Properties

Label 78.2.i
Level $78$
Weight $2$
Character orbit 78.i
Rep. character $\chi_{78}(43,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $2$
Sturm bound $28$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 78.i (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(28\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(78, [\chi])\).

Total New Old
Modular forms 36 8 28
Cusp forms 20 8 12
Eisenstein series 16 0 16

Trace form

\( 8 q + 4 q^{4} - 4 q^{9} + 4 q^{10} - 4 q^{13} - 16 q^{14} - 12 q^{15} - 4 q^{16} - 8 q^{17} - 8 q^{23} + 8 q^{26} + 8 q^{29} + 4 q^{30} + 12 q^{33} + 16 q^{35} + 4 q^{36} - 12 q^{37} + 4 q^{39} + 8 q^{40}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(78, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
78.2.i.a 78.i 13.e $4$ $0.623$ \(\Q(\zeta_{12})\) None 78.2.i.a \(0\) \(-2\) \(0\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-1+\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
78.2.i.b 78.i 13.e $4$ $0.623$ \(\Q(\zeta_{12})\) None 78.2.i.b \(0\) \(2\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(1-\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(78, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(78, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)