12 q^{22} - 12 q^{23} - 24 q^{24} + 26 q^{26} + 20 q^{28} + 36 q^{29} - 18 q^{30} - 94 q^{31} - 16 q^{32} + 60 q^{34} - 204 q^{35} + 140 q^{37} + 66 q^{39} - 24 q^{40} + 72 q^{41} + 18 q^{42} - 222 q^{43} - 24 q^{44} - 84 q^{46} + 300 q^{47} + 42 q^{49} - 62 q^{50} + 44 q^{52} + 84 q^{53} - 36 q^{54} + 396 q^{55} + 36 q^{56} + 24 q^{57} - 66 q^{58} - 60 q^{59} - 12 q^{60} - 90 q^{61} + 198 q^{62} - 24 q^{63} - 108 q^{65} + 72 q^{66} + 304 q^{67} + 60 q^{68} - 216 q^{69} - 408 q^{70} - 192 q^{71} - 24 q^{72} + 16 q^{73} - 46 q^{74} + 312 q^{75} - 20 q^{76} + 114 q^{78} - 96 q^{79} - 24 q^{80} - 36 q^{81} + 114 q^{82} - 12 q^{84} - 390 q^{85} + 168 q^{86} + 30 q^{87} + 72 q^{88} + 354 q^{89} - 218 q^{91} - 288 q^{92} - 42 q^{93} + 300 q^{94} - 576 q^{95} - 460 q^{97} + 58 q^{98} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(67\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) −0.866025 1.50000i −0.288675 0.500000i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −5.04651 5.04651i −1.00930 1.00930i −0.999956 0.00934664i \(-0.997025\pi\)
−0.00934664 0.999956i \(-0.502975\pi\)
\(6\) 2.36603 0.633975i 0.394338 0.105662i
\(7\) −1.34715 5.02764i −0.192450 0.718235i −0.992912 0.118851i \(-0.962079\pi\)
0.800462 0.599384i \(-0.204588\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −1.50000 + 2.59808i −0.166667 + 0.288675i
\(10\) 8.74082 5.04651i 0.874082 0.504651i
\(11\) −7.32323 1.96225i −0.665748 0.178387i −0.0899095 0.995950i \(-0.528658\pi\)
−0.575839 + 0.817563i \(0.695324\pi\)
\(12\) 3.46410i 0.288675i
\(13\) 12.9213 1.42820i 0.993947 0.109862i
\(14\) 7.36098 0.525784
\(15\) −3.19936 + 11.9402i −0.213291 + 0.796012i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −13.9968 8.08105i −0.823341 0.475356i 0.0282265 0.999602i \(-0.491014\pi\)
−0.851567 + 0.524246i \(0.824347\pi\)
\(18\) −3.00000 3.00000i −0.166667 0.166667i
\(19\) 9.87664 2.64644i 0.519823 0.139286i 0.0106384 0.999943i \(-0.496614\pi\)
0.509185 + 0.860657i \(0.329947\pi\)
\(20\) 3.69431 + 13.7873i 0.184715 + 0.689367i
\(21\) −6.37479 + 6.37479i −0.303562 + 0.303562i
\(22\) 5.36098 9.28549i 0.243681 0.422068i
\(23\) −8.29191 + 4.78733i −0.360518 + 0.208145i −0.669308 0.742985i \(-0.733409\pi\)
0.308790 + 0.951130i \(0.400076\pi\)
\(24\) −4.73205 1.26795i −0.197169 0.0528312i
\(25\) 25.9346i 1.03738i
\(26\) −2.77857 + 18.1736i −0.106868 + 0.698984i
\(27\) 5.19615 0.192450
\(28\) −2.69431 + 10.0553i −0.0962252 + 0.359117i
\(29\) 16.5880 + 28.7312i 0.571999 + 0.990731i 0.996361 + 0.0852386i \(0.0271652\pi\)
−0.424362 + 0.905493i \(0.639501\pi\)
\(30\) −15.1395 8.74082i −0.504651 0.291361i
\(31\) −34.2312 34.2312i −1.10423 1.10423i −0.993894 0.110338i \(-0.964807\pi\)
−0.110338 0.993894i \(-0.535193\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) 3.39872 + 12.6842i 0.102992 + 0.384370i
\(34\) 16.1621 16.1621i 0.475356 0.475356i
\(35\) −18.5736 + 32.1705i −0.530676 + 0.919157i
\(36\) 5.19615 3.00000i 0.144338 0.0833333i
\(37\) 63.2267 + 16.9415i 1.70883 + 0.457879i 0.975137 0.221603i \(-0.0711289\pi\)
0.733692 + 0.679482i \(0.237796\pi\)
\(38\) 14.4604i 0.380537i
\(39\) −13.3325 18.1451i −0.341859 0.465259i
\(40\) −20.1861 −0.504651
\(41\) 14.0962 52.6079i 0.343811 1.28312i −0.550185 0.835043i \(-0.685443\pi\)
0.893995 0.448076i \(-0.147891\pi\)
\(42\) −6.37479 11.0415i −0.151781 0.262892i
\(43\) −40.7432 23.5231i −0.947515 0.547048i −0.0552070 0.998475i \(-0.517582\pi\)
−0.892308 + 0.451427i \(0.850915\pi\)
\(44\) 10.7220 + 10.7220i 0.243681 + 0.243681i
\(45\) 20.6810 5.54146i 0.459578 0.123144i
\(46\) −3.50457 13.0792i −0.0761864 0.284331i
\(47\) 47.8214 47.8214i 1.01748 1.01748i 0.0176317 0.999845i \(-0.494387\pi\)
0.999845 0.0176317i \(-0.00561265\pi\)
\(48\) 3.46410 6.00000i 0.0721688 0.125000i
\(49\) 18.9729 10.9540i 0.387202 0.223551i
\(50\) −35.4274 9.49273i −0.708547 0.189855i
\(51\) 27.9936i 0.548894i
\(52\) −23.8086 10.4476i −0.457857 0.200915i
\(53\) 67.5177 1.27392 0.636959 0.770897i \(-0.280192\pi\)
0.636959 + 0.770897i \(0.280192\pi\)
\(54\) −1.90192 + 7.09808i −0.0352208 + 0.131446i
\(55\) 27.0543 + 46.8594i 0.491896 + 0.851988i
\(56\) −12.7496 7.36098i −0.227671 0.131446i
\(57\) −12.5231 12.5231i −0.219703 0.219703i
\(58\) −45.3192 + 12.1432i −0.781365 + 0.209366i
\(59\) −19.4918 72.7442i −0.330369 1.23295i −0.908804 0.417224i \(-0.863003\pi\)
0.578435 0.815729i \(-0.303664\pi\)
\(60\) 17.4816 17.4816i 0.291361 0.291361i
\(61\) −35.2597 + 61.0716i −0.578028 + 1.00117i 0.417677 + 0.908596i \(0.362844\pi\)
−0.995705 + 0.0925789i \(0.970489\pi\)
\(62\) 59.2902 34.2312i 0.956293 0.552116i
\(63\) 15.0829 + 4.04146i 0.239412 + 0.0641501i
\(64\) 8.00000i 0.125000i
\(65\) −72.4150 58.0001i −1.11408 0.892310i
\(66\) −18.5710 −0.281378
\(67\) 11.1841 41.7395i 0.166926 0.622977i −0.830860 0.556481i \(-0.812151\pi\)
0.997787 0.0664962i \(-0.0211820\pi\)
\(68\) 16.1621 + 27.9936i 0.237678 + 0.411670i
\(69\) 14.3620 + 8.29191i 0.208145 + 0.120173i
\(70\) −37.1473 37.1473i −0.530676 0.530676i
\(71\) −106.797 + 28.6161i −1.50418 + 0.403044i −0.914498 0.404591i \(-0.867414\pi\)
−0.589682 + 0.807635i \(0.700747\pi\)
\(72\) 2.19615 + 8.19615i 0.0305021 + 0.113835i
\(73\) −36.8385 + 36.8385i −0.504638 + 0.504638i −0.912876 0.408238i \(-0.866143\pi\)
0.408238 + 0.912876i \(0.366143\pi\)
\(74\) −46.2851 + 80.1682i −0.625475 + 1.08335i
\(75\) 38.9019 22.4600i 0.518692 0.299467i
\(76\) −19.7533 5.29288i −0.259912 0.0696431i
\(77\) 39.4621i 0.512494i
\(78\) 29.6667 11.5709i 0.380342 0.148345i
\(79\) −13.3867 −0.169452 −0.0847259 0.996404i \(-0.527001\pi\)
