# Properties

 Label 78.2.g.a.5.3 Level $78$ Weight $2$ Character 78.5 Analytic conductor $0.623$ Analytic rank $0$ Dimension $12$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$78 = 2 \cdot 3 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 78.g (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.622833135766$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$6$$ over $$\Q(i)$$ Coefficient field: 12.0.58498535041007616.52 Defining polynomial: $$x^{12} - 12x^{9} + 72x^{6} - 324x^{3} + 729$$ x^12 - 12*x^9 + 72*x^6 - 324*x^3 + 729 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 5.3 Root $$-0.0980500 - 1.72927i$$ of defining polynomial Character $$\chi$$ $$=$$ 78.5 Dual form 78.2.g.a.47.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.707107 - 0.707107i) q^{2} +(1.29211 - 1.15345i) q^{3} +1.00000i q^{4} +(1.82732 + 1.82732i) q^{5} +(-1.72927 - 0.0980500i) q^{6} +(-2.63122 - 2.63122i) q^{7} +(0.707107 - 0.707107i) q^{8} +(0.339111 - 2.98077i) q^{9} +O(q^{10})$$ $$q+(-0.707107 - 0.707107i) q^{2} +(1.29211 - 1.15345i) q^{3} +1.00000i q^{4} +(1.82732 + 1.82732i) q^{5} +(-1.72927 - 0.0980500i) q^{6} +(-2.63122 - 2.63122i) q^{7} +(0.707107 - 0.707107i) q^{8} +(0.339111 - 2.98077i) q^{9} -2.58423i q^{10} +(-2.30690 + 2.30690i) q^{11} +(1.15345 + 1.29211i) q^{12} +(1.63122 + 3.21545i) q^{13} +3.72111i q^{14} +(4.46883 + 0.253383i) q^{15} -1.00000 q^{16} -1.34775 q^{17} +(-2.34751 + 1.86794i) q^{18} +(-3.58423 + 3.58423i) q^{19} +(-1.82732 + 1.82732i) q^{20} +(-6.43482 - 0.364855i) q^{21} +3.26245 q^{22} +3.65465 q^{23} +(0.0980500 - 1.72927i) q^{24} +1.67822i q^{25} +(1.12022 - 3.42711i) q^{26} +(-3.00000 - 4.24264i) q^{27} +(2.63122 - 2.63122i) q^{28} +3.65465i q^{29} +(-2.98077 - 3.33911i) q^{30} +(0.321779 - 0.321779i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-0.319883 + 5.64166i) q^{33} +(0.953002 + 0.953002i) q^{34} -9.61619i q^{35} +(2.98077 + 0.339111i) q^{36} +(1.95300 + 1.95300i) q^{37} +5.06886 q^{38} +(5.81658 + 2.27319i) q^{39} +2.58423 q^{40} +(-7.89729 - 7.89729i) q^{41} +(4.29211 + 4.80810i) q^{42} -9.10912i q^{43} +(-2.30690 - 2.30690i) q^{44} +(6.06650 - 4.82717i) q^{45} +(-2.58423 - 2.58423i) q^{46} +(4.72222 - 4.72222i) q^{47} +(-1.29211 + 1.15345i) q^{48} +6.84667i q^{49} +(1.18668 - 1.18668i) q^{50} +(-1.74144 + 1.55456i) q^{51} +(-3.21545 + 1.63122i) q^{52} +0.216838i q^{53} +(-0.878680 + 5.12132i) q^{54} -8.43090 q^{55} -3.72111 q^{56} +(-0.497002 + 8.76544i) q^{57} +(2.58423 - 2.58423i) q^{58} +(-3.65465 + 3.65465i) q^{59} +(-0.253383 + 4.46883i) q^{60} +6.52489 q^{61} -0.455064 q^{62} +(-8.73535 + 6.95080i) q^{63} -1.00000i q^{64} +(-2.89489 + 8.85644i) q^{65} +(4.21545 - 3.76307i) q^{66} +(2.26245 - 