Defining parameters
Level: | \( N \) | \(=\) | \( 78 = 2 \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 78.l (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(78, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 16 | 112 |
Cusp forms | 96 | 16 | 80 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(78, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
78.3.l.a | $4$ | $2.125$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(-12\) | \(-10\) | \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(\zeta_{12}+\cdots)q^{3}+\cdots\) |
78.3.l.b | $4$ | $2.125$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(0\) | \(6\) | \(20\) | \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\) |
78.3.l.c | $8$ | $2.125$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(4\) | \(0\) | \(-6\) | \(10\) | \(q+(-\beta _{4}-\beta _{5})q^{2}+(2\beta _{2}-\beta _{5})q^{3}+(2\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(78, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(78, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)