−0.0847259 + 0.996404i \(0.527001\pi\)
\(80\) 7.38861 27.5747i 0.0923576 0.344683i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 66.7041 + 38.5116i 0.813465 + 0.469654i
\(83\) 93.1237 + 93.1237i 1.12197 + 1.12197i 0.991445 + 0.130528i \(0.0416671\pi\)
0.130528 + 0.991445i \(0.458333\pi\)
\(84\) 17.4163 4.66667i 0.207336 0.0555556i
\(85\) 29.8539 + 111.416i 0.351222 + 1.31078i
\(86\) 47.0461 47.0461i 0.547048 0.547048i
\(87\) 28.7312 49.7639i 0.330244 0.571999i
\(88\) −18.5710 + 10.7220i −0.211034 + 0.121840i
\(89\) 48.6137 + 13.0260i 0.546222 + 0.146360i 0.521369 0.853331i \(-0.325422\pi\)
0.0248529 + 0.999691i \(0.492088\pi\)
\(90\) 30.2791i 0.336434i
\(91\) −24.5875 63.0397i −0.270192 0.692744i
\(92\) 19.1493 0.208145
\(93\) −21.7017 + 80.9919i −0.233352 + 0.870881i
\(94\) 47.8214 + 82.8291i 0.508738 + 0.881160i
\(95\) −63.1979 36.4873i −0.665241 0.384077i
\(96\) 6.92820 + 6.92820i 0.0721688 + 0.0721688i
\(97\) −52.5419 + 14.0786i −0.541669 + 0.145140i −0.519271 0.854609i \(-0.673797\pi\)
−0.0223976 + 0.999749i \(0.507130\pi\)
\(98\) 8.01888 + 29.9269i 0.0818253 + 0.305376i
\(99\) 16.0829 16.0829i 0.162454 0.162454i
\(100\) 25.9346 44.9201i 0.259346 0.449201i
\(101\) 19.5286 11.2749i 0.193353 0.111632i −0.400198 0.916428i \(-0.631059\pi\)
0.593551 + 0.804796i \(0.297725\pi\)
\(102\) −38.2399 10.2464i −0.374901 0.100455i
\(103\) 109.385i 1.06199i 0.847374 + 0.530996i \(0.178182\pi\)
−0.847374 + 0.530996i \(0.821818\pi\)
\(104\) 22.9862 28.6990i 0.221021 0.275952i
\(105\) 64.3410 0.612771
\(106\) −24.7132 + 92.2309i −0.233143 + 0.870103i
\(107\) 16.4375 + 28.4706i 0.153621 + 0.266080i 0.932556 0.361025i \(-0.117573\pi\)
−0.778935 + 0.627105i \(0.784240\pi\)
\(108\) −9.00000 5.19615i −0.0833333 0.0481125i
\(109\) −150.086 150.086i −1.37693 1.37693i −0.849752 0.527183i \(-0.823248\pi\)
−0.527183 0.849752i \(-0.676752\pi\)
\(110\) −73.9136 + 19.8051i −0.671942 + 0.180046i
\(111\) −29.3436 109.512i −0.264357 0.986593i
\(112\) 14.7220 14.7220i 0.131446 0.131446i
\(113\) 59.3938 102.873i 0.525609 0.910382i −0.473946 0.880554i \(-0.657171\pi\)
0.999555 0.0298278i \(-0.00949589\pi\)
\(114\) 21.6906 12.5231i 0.190269 0.109852i
\(115\) 66.0046 + 17.6859i 0.573953 + 0.153790i
\(116\) 66.3519i 0.571999i
\(117\) −15.6714 + 35.7129i −0.133943 + 0.305238i
\(118\) 106.505 0.902584
\(119\) −21.7728 + 81.2573i −0.182965 + 0.682834i
\(120\) 17.4816 + 30.2791i 0.145680 + 0.252326i
\(121\) −55.0098 31.7599i −0.454626 0.262479i
\(122\) −70.5195 70.5195i −0.578028 0.578028i
\(123\) −91.1195 + 24.4154i −0.740809 + 0.198499i
\(124\) 25.0590 + 93.5214i 0.202089 + 0.754205i
\(125\) 4.71659 4.71659i 0.0377327 0.0377327i
\(126\) −11.0415 + 19.1244i −0.0876307 + 0.151781i
\(127\) −57.5499 + 33.2265i −0.453149 + 0.261626i −0.709159 0.705048i \(-0.750925\pi\)
0.256010 + 0.966674i \(0.417592\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) 81.4863i 0.631677i
\(130\) 105.735 77.6912i 0.813349 0.597625i
\(131\) −28.3277 −0.216242 −0.108121 0.994138i \(-0.534483\pi\)
−0.108121 + 0.994138i \(0.534483\pi\)
\(132\) 6.79745 25.3684i 0.0514958 0.192185i
\(133\) −26.6107 46.0911i −0.200080 0.346549i
\(134\) 52.9235 + 30.5554i 0.394952 + 0.228025i
\(135\) −26.2225 26.2225i −0.194240 0.194240i
\(136\) −44.1557 + 11.8315i −0.324674 + 0.0869962i
\(137\) 13.0272 + 48.6183i 0.0950892 + 0.354878i 0.997033 0.0769757i \(-0.0245264\pi\)
−0.901944 + 0.431854i \(0.857860\pi\)
\(138\) −16.5838 + 16.5838i −0.120173 + 0.120173i
\(139\) 74.1420 128.418i 0.533396 0.923868i −0.465844 0.884867i \(-0.654249\pi\)
0.999239 0.0390012i \(-0.0124176\pi\)
\(140\) 64.3410 37.1473i 0.459579 0.265338i
\(141\) −113.147 30.3175i −0.802458 0.215018i
\(142\) 156.361i 1.10114i
\(143\) −97.4283 14.8958i −0.681316 0.104167i
\(144\) −12.0000 −0.0833333
\(145\) 61.2810 228.704i 0.422628 1.57727i
\(146\) −36.8385 63.8062i −0.252319 0.437029i
\(147\) −32.8620 18.9729i −0.223551 0.129067i
\(148\) −92.5703 92.5703i −0.625475 0.625475i
\(149\) −40.4254 + 10.8320i −0.271312 + 0.0726977i −0.391910 0.920004i \(-0.628185\pi\)
0.120598 + 0.992701i \(0.461519\pi\)
\(150\) 16.4419 + 61.3620i 0.109613 + 0.409080i
\(151\) −2.57635 + 2.57635i −0.0170619 + 0.0170619i −0.715586 0.698524i \(-0.753840\pi\)
0.698524 + 0.715586i \(0.253840\pi\)
\(152\) 14.4604 25.0462i 0.0951343 0.164777i
\(153\) 41.9904 24.2432i 0.274447 0.158452i
\(154\) −53.9062 14.4441i −0.350040 0.0937929i
\(155\) 345.497i 2.22901i
\(156\) 4.94744 + 44.7607i 0.0317144 + 0.286928i
\(157\) 275.987 1.75788 0.878939 0.476934i \(-0.158252\pi\)
0.878939 + 0.476934i \(0.158252\pi\)
\(158\) 4.89987 18.2866i 0.0310118 0.115738i
\(159\) −58.4720 101.277i −0.367749 0.636959i
\(160\) 34.9633 + 20.1861i 0.218520 + 0.126163i
\(161\) 35.2395 + 35.2395i 0.218879 + 0.218879i
\(162\) 12.2942 3.29423i 0.0758903 0.0203347i
\(163\) −36.3840 135.787i −0.223214 0.833048i −0.983112 0.183005i \(-0.941418\pi\)
0.759898 0.650043i \(-0.225249\pi\)
\(164\) −77.0233 + 77.0233i −0.469654 + 0.469654i
\(165\) 46.8594 81.1628i 0.283996 0.491896i
\(166\) −161.295 + 93.1237i −0.971657 + 0.560986i
\(167\) 189.805 + 50.8582i 1.13656 + 0.304540i 0.777566 0.628801i \(-0.216454\pi\)
0.358992 + 0.933341i \(0.383121\pi\)
\(168\) 25.4992i 0.151781i
\(169\) 164.920 36.9085i 0.975861 0.218394i
\(170\) −163.125 −0.959556
\(171\) −7.93931 + 29.6299i −0.0464287 + 0.173274i
\(172\) 47.0461 + 81.4863i 0.273524 + 0.473758i
\(173\) 114.533 + 66.1255i 0.662039 + 0.382228i 0.793053 0.609152i \(-0.208490\pi\)
−0.131015 + 0.991380i \(0.541823\pi\)
\(174\) 57.4624 + 57.4624i 0.330244 + 0.330244i