2.26245i) q^{67} -1.34775i q^{68} +(4.72222 - 4.21545i) q^{69} +(-6.79967 + 6.79967i) q^{70} +(0.108419 + 0.108419i) q^{71} +(-1.86794 - 2.34751i) q^{72} +(-3.58423 - 3.58423i) q^{73} -2.76196i q^{74} +(1.93574 + 2.16845i) q^{75} +(-3.58423 - 3.58423i) q^{76} +12.1399 q^{77} +(-2.50556 - 5.72033i) q^{78} +4.09400 q^{79} +(-1.82732 - 1.82732i) q^{80} +(-8.77001 - 2.02162i) q^{81} +11.1685i q^{82} +(10.5753 + 10.5753i) q^{83} +(0.364855 - 6.43482i) q^{84} +(-2.46277 - 2.46277i) q^{85} +(-6.44112 + 6.44112i) q^{86} +(4.21545 + 4.72222i) q^{87} +3.26245i q^{88} +(8.85644 - 8.85644i) q^{89} +(-7.70299 - 0.876338i) q^{90} +(4.16845 - 12.7527i) q^{91} +3.65465i q^{92} +(0.0446190 - 0.786930i) q^{93} -6.67822 q^{94} -13.0991 q^{95} +(1.72927 + 0.0980500i) q^{96} +(0.168451 - 0.168451i) q^{97} +(4.84133 - 4.84133i) q^{98} +(6.09404 + 7.65863i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12 q - 12 q^{7}+O(q^{10})$$ 12 * q - 12 * q^7 $$12 q - 12 q^{7} - 12 q^{16} - 12 q^{19} - 36 q^{27} + 12 q^{28} + 12 q^{31} + 36 q^{33} + 12 q^{37} + 36 q^{42} + 36 q^{45} + 12 q^{52} - 36 q^{54} - 36 q^{57} - 36 q^{63} - 12 q^{67} - 12 q^{73} - 12 q^{76} - 36 q^{78} + 72 q^{79} - 72 q^{85} - 12 q^{91} + 36 q^{93} - 72 q^{94} - 60 q^{97} + 36 q^{99}+O(q^{100})$$ 12 * q - 12 * q^7 - 12 * q^16 - 12 * q^19 - 36 * q^27 + 12 * q^28 + 12 * q^31 + 36 * q^33 + 12 * q^37 + 36 * q^42 + 36 * q^45 + 12 * q^52 - 36 * q^54 - 36 * q^57 - 36 * q^63 - 12 * q^67 - 12 * q^73 - 12 * q^76 - 36 * q^78 + 72 * q^79 - 72 * q^85 - 12 * q^91 + 36 * q^93 - 72 * q^94 - 60 * q^97 + 36 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/78\mathbb{Z}\right)^\times$$.

 $$n$$ $$53$$ $$67$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.707107 0.707107i −0.500000 0.500000i
$$3$$ 1.29211 1.15345i 0.746002 0.665944i
$$4$$ 1.00000i 0.500000i
$$5$$ 1.82732 + 1.82732i 0.817204 + 0.817204i 0.985702 0.168498i $$-0.0538917\pi$$
−0.168498 + 0.985702i $$0.553892\pi$$
$$6$$ −1.72927 0.0980500i −0.705973 0.0400288i
$$7$$ −2.63122 2.63122i −0.994509 0.994509i 0.00547608 0.999985i $$-0.498257\pi$$
−0.999985 + 0.00547608i $$0.998257\pi$$
$$8$$ 0.707107 0.707107i 0.250000 0.250000i
$$9$$ 0.339111 2.98077i 0.113037 0.993591i
$$10$$ 2.58423i 0.817204i
$$11$$ −2.30690 + 2.30690i −0.695556 + 0.695556i −0.963449 0.267893i $$-0.913673\pi$$
0.267893 + 0.963449i $$0.413673\pi$$
$$12$$ 1.15345 + 1.29211i 0.332972 + 0.373001i
$$13$$ 1.63122 + 3.21545i 0.452420 + 0.891805i
$$14$$ 3.72111i 0.994509i
$$15$$ 4.46883 + 0.253383i 1.15385 + 0.0654233i
$$16$$ −1.00000 −0.250000
$$17$$ −1.34775 −0.326877 −0.163439 0.986554i $$-0.552259\pi$$
−0.163439 + 0.986554i $$0.552259\pi$$
$$18$$ −2.34751 + 1.86794i −0.553314 + 0.440277i
