Newspace parameters
Level: | \( N \) | \(=\) | \( 78 = 2 \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 78.l (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.12534606201\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{12})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
Defining polynomial: |
\( x^{8} - 2x^{7} + 2x^{6} + 82x^{5} + 5053x^{4} - 6736x^{3} + 6728x^{2} + 275384x + 5635876 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} + 2x^{6} + 82x^{5} + 5053x^{4} - 6736x^{3} + 6728x^{2} + 275384x + 5635876 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 4081829 \nu^{7} + 125878448 \nu^{6} - 175318185 \nu^{5} - 167602931 \nu^{4} - 13767350850 \nu^{3} + 914252484693 \nu^{2} + \cdots - 561922481148 ) / 28390156409030 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 900565 \nu^{7} + 114752803 \nu^{6} + 496632472 \nu^{5} + 5297934372 \nu^{4} + 3978860609 \nu^{3} + 326689911519 \nu^{2} + \cdots + 15143464458814 ) / 813197403460 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 887 \nu^{7} - 2974 \nu^{6} - 42132 \nu^{5} - 34750 \nu^{4} - 2587559 \nu^{3} - 10377280 \nu^{2} - 118350522 \nu - 276718188 ) / 320442520 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 5758773899 \nu^{7} - 1375000768 \nu^{6} - 272272114360 \nu^{5} - 695422749614 \nu^{4} + 16988141226435 \nu^{3} + \cdots - 24\!\cdots\!12 ) / 19\!\cdots\!40 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 4272345 \nu^{7} - 119540717 \nu^{6} - 491845918 \nu^{5} - 5101492538 \nu^{4} + 21421095309 \nu^{3} - 342802118751 \nu^{2} + \cdots - 13671329236226 ) / 813197403460 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -2\nu^{7} - 17\nu^{6} + 16\nu^{5} + 798\nu^{4} - 6888\nu^{3} - 47339\nu^{2} - 13670\nu + 2105738 ) / 134980 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{7} + \beta_{6} - 6\beta_{4} + 49\beta_{2} + \beta _1 - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( -4\beta_{7} + 51\beta_{6} - 46\beta_{5} + 46\beta_{4} + 51\beta_{3} + 43\beta_{2} - 2\beta _1 - 48 \)
|
\(\nu^{4}\) | \(=\) |
\( 95\beta_{7} - 5\beta_{6} + 502\beta_{5} + 90\beta_{3} - 251\beta_{2} + 5\beta _1 - 2607 \)
|
\(\nu^{5}\) | \(=\) |
\( 161\beta_{6} - 4400\beta_{5} - 4400\beta_{4} - 161\beta_{3} + 545\beta_{2} - 2702\beta _1 - 3694 \)
|
\(\nu^{6}\) | \(=\) |
\( -6941\beta_{7} - 6235\beta_{6} + 31990\beta_{4} + 706\beta_{3} - 133847\beta_{2} - 6235\beta _1 + 15289 \)
|
\(\nu^{7}\) | \(=\) |
\( 19520 \beta_{7} - 147023 \beta_{6} + 323522 \beta_{5} - 323522 \beta_{4} - 147023 \beta_{3} - 265987 \beta_{2} + 9760 \beta _1 + 89488 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).
\(n\) | \(53\) | \(67\) |
\(\chi(n)\) | \(1\) | \(\beta_{2} - \beta_{5}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
1.36603 | − | 0.366025i | 0.866025 | − | 1.50000i | 1.73205 | − | 1.00000i | −6.39181 | − | 6.39181i | 0.633975 | − | 2.36603i | 9.23137 | + | 2.47354i | 2.00000 | − | 2.00000i | −1.50000 | − | 2.59808i | −11.0709 | − | 6.39181i | ||||||||||||||||||||||||
7.2 | 1.36603 | − | 0.366025i | 0.866025 | − | 1.50000i | 1.73205 | − | 1.00000i | 4.02578 | + | 4.02578i | 0.633975 | − | 2.36603i | −4.99932 | − | 1.33956i | 2.00000 | − | 2.00000i | −1.50000 | − | 2.59808i | 6.97286 | + | 4.02578i | |||||||||||||||||||||||||
19.1 | −0.366025 | − | 1.36603i | −0.866025 | + | 1.50000i | −1.73205 | + | 1.00000i | −5.04651 | + | 5.04651i | 2.36603 | + | 0.633975i | −1.34715 | + | 5.02764i | 2.00000 | + | 2.00000i | −1.50000 | − | 2.59808i | 8.74082 | + | 5.04651i | |||||||||||||||||||||||||