\(175\) 130.390 34.9379i 0.745086 0.199645i
\(176\) −7.84902 29.2929i −0.0445967 0.166437i
\(177\) −92.2360 + 92.2360i −0.521107 + 0.521107i
\(178\) −35.5877 + 61.6398i −0.199931 + 0.346291i
\(179\) 30.6843 17.7156i 0.171421 0.0989697i −0.411835 0.911258i \(-0.635112\pi\)
0.583255 + 0.812289i \(0.301779\pi\)
\(180\) −41.3620 11.0829i −0.229789 0.0615718i
\(181\) 121.119i 0.669163i 0.942367 + 0.334582i \(0.108595\pi\)
−0.942367 + 0.334582i \(0.891405\pi\)
\(182\) 95.1135 10.5130i 0.522602 0.0577636i
\(183\) 122.143 0.667450
\(184\) −7.00914 + 26.1585i −0.0380932 + 0.142166i
\(185\) −233.579 404.570i −1.26259 2.18686i
\(186\) −102.694 59.2902i −0.552116 0.318764i
\(187\) 86.6447 + 86.6447i 0.463341 + 0.463341i
\(188\) −130.650 + 35.0077i −0.694949 + 0.186211i
\(189\) −7.00001 26.1244i −0.0370371 0.138224i
\(190\) 72.9747 72.9747i 0.384077 0.384077i
\(191\) −100.282 + 173.693i −0.525036 + 0.909389i 0.474539 + 0.880235i \(0.342615\pi\)
−0.999575 + 0.0291545i \(0.990719\pi\)
\(192\) −12.0000 + 6.92820i −0.0625000 + 0.0360844i
\(193\) 25.2721 + 6.77163i 0.130943 + 0.0350862i 0.323695 0.946161i \(-0.395075\pi\)
−0.192752 + 0.981247i \(0.561741\pi\)
\(194\) 76.9267i 0.396529i
\(195\) −24.2869 + 158.852i −0.124548 + 0.814626i
\(196\) −43.8160 −0.223551
\(197\) −24.5163 + 91.4962i −0.124448 + 0.464448i −0.999819 0.0190039i \(-0.993950\pi\)
0.875371 + 0.483452i \(0.160617\pi\)
\(198\) 16.0829 + 27.8565i 0.0812270 + 0.140689i
\(199\) 170.780 + 98.5996i 0.858188 + 0.495475i 0.863405 0.504511i \(-0.168327\pi\)
−0.00521676 + 0.999986i \(0.501661\pi\)
\(200\) 51.8692 + 51.8692i 0.259346 + 0.259346i
\(201\) −72.2949 + 19.3713i −0.359676 + 0.0963749i
\(202\) 8.25377 + 30.8035i 0.0408602 + 0.152492i
\(203\) 122.104 122.104i 0.601496 0.601496i
\(204\) 27.9936 48.4863i 0.137223 0.237678i
\(205\) −336.623 + 194.350i −1.64207 + 0.948047i
\(206\) −149.423 40.0378i −0.725354 0.194358i
\(207\) 28.7240i 0.138763i
\(208\) 30.7901 + 41.9043i 0.148029 + 0.201463i
\(209\) −77.5219 −0.370918
\(210\) −23.5504 + 87.8914i −0.112145 + 0.418531i
\(211\) 97.4174 + 168.732i 0.461694 + 0.799677i 0.999046 0.0436812i \(-0.0139086\pi\)
−0.537352 + 0.843358i \(0.680575\pi\)
\(212\) −116.944 67.5177i −0.551623 0.318480i
\(213\) 135.413 + 135.413i 0.635741 + 0.635741i
\(214\) −44.9081 + 12.0331i −0.209851 + 0.0562294i
\(215\) 86.9014 + 324.320i 0.404193 + 1.50847i
\(216\) 10.3923 10.3923i 0.0481125 0.0481125i
\(217\) −125.988 + 218.217i −0.580588 + 1.00561i
\(218\) 259.956 150.086i 1.19246 0.688467i
\(219\) 87.1609 + 23.3547i 0.397995 + 0.106642i
\(220\) 108.217i 0.491896i
\(221\) −192.398 84.4275i −0.870580 0.382025i
\(222\) 160.336 0.722236
\(223\) 106.021 395.676i 0.475431 1.77433i −0.144319 0.989531i \(-0.546099\pi\)
0.619750 0.784800i \(-0.287234\pi\)
\(224\) 14.7220 + 25.4992i 0.0657230 + 0.113836i
\(225\) −67.3801 38.9019i −0.299467 0.172897i
\(226\) 118.788 + 118.788i 0.525609 + 0.525609i
\(227\) 241.186 64.6255i 1.06249 0.284694i 0.315087 0.949063i \(-0.397966\pi\)
0.747405 + 0.664369i \(0.231300\pi\)
\(228\) 9.16753 + 34.2137i 0.0402085 + 0.150060i
\(229\) −174.256 + 174.256i −0.760945 + 0.760945i −0.976493 0.215548i \(-0.930846\pi\)
0.215548 + 0.976493i \(0.430846\pi\)
\(230\) −48.3187 + 83.6905i −0.210081 + 0.363872i
\(231\) 59.1931 34.1751i 0.256247 0.147944i
\(232\) 90.6384 + 24.2865i 0.390683 + 0.104683i
\(233\) 290.609i 1.24725i −0.781724 0.623624i \(-0.785660\pi\)
0.781724 0.623624i \(-0.214340\pi\)
\(234\) −43.0485 34.4793i −0.183968 0.147348i
\(235\) −482.663 −2.05388
\(236\) −38.9835 + 145.488i −0.165184 + 0.616476i
\(237\) 11.5932 + 20.0800i 0.0489165 + 0.0847259i
\(238\) −103.030 59.4844i −0.432899 0.249935i
\(239\) 215.875 + 215.875i 0.903243 + 0.903243i 0.995715 0.0924720i \(-0.0294769\pi\)
−0.0924720 + 0.995715i \(0.529477\pi\)
\(240\) −47.7607 + 12.7974i −0.199003 + 0.0533227i
\(241\) −31.0933 116.042i −0.129018 0.481502i 0.870933 0.491402i \(-0.163515\pi\)
−0.999951 + 0.00989998i \(0.996849\pi\)
\(242\) 63.5198 63.5198i 0.262479 0.262479i
\(243\) −7.79423 + 13.5000i −0.0320750 + 0.0555556i
\(244\) 122.143 70.5195i 0.500587 0.289014i
\(245\) −151.026 40.4674i −0.616434 0.165173i
\(246\) 133.408i 0.542310i
\(247\) 123.839 48.3013i 0.501374 0.195552i
\(248\) −136.925 −0.552116
\(249\) 59.0381 220.333i 0.237101 0.884872i
\(250\) 4.71659 + 8.16937i 0.0188663 + 0.0326775i
\(251\) −151.116 87.2471i −0.602057 0.347598i 0.167793 0.985822i \(-0.446336\pi\)
−0.769850 + 0.638224i \(0.779669\pi\)
\(252\) −22.0829 22.0829i −0.0876307 0.0876307i
\(253\) 70.1175 18.7879i 0.277144 0.0742606i
\(254\) −24.3235 90.7764i −0.0957617 0.357387i
\(255\) 141.270 141.270i 0.554000 0.554000i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −4.02596 + 2.32439i −0.0156652 + 0.00904433i −0.507812 0.861468i \(-0.669546\pi\)
0.492147 + 0.870512i \(0.336212\pi\)
\(258\) −111.312 29.8261i −0.431443 0.115605i
\(259\) 340.704i 1.31546i
\(260\) 67.4264 + 172.874i 0.259332 + 0.664901i
\(261\) −99.5278 −0.381333
\(262\) 10.3687 38.6964i 0.0395750 0.147696i
\(263\) −6.92157 11.9885i −0.0263177 0.0455837i 0.852567 0.522619i \(-0.175045\pi\)
−0.878884 + 0.477035i \(0.841711\pi\)
\(264\) 32.1659 + 18.5710i 0.121840 + 0.0703446i
\(265\) −340.729 340.729i −1.28577 1.28577i
\(266\) 72.7018 19.4804i 0.273315 0.0732345i
\(267\) −22.5617 84.2015i −0.0845008 0.315361i
\(268\) −61.1108 + 61.1108i −0.228025 + 0.228025i
\(269\) 230.126 398.590i 0.855487 1.48175i −0.0207059 0.999786i \(-0.506591\pi\)
0.876193 0.481961i \(-0.160075\pi\)
\(270\) 45.4186 26.2225i 0.168217 0.0971202i