$$19$$ −3.58423 + 3.58423i −0.822278 + 0.822278i −0.986434 0.164157i $$-0.947510\pi$$
0.164157 + 0.986434i $$0.447510\pi$$
$$20$$ −1.82732 + 1.82732i −0.408602 + 0.408602i
$$21$$ −6.43482 0.364855i −1.40419 0.0796179i
$$22$$ 3.26245 0.695556
$$23$$ 3.65465 0.762047 0.381023 0.924565i $$-0.375572\pi$$
0.381023 + 0.924565i $$0.375572\pi$$
$$24$$ 0.0980500 1.72927i 0.0200144 0.352986i
$$25$$ 1.67822i 0.335644i
$$26$$ 1.12022 3.42711i 0.219693 0.672112i
$$27$$ −3.00000 4.24264i −0.577350 0.816497i
$$28$$ 2.63122 2.63122i 0.497254 0.497254i
$$29$$ 3.65465i 0.678651i 0.940669 + 0.339325i $$0.110199\pi$$
−0.940669 + 0.339325i $$0.889801\pi$$
$$30$$ −2.98077 3.33911i −0.544212 0.609635i
$$31$$ 0.321779 0.321779i 0.0577932 0.0577932i −0.677619 0.735413i $$-0.736988\pi$$
0.735413 + 0.677619i $$0.236988\pi$$
$$32$$ 0.707107 + 0.707107i 0.125000 + 0.125000i
$$33$$ −0.319883 + 5.64166i −0.0556845 + 0.982087i
$$34$$ 0.953002 + 0.953002i 0.163439 + 0.163439i
$$35$$ 9.61619i 1.62543i
$$36$$ 2.98077 + 0.339111i 0.496795 + 0.0565184i
$$37$$ 1.95300 + 1.95300i 0.321072 + 0.321072i 0.849178 0.528107i $$-0.177098\pi$$
−0.528107 + 0.849178i $$0.677098\pi$$
$$38$$ 5.06886 0.822278
$$39$$ 5.81658 + 2.27319i 0.931398 + 0.364002i
$$40$$ 2.58423 0.408602
$$41$$ −7.89729 7.89729i −1.23335 1.23335i −0.962670 0.270680i $$-0.912752\pi$$
−0.270680 0.962670i $$-0.587248\pi$$
$$42$$ 4.29211 + 4.80810i 0.662287 + 0.741905i
$$43$$ 9.10912i 1.38913i −0.719431 0.694564i $$-0.755597\pi$$
0.719431 0.694564i $$-0.244403\pi$$
$$44$$ −2.30690 2.30690i −0.347778 0.347778i
$$45$$ 6.06650 4.82717i 0.904340 0.719592i
$$46$$ −2.58423 2.58423i −0.381023 0.381023i
$$47$$ 4.72222 4.72222i 0.688806 0.688806i −0.273162 0.961968i $$-0.588070\pi$$
0.961968 + 0.273162i $$0.0880695\pi$$
$$48$$ −1.29211 + 1.15345i −0.186500 + 0.166486i
$$49$$ 6.84667i 0.978096i
$$50$$ 1.18668 1.18668i 0.167822 0.167822i
$$51$$ −1.74144 + 1.55456i −0.243851 + 0.217682i
$$52$$ −3.21545 + 1.63122i −0.445903 + 0.226210i
$$53$$ 0.216838i 0.0297851i 0.999889 + 0.0148925i $$0.00474061\pi$$
−0.999889 + 0.0148925i $$0.995259\pi$$
$$54$$ −0.878680 + 5.12132i −0.119573 + 0.696923i
$$55$$ −8.43090 −1.13682
$$56$$ −3.72111 −0.497254
$$57$$ −0.497002 + 8.76544i −0.0658295 + 1.16101i
$$58$$ 2.58423 2.58423i 0.339325 0.339325i
$$59$$ −3.65465 + 3.65465i −0.475794 + 0.475794i −0.903784 0.427989i $$-0.859222\pi$$
0.427989 + 0.903784i $$0.359222\pi$$
$$60$$ −0.253383 + 4.46883i −0.0327117 + 0.576924i
$$61$$ 6.52489 0.835427 0.417713 0.908579i $$-0.362832\pi$$
0.417713 + 0.908579i $$0.362832\pi$$
$$62$$ −0.455064 −0.0577932
$$63$$ −8.73535 + 6.95080i −1.10055 + 0.875719i
$$64$$ 1.00000i 0.125000i
$$65$$ −2.89489 + 8.85644i −0.359067 + 1.09851i
$$66$$ 4.21545 3.76307i 0.518886 0.463201i