19.2 | −0.366025 | − | 1.36603i | −0.866025 | + | 1.50000i | −1.73205 | + | 1.00000i | 4.41254 | − | 4.41254i | 2.36603 | + | 0.633975i | 2.11510 | − | 7.89367i | 2.00000 | + | 2.00000i | −1.50000 | − | 2.59808i | −7.64274 | − | 4.41254i | |||||||||||||||||||||||||
37.1 | −0.366025 | + | 1.36603i | −0.866025 | − | 1.50000i | −1.73205 | − | 1.00000i | −5.04651 | − | 5.04651i | 2.36603 | − | 0.633975i | −1.34715 | − | 5.02764i | 2.00000 | − | 2.00000i | −1.50000 | + | 2.59808i | 8.74082 | − | 5.04651i | |||||||||||||||||||||||||
37.2 | −0.366025 | + | 1.36603i | −0.866025 | − | 1.50000i | −1.73205 | − | 1.00000i | 4.41254 | + | 4.41254i | 2.36603 | − | 0.633975i | 2.11510 | + | 7.89367i | 2.00000 | − | 2.00000i | −1.50000 | + | 2.59808i | −7.64274 | + | 4.41254i | |||||||||||||||||||||||||
67.1 | 1.36603 | + | 0.366025i | 0.866025 | + | 1.50000i | 1.73205 | + | 1.00000i | −6.39181 | + | 6.39181i | 0.633975 | + | 2.36603i | 9.23137 | − | 2.47354i | 2.00000 | + | 2.00000i | −1.50000 | + | 2.59808i | −11.0709 | + | 6.39181i | |||||||||||||||||||||||||
67.2 | 1.36603 | + | 0.366025i | 0.866025 | + | 1.50000i | 1.73205 | + | 1.00000i | 4.02578 | − | 4.02578i | 0.633975 | + | 2.36603i | −4.99932 | + | 1.33956i | 2.00000 | + | 2.00000i | −1.50000 | + | 2.59808i | 6.97286 | − | 4.02578i | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.f | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 78.3.l.c | ✓ | 8 |
3.b | odd | 2 | 1 | 234.3.bb.d | 8 | ||
13.c | even | 3 | 1 | 1014.3.f.h | 8 | ||
13.e | even | 6 | 1 | 1014.3.f.j | 8 | ||
13.f | odd | 12 | 1 | inner | 78.3.l.c | ✓ | 8 |
13.f | odd | 12 | 1 | 1014.3.f.h | 8 | ||
13.f | odd | 12 | 1 | 1014.3.f.j | 8 | ||
39.k | even | 12 | 1 | 234.3.bb.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
78.3.l.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
78.3.l.c | ✓ | 8 | 13.f | odd | 12 | 1 | inner |
234.3.bb.d | 8 | 3.b | odd | 2 | 1 | ||
234.3.bb.d | 8 | 39.k | even | 12 | 1 | ||
1014.3.f.h | 8 | 13.c | even | 3 | 1 | ||
1014.3.f.h | 8 | 13.f | odd | 12 | 1 | ||
1014.3.f.j | 8 | 13.e | even | 6 | 1 | ||
1014.3.f.j | 8 | 13.f | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 6T_{5}^{7} + 18T_{5}^{6} - 282T_{5}^{5} + 4065T_{5}^{4} + 11916T_{5}^{3} + 38088T_{5}^{2} - 632592T_{5} + 5253264 \)
acting on \(S_{3}^{\mathrm{new}}(78, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - 2 T^{3} + 2 T^{2} - 4 T + 4)^{2} \)
$3$
\( (T^{4} + 3 T^{2} + 9)^{2} \)
$5$
\( T^{8} + 6 T^{7} + 18 T^{6} + \cdots + 5253264 \)
$7$
\( T^{8} - 10 T^{7} + 29 T^{6} + \cdots + 4426816 \)
$11$
\( T^{8} - 24 T^{7} + \cdots + 973440000 \)
$13$
\( T^{8} - 50 T^{6} + \cdots + 815730721 \)
$17$
\( T^{8} + 84 T^{7} + \cdots + 4567597056 \)
$19$
\( T^{8} - 10 T^{7} + 842 T^{6} + \cdots + 1763584 \)
$23$
\( T^{8} + 12 T^{7} + \cdots + 17831863296 \)
$29$
\( T^{8} - 36 T^{7} + \cdots + 48599084304 \)
$31$
\( T^{8} + 94 T^{7} + \cdots + 33544655104 \)
$37$
\( T^{8} - 140 T^{7} + \cdots + 10744151716 \)
$41$
\( T^{8} - 72 T^{7} + \cdots + 370617958656 \)
$43$
\( T^{8} + 222 T^{7} + \cdots + 1819196698176 \)
$47$
\( T^{8} - 300 T^{7} + \cdots + 20494380893184 \)
$53$
\( (T^{4} - 42 T^{3} - 2211 T^{2} + \cdots - 109128)^{2} \)
$59$
\( T^{8} + 60 T^{7} + \cdots + 15611728564224 \)
$61$
\( T^{8} + \cdots + 295174493893449 \)
$67$
\( T^{8} - 304 T^{7} + \cdots + 42600893548096 \)
$71$
\( T^{8} + 192 T^{7} + \cdots + 1623606027264 \)
$73$
\( T^{8} - 16 T^{7} + \cdots + 261324417601 \)
$79$
\( (T^{4} + 48 T^{3} - 11667 T^{2} + \cdots - 8209344)^{2} \)
$83$
\( T^{8} + 682176 T^{5} + \cdots + 13865554427904 \)
$89$
\( T^{8} - 354 T^{7} + \cdots + 29\!\cdots\!64 \)
$97$
\( T^{8} + 460 T^{7} + \cdots + 14\!\cdots\!96 \)
show more
show less