\(271\) 143.260 + 38.3864i 0.528635 + 0.141647i 0.513258 0.858234i \(-0.328438\pi\)
0.0153773 + 0.999882i \(0.495105\pi\)
\(272\) 64.6484i 0.237678i
\(273\) −73.2662 + 91.4752i −0.268374 + 0.335074i
\(274\) −71.1821 −0.259789
\(275\) 50.8903 189.925i 0.185056 0.690637i
\(276\) −16.5838 28.7240i −0.0600863 0.104072i
\(277\) 323.280 + 186.646i 1.16707 + 0.673811i 0.952989 0.303004i \(-0.0979896\pi\)
0.214085 + 0.976815i \(0.431323\pi\)
\(278\) 148.284 + 148.284i 0.533396 + 0.533396i
\(279\) 140.282 37.5885i 0.502803 0.134726i
\(280\) 27.1937 + 101.488i 0.0971204 + 0.362458i
\(281\) −136.099 + 136.099i −0.484337 + 0.484337i −0.906514 0.422177i \(-0.861266\pi\)
0.422177 + 0.906514i \(0.361266\pi\)
\(282\) 82.8291 143.464i 0.293720 0.508738i
\(283\) −329.692 + 190.347i −1.16499 + 0.672606i −0.952494 0.304557i \(-0.901492\pi\)
−0.212493 + 0.977162i \(0.568158\pi\)
\(284\) 213.594 + 57.2322i 0.752090 + 0.201522i
\(285\) 126.396i 0.443494i
\(286\) 56.0093 127.637i 0.195837 0.446284i
\(287\) −283.483 −0.987747
\(288\) 4.39230 16.3923i 0.0152511 0.0569177i
\(289\) −13.8932 24.0638i −0.0480735 0.0832657i
\(290\) 289.985 + 167.423i 0.999948 + 0.577320i
\(291\) 66.6205 + 66.6205i 0.228936 + 0.228936i
\(292\) 100.645 26.9677i 0.344674 0.0923551i
\(293\) −1.43061 5.33910i −0.00488262 0.0182222i 0.963442 0.267919i \(-0.0863358\pi\)
−0.968324 + 0.249696i \(0.919669\pi\)
\(294\) 37.9458 37.9458i 0.129067 0.129067i
\(295\) −268.739 + 465.470i −0.910981 + 1.57787i
\(296\) 160.336 92.5703i 0.541677 0.312737i
\(297\) −38.0526 10.1962i −0.128123 0.0343305i
\(298\) 59.1870i 0.198614i
\(299\) −100.305 + 73.7012i −0.335468 + 0.246492i
\(300\) −89.8402 −0.299467
\(301\) −63.3783 + 236.531i −0.210559 + 0.785818i
\(302\) −2.57635 4.46237i −0.00853096 0.0147760i
\(303\) −33.8246 19.5286i −0.111632 0.0644509i
\(304\) 28.9208 + 28.9208i 0.0951343 + 0.0951343i
\(305\) 486.138 130.260i 1.59389 0.427083i
\(306\) 17.7472 + 66.2335i 0.0579974 + 0.216449i
\(307\) −227.287 + 227.287i −0.740349 + 0.740349i −0.972645 0.232296i \(-0.925376\pi\)
0.232296 + 0.972645i \(0.425376\pi\)
\(308\) 39.4621 68.3503i 0.128124 0.221916i
\(309\) 164.078 94.7304i 0.530996 0.306571i
\(310\) −471.957 126.461i −1.52244 0.407937i
\(311\) 308.864i 0.993132i −0.867999 0.496566i \(-0.834594\pi\)
0.867999 0.496566i \(-0.165406\pi\)
\(312\) −62.9552 9.62523i −0.201779 0.0308501i
\(313\) 2.51660 0.00804026 0.00402013 0.999992i \(-0.498720\pi\)
0.00402013 + 0.999992i \(0.498720\pi\)
\(314\) −101.018 + 377.005i −0.321714 + 1.20065i
\(315\) −55.7209 96.5115i −0.176892 0.306386i
\(316\) 23.1864 + 13.3867i 0.0733748 + 0.0423630i
\(317\) 46.8460 + 46.8460i 0.147779 + 0.147779i 0.777125 0.629346i \(-0.216677\pi\)
−0.629346 + 0.777125i \(0.716677\pi\)
\(318\) 159.749 42.8045i 0.502354 0.134605i
\(319\) −65.0996 242.955i −0.204074 0.761615i
\(320\) −40.3721 + 40.3721i −0.126163 + 0.126163i
\(321\) 28.4706 49.3125i 0.0886934 0.153621i
\(322\) −61.0366 + 35.2395i −0.189555 + 0.109439i
\(323\) −159.627 42.7720i −0.494202 0.132421i
\(324\) 18.0000i 0.0555556i
\(325\) 37.0399 + 335.109i 0.113969 + 1.03111i
\(326\) 198.806 0.609833
\(327\) −95.1507 + 355.107i −0.290981 + 1.08595i
\(328\) −77.0233 133.408i −0.234827 0.406732i
\(329\) −304.852 176.006i −0.926600 0.534973i
\(330\) 93.7187 + 93.7187i 0.283996 + 0.283996i
\(331\) 232.042 62.1755i 0.701033 0.187841i 0.109340 0.994004i \(-0.465126\pi\)
0.591693 + 0.806163i \(0.298460\pi\)
\(332\) −68.1713 254.419i −0.205335 0.766321i
\(333\) −138.855 + 138.855i −0.416983 + 0.416983i
\(334\) −138.947 + 240.663i −0.416009 + 0.720549i
\(335\) −267.079 + 154.198i −0.797252 + 0.460293i
\(336\) −34.8325 9.33335i −0.103668 0.0277778i
\(337\) 5.72952i 0.0170015i −0.999964 0.00850077i \(-0.997294\pi\)
0.999964 0.00850077i \(-0.00270591\pi\)
\(338\) −9.94712 + 238.795i −0.0294293 + 0.706494i
\(339\) −205.746 −0.606921
\(340\) 59.7077 222.832i 0.175611 0.655389i
\(341\) 183.513 + 317.853i 0.538161 + 0.932121i
\(342\) −37.5692 21.6906i −0.109852 0.0634228i
\(343\) −260.976 260.976i −0.760863 0.760863i
\(344\) −128.532 + 34.4402i −0.373641 + 0.100117i
\(345\) −30.6328 114.323i −0.0887908 0.331372i
\(346\) −132.251 + 132.251i −0.382228 + 0.382228i
\(347\) 51.4856 89.1757i 0.148373 0.256990i −0.782253 0.622961i \(-0.785930\pi\)
0.930626 + 0.365971i \(0.119263\pi\)
\(348\) −99.5278 + 57.4624i −0.286000 + 0.165122i
\(349\) 468.190 + 125.451i 1.34152 + 0.359459i 0.856997 0.515321i \(-0.172327\pi\)
0.484521 + 0.874780i \(0.338994\pi\)
\(350\) 190.904i 0.545441i
\(351\) 67.1411 7.42116i 0.191285 0.0211429i
\(352\) 42.8878 0.121840
\(353\) −50.9642 + 190.201i −0.144375 + 0.538813i 0.855408 + 0.517955i \(0.173307\pi\)
−0.999782 + 0.0208583i \(0.993360\pi\)
\(354\) −92.2360 159.757i −0.260554 0.451292i
\(355\) 683.363 + 394.540i 1.92497 + 1.11138i
\(356\) −71.1755 71.1755i −0.199931 0.199931i
\(357\) 140.742 37.7116i 0.394234 0.105635i
\(358\) 12.9687 + 48.3998i 0.0362254 + 0.135195i
\(359\) −54.1215 + 54.1215i −0.150756 + 0.150756i −0.778456 0.627699i \(-0.783997\pi\)
0.627699 + 0.778456i \(0.283997\pi\)
\(360\) 30.2791 52.4449i 0.0841086 0.145680i
\(361\) −222.091 + 128.224i −0.615210 + 0.355192i
\(362\) −165.451 44.3325i −0.457047 0.122465i
\(363\) 110.020i 0.303084i
\(364\) −20.4530 + 133.775i −0.0561895 + 0.367515i
\(365\) 371.812 1.01866
\(366\) −44.7075 + 166.851i −0.122152 + 0.455877i
\(367\) 107.824 + 186.757i 0.293799 + 0.508875i 0.974705 0.223496i \(-0.0717470\pi\)
−0.680906 + 0.732371i \(0.738414\pi\)
\(368\) −33.1676 19.1493i −0.0901294 0.0520362i
\(369\) 115.535 + 115.535i 0.313103 + 0.313103i
\(370\) 638.149 170.991i 1.72473 0.462139i