$$67$$ 2.26245 2.26245i 0.276402 0.276402i −0.555269 0.831671i $$-0.687385\pi$$
0.831671 + 0.555269i $$0.187385\pi$$
$$68$$ 1.34775i 0.163439i
$$69$$ 4.72222 4.21545i 0.568488 0.507480i
$$70$$ −6.79967 + 6.79967i −0.812717 + 0.812717i
$$71$$ 0.108419 + 0.108419i 0.0128670 + 0.0128670i 0.713511 0.700644i $$-0.247104\pi$$
−0.700644 + 0.713511i $$0.747104\pi$$
$$72$$ −1.86794 2.34751i −0.220138 0.276657i
$$73$$ −3.58423 3.58423i −0.419502 0.419502i 0.465530 0.885032i $$-0.345864\pi$$
−0.885032 + 0.465530i $$0.845864\pi$$
$$74$$ 2.76196i 0.321072i
$$75$$ 1.93574 + 2.16845i 0.223520 + 0.250391i
$$76$$ −3.58423 3.58423i −0.411139 0.411139i
$$77$$ 12.1399 1.38347
$$78$$ −2.50556 5.72033i −0.283698 0.647700i
$$79$$ 4.09400 0.460611 0.230305 0.973118i $$-0.426028\pi$$
0.230305 + 0.973118i $$0.426028\pi$$
$$80$$ −1.82732 1.82732i −0.204301 0.204301i
$$81$$ −8.77001 2.02162i −0.974445 0.224625i
$$82$$ 11.1685i 1.23335i
$$83$$ 10.5753 + 10.5753i 1.16079 + 1.16079i 0.984302 + 0.176492i $$0.0564751\pi$$
0.176492 + 0.984302i $$0.443525\pi$$
$$84$$ 0.364855 6.43482i 0.0398090 0.702096i
$$85$$ −2.46277 2.46277i −0.267125 0.267125i
$$86$$ −6.44112 + 6.44112i −0.694564 + 0.694564i
$$87$$ 4.21545 + 4.72222i 0.451944 + 0.506275i
$$88$$ 3.26245i 0.347778i
$$89$$ 8.85644 8.85644i 0.938780 0.938780i −0.0594508 0.998231i $$-0.518935\pi$$
0.998231 + 0.0594508i $$0.0189349\pi$$
$$90$$ −7.70299 0.876338i −0.811966 0.0923742i
$$91$$ 4.16845 12.7527i 0.436972 1.33684i
$$92$$ 3.65465i 0.381023i
$$93$$ 0.0446190 0.786930i 0.00462678 0.0816008i
$$94$$ −6.67822 −0.688806
$$95$$ −13.0991 −1.34394
$$96$$ 1.72927 + 0.0980500i 0.176493 + 0.0100072i
$$97$$ 0.168451 0.168451i 0.0171036 0.0171036i −0.698503 0.715607i $$-0.746150\pi$$
0.715607 + 0.698503i $$0.246150\pi$$
$$98$$ 4.84133 4.84133i 0.489048 0.489048i
$$99$$ 6.09404 + 7.65863i 0.612475 + 0.769721i
$$100$$ −1.67822 −0.167822
$$101$$ −17.7129 −1.76250 −0.881248 0.472653i $$-0.843296\pi$$
−0.881248 + 0.472653i $$0.843296\pi$$
$$102$$ 2.33063 + 0.132147i 0.230766 + 0.0130845i
$$103$$ 7.90600i 0.779002i 0.921026 + 0.389501i $$0.127352\pi$$
−0.921026 + 0.389501i $$0.872648\pi$$
$$104$$ 3.42711 + 1.12022i 0.336056 + 0.109846i
$$105$$ −11.0918 12.4252i −1.08245 1.21258i
$$106$$ 0.153328 0.153328i 0.0148925 0.0148925i
$$107$$ 4.61380i 0.446033i −0.974815 0.223016i $$-0.928410\pi$$
0.974815 0.223016i $$-0.0715903\pi$$
$$108$$ 4.24264 3.00000i 0.408248 0.288675i
$$109$$ 9.21545 9.21545i 0.882680 0.882680i −0.111126 0.993806i $$-0.535446\pi$$
0.993806 + 0.111126i $$0.0354458\pi$$
$$110$$ 5.96154 + 5.96154i 0.568411 + 0.568411i
$$111$$ 4.77619 + 0.270810i 0.453336 + 0.0257042i
$$112$$ 2.63122 + 2.63122i 0.248627 + 0.248627i
