Defining parameters
Level: | \( N \) | \(=\) | \( 78 = 2 \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 78.i (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(78, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 8 | 28 |
Cusp forms | 20 | 8 | 12 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(78, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
78.2.i.a | $4$ | $0.623$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(-2\) | \(0\) | \(6\) | \(q+\zeta_{12}q^{2}+(-1+\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
78.2.i.b | $4$ | $0.623$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(2\) | \(0\) | \(-6\) | \(q+\zeta_{12}q^{2}+(1-\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(78, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(78, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)