\(371\) −90.9566 339.455i −0.245166 0.914972i
\(372\) 118.580 118.580i 0.318764 0.318764i
\(373\) 315.693 546.797i 0.846363 1.46594i −0.0380693 0.999275i \(-0.512121\pi\)
0.884432 0.466669i \(-0.154546\pi\)
\(374\) −150.073 + 86.6447i −0.401265 + 0.231670i
\(375\) −11.1596 2.99020i −0.0297588 0.00797386i
\(376\) 191.286i 0.508738i
\(377\) 255.372 + 347.554i 0.677380 + 0.921894i
\(378\) 38.2488 0.101187
\(379\) −64.5160 + 240.777i −0.170227 + 0.635296i 0.827089 + 0.562072i \(0.189995\pi\)
−0.997316 + 0.0732240i \(0.976671\pi\)
\(380\) 72.9747 + 126.396i 0.192039 + 0.332621i
\(381\) 99.6794 + 57.5499i 0.261626 + 0.151050i
\(382\) −200.564 200.564i −0.525036 0.525036i
\(383\) 271.369 72.7131i 0.708535 0.189851i 0.113485 0.993540i \(-0.463799\pi\)
0.595050 + 0.803688i \(0.297132\pi\)
\(384\) −5.07180 18.9282i −0.0132078 0.0492922i
\(385\) 199.146 199.146i 0.517262 0.517262i
\(386\) −18.5004 + 32.0437i −0.0479286 + 0.0830148i
\(387\) 122.229 70.5692i 0.315838 0.182349i
\(388\) 105.084 + 28.1571i 0.270835 + 0.0725699i
\(389\) 265.150i 0.681620i 0.940132 + 0.340810i \(0.110701\pi\)
−0.940132 + 0.340810i \(0.889299\pi\)
\(390\) −208.106 91.3205i −0.533606 0.234155i
\(391\) 154.747 0.395772
\(392\) 16.0378 59.8538i 0.0409127 0.152688i
\(393\) 24.5325 + 42.4916i 0.0624237 + 0.108121i
\(394\) −116.013 66.9799i −0.294448 0.170000i
\(395\) 67.5561 + 67.5561i 0.171028 + 0.171028i
\(396\) −43.9394 + 11.7735i −0.110958 + 0.0297311i
\(397\) −32.5780 121.583i −0.0820604 0.306253i 0.912681 0.408673i \(-0.134008\pi\)
−0.994741 + 0.102419i \(0.967342\pi\)
\(398\) −197.199 + 197.199i −0.495475 + 0.495475i
\(399\) −46.0911 + 79.8321i −0.115516 + 0.200080i
\(400\) −89.8402 + 51.8692i −0.224600 + 0.129673i
\(401\) −537.968 144.148i −1.34157 0.359472i −0.484551 0.874763i \(-0.661017\pi\)
−0.857015 + 0.515291i \(0.827684\pi\)
\(402\) 105.847i 0.263301i
\(403\) −491.201 393.423i −1.21886 0.976235i
\(404\) −45.0994 −0.111632
\(405\) −16.6244 + 62.0430i −0.0410478 + 0.153193i
\(406\) 122.104 + 211.490i 0.300748 + 0.520911i
\(407\) −429.780 248.134i −1.05597 0.609665i
\(408\) 55.9872 + 55.9872i 0.137223 + 0.137223i
\(409\) 199.444 53.4410i 0.487639 0.130663i −0.00661830 0.999978i \(-0.502107\pi\)
0.494257 + 0.869316i \(0.335440\pi\)
\(410\) −142.274 530.973i −0.347009 1.29506i
\(411\) 61.6455 61.6455i 0.149989 0.149989i
\(412\) 109.385 189.461i 0.265498 0.459856i
\(413\) −339.474 + 195.995i −0.821970 + 0.474564i
\(414\) 39.2377 + 10.5137i 0.0947771 + 0.0253955i
\(415\) 939.900i 2.26482i
\(416\) −68.5123 + 26.7220i −0.164693 + 0.0642355i
\(417\) −256.835 −0.615912
\(418\) 28.3750 105.897i 0.0678828 0.253342i
\(419\) −167.706 290.475i −0.400253 0.693259i 0.593503 0.804832i \(-0.297744\pi\)
−0.993756 + 0.111573i \(0.964411\pi\)
\(420\) −111.442 64.3410i −0.265338 0.153193i
\(421\) 274.627 + 274.627i 0.652321 + 0.652321i 0.953551 0.301230i \(-0.0973973\pi\)
−0.301230 + 0.953551i \(0.597397\pi\)
\(422\) −266.149 + 71.3145i −0.630685 + 0.168992i
\(423\) 52.5115 + 195.976i 0.124141 + 0.463299i
\(424\) 135.035 135.035i 0.318480 0.318480i
\(425\) 209.579 363.001i 0.493127 0.854121i
\(426\) −234.542 + 135.413i −0.550568 + 0.317871i
\(427\) 354.547 + 95.0005i 0.830320 + 0.222484i
\(428\) 65.7500i 0.153621i
\(429\) 62.0316 + 159.043i 0.144596 + 0.370729i
\(430\) −474.838 −1.10427
\(431\) 35.5849 132.805i 0.0825635 0.308131i −0.912278 0.409571i \(-0.865678\pi\)
0.994842 + 0.101440i \(0.0323450\pi\)
\(432\) 10.3923 + 18.0000i 0.0240563 + 0.0416667i
\(433\) −364.107 210.217i −0.840893 0.485490i 0.0166746 0.999861i \(-0.494692\pi\)
−0.857568 + 0.514371i \(0.828025\pi\)
\(434\) −251.975 251.975i −0.580588 0.580588i
\(435\) −396.127 + 106.142i −0.910636 + 0.244004i
\(436\) 109.871 + 410.042i 0.251997 + 0.940464i
\(437\) −69.2268 + 69.2268i −0.158414 + 0.158414i
\(438\) −63.8062 + 110.516i −0.145676 + 0.252319i
\(439\) 645.502 372.680i 1.47039 0.848930i 0.470943 0.882164i \(-0.343914\pi\)
0.999448 + 0.0332332i \(0.0105804\pi\)
\(440\) 147.827 + 39.6102i 0.335971 + 0.0900231i
\(441\) 65.7240i 0.149034i
\(442\) 185.753 231.918i 0.420255 0.524702i
\(443\) 661.917 1.49417 0.747084 0.664729i \(-0.231453\pi\)
0.747084 + 0.664729i \(0.231453\pi\)
\(444\) −58.6872 + 219.024i −0.132178 + 0.493296i
\(445\) −179.594 311.066i −0.403582 0.699025i
\(446\) 501.697 + 289.655i 1.12488 + 0.649450i
\(447\) 51.2574 + 51.2574i 0.114670 + 0.114670i
\(448\) −40.2211 + 10.7772i −0.0897793 + 0.0240563i
\(449\) −8.12050 30.3061i −0.0180857 0.0674969i 0.956293 0.292409i \(-0.0944570\pi\)
−0.974379 + 0.224913i \(0.927790\pi\)
\(450\) 77.8039 77.8039i 0.172897 0.172897i
\(451\) −206.460 + 357.599i −0.457783 + 0.792903i
\(452\) −205.746 + 118.788i −0.455191 + 0.262805i
\(453\) 6.09571 + 1.63334i 0.0134563 + 0.00360561i
\(454\) 353.120i 0.777798i
\(455\) −194.050 + 442.212i −0.426483 + 0.971894i
\(456\) −50.0923 −0.109852
\(457\) −42.0960 + 157.104i −0.0921137 + 0.343773i −0.996566 0.0828016i \(-0.973613\pi\)
0.904452 + 0.426575i \(0.140280\pi\)
\(458\) −174.256 301.821i −0.380472 0.658997i
\(459\) −72.7295 41.9904i −0.158452 0.0914823i
\(460\) −96.6374 96.6374i −0.210081 0.210081i
\(461\) −77.8033 + 20.8473i −0.168771 + 0.0452220i −0.342215 0.939622i \(-0.611177\pi\)
0.173444 + 0.984844i \(0.444510\pi\)
\(462\) 25.0179 + 93.3682i 0.0541514 + 0.202096i
\(463\) −172.856 + 172.856i −0.373338 + 0.373338i −0.868692 0.495353i \(-0.835039\pi\)
0.495353 + 0.868692i \(0.335039\pi\)
\(464\) −66.3519 + 114.925i −0.143000 + 0.247683i
\(465\) 518.245 299.209i 1.11450 0.643460i
\(466\) 396.979 + 106.370i 0.851887 + 0.228262i