$$113$$ 3.43781i 0.323402i 0.986840 + 0.161701i $$0.0516980\pi$$
−0.986840 + 0.161701i $$0.948302\pi$$
$$114$$ 6.54954 5.84667i 0.613421 0.547591i
$$115$$ 6.67822 + 6.67822i 0.622747 + 0.622747i
$$116$$ −3.65465 −0.339325
$$117$$ 10.1377 3.77191i 0.937229 0.348713i
$$118$$ 5.16845 0.475794
$$119$$ 3.54623 + 3.54623i 0.325082 + 0.325082i
$$120$$ 3.33911 2.98077i 0.304818 0.272106i
$$121$$ 0.356442i 0.0324038i
$$122$$ −4.61380 4.61380i −0.417713 0.417713i
$$123$$ −19.3133 1.09507i −1.74142 0.0987389i
$$124$$ 0.321779 + 0.321779i 0.0288966 + 0.0288966i
$$125$$ 6.06996 6.06996i 0.542914 0.542914i
$$126$$ 11.0918 + 1.26187i 0.988135 + 0.112416i
$$127$$ 11.0745i 0.982699i 0.870962 + 0.491349i $$0.163496\pi$$
−0.870962 + 0.491349i $$0.836504\pi$$
$$128$$ −0.707107 + 0.707107i −0.0625000 + 0.0625000i
$$129$$ −10.5069 11.7700i −0.925081 1.03629i
$$130$$ 8.30944 4.21545i 0.728786 0.369719i
$$131$$ 18.1015i 1.58153i 0.612118 + 0.790767i $$0.290318\pi$$
−0.612118 + 0.790767i $$0.709682\pi$$
$$132$$ −5.64166 0.319883i −0.491044 0.0278422i
$$133$$ 18.8618 1.63553
$$134$$ −3.19958 −0.276402
$$135$$ 2.27071 13.2346i 0.195431 1.13906i
$$136$$ −0.953002 + 0.953002i −0.0817193 + 0.0817193i
$$137$$ 0.976593 0.976593i 0.0834360 0.0834360i −0.664157 0.747593i $$-0.731209\pi$$
0.747593 + 0.664157i $$0.231209\pi$$
$$138$$ −6.31988 0.358338i −0.537984 0.0305038i
$$139$$ −7.10912 −0.602988 −0.301494 0.953468i $$-0.597485\pi$$
−0.301494 + 0.953468i $$0.597485\pi$$
$$140$$ 9.61619 0.812717
$$141$$ 0.654800 11.5485i 0.0551441 0.972557i
$$142$$ 0.153328i 0.0128670i
$$143$$ −11.1808 3.65465i −0.934984 0.305617i
$$144$$ −0.339111 + 2.98077i −0.0282592 + 0.248398i
$$145$$ −6.67822 + 6.67822i −0.554596 + 0.554596i
$$146$$ 5.06886i 0.419502i
$$147$$ 7.89729 + 8.84667i 0.651357 + 0.729661i
$$148$$ −1.95300 + 1.95300i −0.160536 + 0.160536i
$$149$$ 8.85644 + 8.85644i 0.725548 + 0.725548i 0.969729 0.244182i $$-0.0785194\pi$$
−0.244182 + 0.969729i $$0.578519\pi$$
$$150$$ 0.164550 2.90210i 0.0134354 0.236956i
$$151$$ −11.7997 11.7997i −0.960244 0.960244i 0.0389955 0.999239i $$-0.487584\pi$$
−0.999239 + 0.0389955i $$0.987584\pi$$
$$152$$ 5.06886i 0.411139i
$$153$$ −0.457036 + 4.01733i −0.0369492 + 0.324782i
$$154$$ −8.58423 8.58423i −0.691737 0.691737i
$$155$$ 1.17599 0.0944576
$$156$$ −2.27319 + 5.81658i −0.182001 + 0.465699i
$$157$$ −18.8618 −1.50534 −0.752668 0.658401i $$-0.771233\pi$$
−0.752668 + 0.658401i $$0.771233\pi$$
$$158$$ −2.89489 2.89489i −0.230305 0.230305i
$$159$$ 0.250112 + 0.280180i 0.0198352 + 0.0222197i
$$160$$ 2.58423i 0.204301i
$$161$$ −9.61619 9.61619i −0.757862 0.757862i
$$162$$ 4.77183 + 7.63084i 0.374910 + 0.599535i
$$163$$ −2.81201 2.81201i −0.220254 0.220254i 0.588352 0.808605i $$-0.299777\pi$$