\(467\) 649.970i 1.39180i −0.718139 0.695899i \(-0.755006\pi\)
0.718139 0.695899i \(-0.244994\pi\)
\(468\) 62.8565 46.1851i 0.134309 0.0986861i
\(469\) −224.918 −0.479569
\(470\) 176.667 659.329i 0.375887 1.40283i
\(471\) −239.012 413.980i −0.507456 0.878939i
\(472\) −184.472 106.505i −0.390830 0.225646i
\(473\) 252.213 + 252.213i 0.533221 + 0.533221i
\(474\) −31.6733 + 8.48682i −0.0668212 + 0.0179047i
\(475\) 68.6344 + 256.147i 0.144493 + 0.539257i
\(476\) 118.969 118.969i 0.249935 0.249935i
\(477\) −101.277 + 175.416i −0.212320 + 0.367749i
\(478\) −373.907 + 215.875i −0.782232 + 0.451622i
\(479\) −490.789 131.507i −1.02461 0.274544i −0.292890 0.956146i \(-0.594617\pi\)
−0.731723 + 0.681602i \(0.761283\pi\)
\(480\) 69.9266i 0.145680i
\(481\) 841.167 + 128.606i 1.74879 + 0.267373i
\(482\) 169.897 0.352484
\(483\) 22.3409 83.3775i 0.0462545 0.172624i
\(484\) 63.5198 + 110.020i 0.131239 + 0.227313i
\(485\) 336.201 + 194.106i 0.693198 + 0.400218i
\(486\) −15.5885 15.5885i −0.0320750 0.0320750i
\(487\) −749.567 + 200.846i −1.53915 + 0.412415i −0.925992 0.377544i \(-0.876769\pi\)
−0.613161 + 0.789958i \(0.710102\pi\)
\(488\) 51.6238 + 192.663i 0.105787 + 0.394801i
\(489\) −172.171 + 172.171i −0.352087 + 0.352087i
\(490\) 110.559 191.494i 0.225631 0.390804i
\(491\) −108.265 + 62.5068i −0.220499 + 0.127305i −0.606181 0.795327i \(-0.707299\pi\)
0.385682 + 0.922632i \(0.373966\pi\)
\(492\) 182.239 + 48.8308i 0.370405 + 0.0992496i
\(493\) 536.193i 1.08761i
\(494\) 20.6524 + 186.847i 0.0418065 + 0.378234i
\(495\) −162.326 −0.327930
\(496\) 50.1180 187.043i 0.101044 0.377102i
\(497\) 287.743 + 498.386i 0.578960 + 1.00279i
\(498\) 279.371 + 161.295i 0.560986 + 0.323886i
\(499\) 151.406 + 151.406i 0.303419 + 0.303419i 0.842350 0.538931i \(-0.181172\pi\)
−0.538931 + 0.842350i \(0.681172\pi\)
\(500\) −12.8860 + 3.45278i −0.0257719 + 0.00690556i
\(501\) −88.0889 328.752i −0.175826 0.656192i
\(502\) 174.494 174.494i 0.347598 0.347598i
\(503\) −263.256 + 455.973i −0.523372 + 0.906506i 0.476258 + 0.879305i \(0.341993\pi\)
−0.999630 + 0.0272010i \(0.991341\pi\)
\(504\) 38.2488 22.0829i 0.0758904 0.0438153i
\(505\) −155.450 41.6527i −0.307822 0.0824807i
\(506\) 102.659i 0.202884i
\(507\) −198.188 215.417i −0.390904 0.424886i
\(508\) 132.906 0.261626
\(509\) −249.649 + 931.702i −0.490469 + 1.83046i 0.0635873 + 0.997976i \(0.479746\pi\)
−0.554056 + 0.832479i \(0.686921\pi\)
\(510\) 141.270 + 244.687i 0.277000 + 0.479778i
\(511\) 234.838 + 135.584i 0.459566 + 0.265330i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 51.3205 13.7513i 0.100040 0.0268056i
\(514\) −1.70157 6.35036i −0.00331045 0.0123548i
\(515\) 552.014 552.014i 1.07187 1.07187i
\(516\) 81.4863 141.138i 0.157919 0.273524i
\(517\) −444.045 + 256.369i −0.858888 + 0.495879i
\(518\) 465.410 + 124.706i 0.898475 + 0.240746i
\(519\) 229.065i 0.441359i
\(520\) −260.830 + 28.8298i −0.501597 + 0.0554419i
\(521\) −158.382 −0.303997 −0.151998 0.988381i \(-0.548571\pi\)
−0.151998 + 0.988381i \(0.548571\pi\)
\(522\) 36.4297 135.958i 0.0697887 0.260455i
\(523\) 114.739 + 198.734i 0.219386 + 0.379989i 0.954621 0.297825i \(-0.0962611\pi\)
−0.735234 + 0.677813i \(0.762928\pi\)
\(524\) 49.0650 + 28.3277i 0.0936356 + 0.0540605i
\(525\) −165.328 165.328i −0.314910 0.314910i
\(526\) 18.9101 5.06694i 0.0359507 0.00963296i
\(527\) 202.503 + 755.751i 0.384256 + 1.43406i
\(528\) −37.1420 + 37.1420i −0.0703446 + 0.0703446i
\(529\) −218.663 + 378.735i −0.413351 + 0.715945i
\(530\) 590.160 340.729i 1.11351 0.642885i
\(531\) 218.233 + 58.4753i 0.410984 + 0.110123i
\(532\) 106.443i 0.200080i
\(533\) 107.007 699.895i 0.200764 1.31312i
\(534\) 123.280 0.230860
\(535\) 60.7251 226.629i 0.113505 0.423606i
\(536\) −61.1108 105.847i −0.114013 0.197476i
\(537\) −53.1467 30.6843i −0.0989697 0.0571402i
\(538\) 460.252 + 460.252i 0.855487 + 0.855487i
\(539\) −160.437 + 42.9891i −0.297657 + 0.0797571i
\(540\) 19.1962 + 71.6411i 0.0355485 + 0.132669i
\(541\) 606.240 606.240i 1.12059 1.12059i 0.128938 0.991653i \(-0.458843\pi\)
0.991653 0.128938i \(-0.0411569\pi\)
\(542\) −104.874 + 181.647i −0.193494 + 0.335141i
\(543\) 181.678 104.892i 0.334582 0.193171i
\(544\) 88.3114 + 23.6630i 0.162337 + 0.0434981i
\(545\) 1514.82i 2.77949i
\(546\) −98.1402 133.566i −0.179744 0.244626i
\(547\) −790.673 −1.44547 −0.722736 0.691124i \(-0.757116\pi\)
−0.722736 + 0.691124i \(0.757116\pi\)
\(548\) 26.0545 97.2365i 0.0475446 0.177439i
\(549\) −105.779 183.215i −0.192676 0.333725i
\(550\) 240.816 + 139.035i 0.437847 + 0.252791i
\(551\) 239.869 + 239.869i 0.435334 + 0.435334i
\(552\) 45.3078 12.1402i 0.0820794 0.0219931i
\(553\) 18.0339 + 67.3035i 0.0326111 + 0.121706i
\(554\) −373.291 + 373.291i −0.673811 + 0.673811i
\(555\) −404.570 + 700.736i −0.728955 + 1.26259i
\(556\) −256.835 + 148.284i −0.461934 + 0.266698i
\(557\) −414.689 111.116i −0.744505 0.199490i −0.133426 0.991059i \(-0.542598\pi\)
−0.611080 + 0.791569i \(0.709264\pi\)
\(558\) 205.387i 0.368077i
\(559\) −560.051 245.759i −1.00188 0.439641i
\(560\) −148.589 −0.265338
\(561\) 54.9305 205.004i 0.0979154 0.365425i
\(562\) −136.099 235.730i −0.242168 0.419448i
\(563\) −276.549 159.665i −0.491206 0.283598i 0.233869 0.972268i \(-0.424861\pi\)
−0.725074 + 0.688671i \(0.758195\pi\)
\(564\) 165.658 + 165.658i 0.293720 + 0.293720i
\(565\) −818.883 + 219.419i −1.44935 + 0.388352i
\(566\) −139.344 520.039i −0.246191 0.918797i
\(567\) −33.1244 + 33.1244i −0.0584205 + 0.0584205i
\(568\) −156.361 + 270.826i −0.275284 + 0.476806i
\(569\) 687.019 396.650i 1.20741 0.697101i 0.245221 0.969467i \(-0.421140\pi\)
0.962194 + 0.272366i \(0.0878063\pi\)
\(570\) −172.660 46.2641i −0.302912 0.0811651i
\(571\) 852.111i 1.49231i 0.665771 + 0.746156i \(0.268103\pi\)
−0.665771 + 0.746156i \(0.731897\pi\)
\(572\) 153.855 + 123.229i 0.268977 + 0.215435i
\(573\) 347.387 0.606259
\(574\) 103.762 387.245i 0.180770 0.674644i
\(575\) −124.158 215.047i −0.215926 0.373996i
\(576\) 20.7846 + 12.0000i 0.0360844 + 0.0208333i
\(577\) −186.391 186.391i −0.323035 0.323035i 0.526895 0.849930i \(-0.323356\pi\)
−0.849930 + 0.526895i \(0.823356\pi\)
\(578\) 37.9570 10.1706i 0.0656696 0.0175961i
\(579\) −11.7288 43.7725i −0.0202570 0.0756002i
\(580\) −334.846 + 334.846i −0.577320 + 0.577320i
\(581\) 342.741 593.644i 0.589915 1.02176i
\(582\) −115.390 + 66.6205i −0.198265 + 0.114468i
\(583\) −494.448 132.487i −0.848109 0.227250i
\(584\) 147.354i 0.252319i
\(585\) 259.311 101.140i 0.443267 0.172888i
\(586\) 7.81698 0.0133396
\(587\) 203.087 757.931i 0.345975 1.29119i −0.545495 0.838114i \(-0.683658\pi\)
0.891469 0.453081i \(-0.149675\pi\)
\(588\) 37.9458 + 65.7240i 0.0645336 + 0.111775i
\(589\) −428.680 247.499i −0.727810 0.420201i
\(590\) −537.479 537.479i −0.910981 0.910981i
\(591\) 158.476 42.4635i 0.268149 0.0718503i
\(592\) 67.7661 + 252.907i 0.114470 + 0.427207i
\(593\) −375.307 + 375.307i −0.632895 + 0.632895i −0.948793 0.315898i \(-0.897694\pi\)
0.315898 + 0.948793i \(0.397694\pi\)
\(594\) 27.8565 48.2488i 0.0468964 0.0812270i
\(595\) 519.943 300.189i 0.873853 0.504520i
\(596\) 80.8509 + 21.6639i 0.135656 + 0.0363489i
\(597\) 341.559i 0.572126i
\(598\) −63.9635 163.996i −0.106962 0.274240i
\(599\) 320.645 0.535300 0.267650 0.963516i \(-0.413753\pi\)
0.267650 + 0.963516i \(0.413753\pi\)
\(600\) 32.8838 122.724i 0.0548063 0.204540i
\(601\) 29.2104 + 50.5939i 0.0486030 + 0.0841828i 0.889303 0.457318i \(-0.151190\pi\)
−0.840700 + 0.541500i \(0.817856\pi\)
\(602\) −299.909 173.153i −0.498188 0.287629i
\(603\) 91.6662 + 91.6662i 0.152017 + 0.152017i
\(604\) 7.03871 1.88602i 0.0116535 0.00312255i
\(605\) 117.331 + 437.884i 0.193935 + 0.723776i
\(606\) 39.0572 39.0572i 0.0644509 0.0644509i
\(607\) 327.926 567.984i 0.540240 0.935724i −0.458649 0.888617i \(-0.651667\pi\)
0.998890 0.0471065i \(-0.0150000\pi\)
\(608\) −50.0923 + 28.9208i −0.0823887 + 0.0475671i
\(609\) −288.900 77.4107i −0.474385 0.127111i
\(610\) 711.755i 1.16681i
\(611\) 549.616 686.214i 0.899536 1.12310i
\(612\) −96.9726 −0.158452
\(613\) −49.8176 + 185.922i −0.0812686 + 0.303298i −0.994581 0.103960i \(-0.966849\pi\)
0.913313 + 0.407259i \(0.133515\pi\)
\(614\) −227.287 393.673i −0.370174 0.641161i
\(615\) 583.049 + 336.623i 0.948047 + 0.547355i
\(616\) 78.9241 + 78.9241i 0.128124 + 0.128124i
\(617\) 19.1730 5.13739i 0.0310745 0.00832640i −0.243248 0.969964i \(-0.578213\pi\)
0.274323 + 0.961638i \(0.411546\pi\)
\(618\) 69.3474 + 258.808i 0.112213 + 0.418783i
\(619\) −319.972 + 319.972i −0.516917 + 0.516917i −0.916637 0.399720i \(-0.869107\pi\)
0.399720 + 0.916637i \(0.369107\pi\)
\(620\) 345.497 598.418i 0.557252 0.965190i
\(621\) −43.0860 + 24.8757i −0.0693817 + 0.0400575i
\(622\) 421.916 + 113.052i 0.678322 + 0.181756i
\(623\) 261.961i 0.420482i
\(624\) 36.1915 82.4753i 0.0579992 0.132172i
\(625\) 600.761 0.961217
\(626\) −0.921140 + 3.43774i −0.00147147 + 0.00549160i
\(627\) 67.1360 + 116.283i 0.107075 + 0.185459i
\(628\) −478.023 275.987i −0.761184 0.439470i
\(629\) −748.065 748.065i −1.18929 1.18929i
\(630\) 152.232 40.7906i 0.241639 0.0647469i
\(631\) 113.387 + 423.167i 0.179695 + 0.670629i 0.995704 + 0.0925909i \(0.0295149\pi\)
−0.816010 + 0.578038i \(0.803818\pi\)
\(632\) −26.7734 + 26.7734i −0.0423630 + 0.0423630i
\(633\) 168.732 292.252i 0.266559 0.461694i
\(634\) −81.1397 + 46.8460i −0.127981 + 0.0738896i
\(635\) 458.104 + 122.749i 0.721424 + 0.193305i
\(636\) 233.888i 0.367749i
\(637\) 229.510 168.637i 0.360298 0.264736i
\(638\) 355.711 0.557541
\(639\) 85.8483 320.390i 0.134348 0.501393i
\(640\) −40.3721 69.9266i −0.0630814 0.109260i
\(641\) −536.275 309.618i −0.836622 0.483024i 0.0194927 0.999810i \(-0.493795\pi\)
−0.856115 + 0.516786i \(0.827128\pi\)
\(642\) 56.9412 + 56.9412i 0.0886934 + 0.0886934i
\(643\) −389.853 + 104.461i −0.606304 + 0.162459i −0.548894 0.835892i \(-0.684951\pi\)
−0.0574099 + 0.998351i \(0.518284\pi\)
\(644\) −25.7971 96.2760i −0.0400576 0.149497i
\(645\) 411.222 411.222i 0.637553 0.637553i
\(646\) 116.855 202.399i 0.180891 0.313312i
\(647\) −216.586 + 125.046i −0.334754 + 0.193270i −0.657950 0.753062i \(-0.728576\pi\)
0.323196 + 0.946332i \(0.395243\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) 570.971i 0.879770i
\(650\) −471.325 72.0611i −0.725116 0.110863i
\(651\) 436.434 0.670405
\(652\) −72.7679 + 271.574i −0.111607 + 0.416524i
\(653\) 195.830 + 339.188i 0.299894 + 0.519431i 0.976111 0.217271i \(-0.0697155\pi\)
−0.676218 + 0.736702i \(0.736382\pi\)
\(654\) −450.258 259.956i −0.688467 0.397487i
\(655\) 142.956 + 142.956i 0.218254 + 0.218254i
\(656\) 210.432 56.3850i 0.320780 0.0859527i
\(657\) −40.4515 150.967i −0.0615701 0.229783i
\(658\) 352.012 352.012i 0.534973 0.534973i
\(659\) 305.994 529.997i 0.464330 0.804244i −0.534841 0.844953i \(-0.679628\pi\)
0.999171 + 0.0407093i \(0.0129617\pi\)
\(660\) −162.326 + 93.7187i −0.245948 + 0.141998i
\(661\) −585.429 156.865i −0.885671 0.237315i −0.212819 0.977092i \(-0.568264\pi\)
−0.672852 + 0.739777i \(0.734931\pi\)
\(662\) 339.733i 0.513192i
\(663\) 39.9805 + 361.714i 0.0603024 + 0.545571i
\(664\) 372.495 0.560986
\(665\) −98.3080 + 366.890i −0.147832 + 0.551715i
\(666\) −138.855 240.505i −0.208492 0.361118i
\(667\) −275.092 158.824i −0.412432 0.238117i
\(668\) −277.894 277.894i −0.416009 0.416009i
\(669\) −685.331 + 183.634i −1.02441 + 0.274490i
\(670\) −112.881 421.278i −0.168479 0.628773i
\(671\) 378.053 378.053i 0.563418 0.563418i
\(672\) 25.4992 44.1659i 0.0379452 0.0657230i
\(673\) 680.049 392.627i 1.01047 0.583398i 0.0991438 0.995073i \(-0.468390\pi\)
0.911331 + 0.411675i \(0.135056\pi\)
\(674\) 7.82667 + 2.09715i 0.0116123 + 0.00311150i
\(675\) 134.760i 0.199645i
\(676\) −322.559 100.993i −0.477159 0.149398i
\(677\) −622.197 −0.919051 −0.459525 0.888165i \(-0.651980\pi\)
−0.459525 + 0.888165i \(0.651980\pi\)
\(678\) 75.3084 281.055i 0.111074 0.414535i
\(679\) 141.564 + 245.196i 0.208489 + 0.361113i
\(680\) 282.540 + 163.125i 0.415500 + 0.239889i
\(681\) −305.811 305.811i −0.449062 0.449062i
\(682\) −501.366 + 134.341i −0.735141 + 0.196980i
\(683\) 218.794 + 816.549i 0.320342 + 1.19553i 0.918912 + 0.394462i \(0.129069\pi\)
−0.598570 + 0.801071i \(0.704264\pi\)
\(684\) 43.3812 43.3812i 0.0634228 0.0634228i
\(685\) 179.611 311.095i 0.262205 0.454153i
\(686\) 452.024 260.976i 0.658927 0.380432i
\(687\) 412.295 + 110.474i 0.600138 + 0.160807i
\(688\) 188.185i 0.273524i
\(689\) 872.417 96.4290i 1.26621 0.139955i
\(690\) 167.381 0.242581
\(691\) 172.573 644.052i 0.249744 0.932058i −0.721195 0.692732i \(-0.756407\pi\)
0.970939 0.239326i \(-0.0769264\pi\)
\(692\) −132.251 229.065i −0.191114 0.331019i
\(693\) −102.525 59.1931i −0.147944 0.0854157i
\(694\) 102.971 + 102.971i 0.148373 + 0.148373i
\(695\) −1022.22 + 273.903i −1.47082 + 0.394105i
\(696\) −42.0654 156.990i −0.0604388 0.225561i
\(697\) −622.429 + 622.429i −0.893012 + 0.893012i
\(698\) −342.739 + 593.641i −0.491030 + 0.850488i
\(699\) −435.913 + 251.675i −0.623624 + 0.360050i
\(700\) −260.780 69.8758i −0.372543 0.0998226i
\(701\) 299.776i 0.427640i −0.976873 0.213820i \(-0.931409\pi\)
0.976873 0.213820i \(-0.0685907\pi\)
\(702\) −14.4379 + 94.4328i −0.0205667 + 0.134520i
\(703\) 669.302 0.952065
\(704\) −15.6980 + 58.5859i −0.0222983 + 0.0832186i
\(705\) 417.998 + 723.994i 0.592905 + 1.02694i
\(706\) −241.165 139.237i −0.341594 0.197219i
\(707\) −82.9940 82.9940i −0.117389 0.117389i
\(708\) 251.993 67.5214i 0.355923 0.0953692i
\(709\) −88.7405 331.184i −0.125163 0.467114i 0.874683 0.484696i \(-0.161070\pi\)
−0.999845 + 0.0175820i \(0.994403\pi\)
\(710\) −789.080 + 789.080i −1.11138 + 1.11138i
\(711\) 20.0800 34.7796i 0.0282420 0.0489165i
\(712\) 123.280 71.1755i 0.173145 0.0999655i
\(713\) 447.718 + 119.966i 0.627936 + 0.168255i
\(714\) 206.060i 0.288600i
\(715\) 416.501 + 566.845i 0.582519 + 0.792790i
\(716\) −70.8623 −0.0989697
\(717\) 136.859 510.766i 0.190878 0.712365i
\(718\) −54.1215 93.7412i −0.0753781 0.130559i
\(719\) 551.827 + 318.597i 0.767492 + 0.443112i 0.831979 0.554807i \(-0.187208\pi\)
−0.0644873 + 0.997919i \(0.520541\pi\)
\(720\) 60.5582 + 60.5582i 0.0841086 + 0.0841086i
\(721\) 549.950 147.359i 0.762759 0.204381i
\(722\) −93.8666 350.315i −0.130009 0.485201i
\(723\) −147.135 + 147.135i −0.203507 + 0.203507i
\(724\) 121.119 209.783i 0.167291 0.289756i
\(725\) −745.133 + 430.203i −1.02777 + 0.593383i
\(726\) −150.289 40.2699i −0.207010 0.0554682i
\(727\) 617.181i 0.848943i 0.905441 + 0.424471i \(0.139540\pi\)
−0.905441 + 0.424471i \(0.860460\pi\)
\(728\) −175.254 76.9045i −0.240734 0.105638i
\(729\) 27.0000 0.0370370
\(730\) −136.093 + 507.905i −0.186429 + 0.695761i
\(731\) 380.182 + 658.495i 0.520085 + 0.900814i
\(732\) −211.558 122.143i −0.289014 0.166862i
\(733\) −932.866 932.866i −1.27267 1.27267i −0.944683 0.327985i \(-0.893631\pi\)
−0.327985 0.944683i \(-0.606369\pi\)
\(734\) −294.581 + 78.9329i −0.401337 + 0.107538i
\(735\) 70.0916 + 261.585i 0.0953627 + 0.355899i
\(736\) 38.2987 38.2987i 0.0520362 0.0520362i
\(737\) −163.807 + 283.722i −0.222262 + 0.384969i
\(738\) −200.112 + 115.535i −0.271155 + 0.156551i
\(739\) 195.134 + 52.2859i 0.264051 + 0.0707523i 0.388416 0.921484i \(-0.373023\pi\)
−0.124364 + 0.992237i \(0.539689\pi\)
\(740\) 934.314i 1.26259i
\(741\) −179.700 143.929i −0.242510 0.194236i
\(742\) 496.996 0.669806
\(743\) −271.553 + 1013.45i −0.365482 + 1.36400i 0.501283 + 0.865283i \(0.332861\pi\)
−0.866766 + 0.498716i \(0.833805\pi\)
\(744\) 118.580 + 205.387i 0.159382 + 0.276058i
\(745\) 258.671 + 149.344i 0.347210 + 0.200462i
\(746\) 631.387 + 631.387i 0.846363 + 0.846363i
\(747\) −381.628 + 102.257i −0.510881 + 0.136890i
\(748\) −63.4283 236.718i −0.0847972 0.316467i
\(749\) 120.996 120.996i 0.161543 0.161543i
\(750\) 8.16937 14.1498i 0.0108925 0.0188663i
\(751\) 1272.00 734.389i 1.69374 0.977881i 0.742288 0.670080i \(-0.233740\pi\)
0.951451 0.307800i \(-0.0995929\pi\)
\(752\) 261.301 + 70.0154i 0.347475 + 0.0931055i
\(753\) 302.233i 0.401371i
\(754\) −568.240 + 221.632i −0.753634 + 0.293941i
\(755\) 26.0032 0.0344413
\(756\) −14.0000 + 52.2488i −0.0185185 + 0.0691122i
\(757\) 427.864 + 741.082i 0.565210 + 0.978972i 0.997030 + 0.0770121i \(0.0245380\pi\)
−0.431821 + 0.901960i \(0.642129\pi\)
\(758\) −305.293 176.261i −0.402761 0.232534i
\(759\) −88.9055 88.9055i −0.117135 0.117135i
\(760\) −199.370 + 53.4212i −0.262330 + 0.0702910i
\(761\) 111.078 + 414.549i 0.145963 + 0.544743i 0.999711 + 0.0240550i \(0.00765767\pi\)
−0.853747 + 0.520688i \(0.825676\pi\)
\(762\) −115.100 + 115.100i −0.151050 + 0.151050i
\(763\) −552.390 + 956.767i −0.723971 + 1.25395i
\(764\) 347.387 200.564i 0.454694 0.262518i
\(765\) −334.248 89.5616i −0.436926 0.117074i
\(766\) 397.312i 0.518684i
\(767\) −355.753 912.112i −0.463823 1.18919i
\(768\) 27.7128 0.0360844