−0.808605 + 0.588352i $$0.799777\pi$$
$$164$$ 7.89729 7.89729i 0.616675 0.616675i
$$165$$ −10.8937 + 9.72461i −0.848071 + 0.757060i
$$166$$ 14.9558i 1.16079i
$$167$$ −0.959150 + 0.959150i −0.0742212 + 0.0742212i −0.743243 0.669022i $$-0.766713\pi$$
0.669022 + 0.743243i $$0.266713\pi$$
$$168$$ −4.80810 + 4.29211i −0.370953 + 0.331144i
$$169$$ −7.67822 + 10.4902i −0.590632 + 0.806941i
$$170$$ 3.48289i 0.267125i
$$171$$ 9.46831 + 11.8992i 0.724060 + 0.909955i
$$172$$ 9.10912 0.694564
$$173$$ 17.4960 1.33020 0.665099 0.746755i $$-0.268389\pi$$
0.665099 + 0.746755i $$0.268389\pi$$
$$174$$ 0.358338 6.31988i 0.0271655 0.479109i
$$175$$ 4.41577 4.41577i 0.333801 0.333801i
$$176$$ 2.30690 2.30690i 0.173889 0.173889i
$$177$$ −0.506767 + 8.93766i −0.0380909 + 0.671796i
$$178$$ −12.5249 −0.938780
$$179$$ −18.1015 −1.35297 −0.676484 0.736458i $$-0.736497\pi$$
−0.676484 + 0.736458i $$0.736497\pi$$
$$180$$ 4.82717 + 6.06650i 0.359796 + 0.452170i
$$181$$ 1.90600i 0.141672i 0.997488 + 0.0708361i $$0.0225667\pi$$
−0.997488 + 0.0708361i $$0.977433\pi$$
$$182$$ −11.9650 + 6.06996i −0.886908 + 0.449936i
$$183$$ 8.43090 7.52613i 0.623230 0.556348i
$$184$$ 2.58423 2.58423i 0.190512 0.190512i
$$185$$ 7.13753i 0.524762i
$$186$$ −0.587994 + 0.524893i −0.0431138 + 0.0384870i
$$187$$ 3.10912 3.10912i 0.227361 0.227361i
$$188$$ 4.72222 + 4.72222i 0.344403 + 0.344403i
$$189$$ −3.26967 + 19.0570i −0.237833 + 1.38619i
$$190$$ 9.26245 + 9.26245i 0.671969 + 0.671969i
$$191$$ 6.35014i 0.459480i 0.973252 + 0.229740i $$0.0737876\pi$$
−0.973252 + 0.229740i $$0.926212\pi$$
$$192$$ −1.15345 1.29211i −0.0832430 0.0932502i
$$193$$ −4.26245 4.26245i −0.306818 0.306818i 0.536856 0.843674i $$-0.319612\pi$$
−0.843674 + 0.536856i $$0.819612\pi$$
$$194$$ −0.238226 −0.0171036
$$195$$ 6.47492 + 14.7826i 0.463679 + 1.05861i
$$196$$ −6.84667 −0.489048
$$197$$ −2.78647 2.78647i −0.198528 0.198528i 0.600841 0.799369i $$-0.294833\pi$$
−0.799369 + 0.600841i $$0.794833\pi$$
$$198$$ 1.10633 9.72461i 0.0786235 0.691098i
$$199$$ 17.2927i 1.22585i 0.790142 + 0.612923i $$0.210007\pi$$
−0.790142 + 0.612923i $$0.789993\pi$$
$$200$$ 1.18668 + 1.18668i 0.0839111 + 0.0839111i
$$201$$ 0.313719 5.53295i 0.0221280 0.390264i
$$202$$ 12.5249 + 12.5249i 0.881248 + 0.881248i
$$203$$ 9.61619 9.61619i 0.674924 0.674924i
$$204$$ −1.55456 1.74144i −0.108841 0.121925i
$$205$$ 28.8618i 2.01580i
$$206$$ 5.59039 5.59039i 0.389501 0.389501i
$$207$$ 1.23933 10.8937i 0.0861393 0.757162i
$$208$$ −1.63122 3.21545i −0.113105 0.222951i
$$209$$ 16.5369i 1.14388i
$$210$$ −0.942868 + 16.6290i −0.0650641 + 1.14751i
$$211$$ 9.41577 0.648209 0.324104 0.946021i $$-0.394937\pi$$
0.324104 + 0.946021i $$0.394937\pi$$
$$212$$ −0.216838 −0.0148925
$$213$$ 0.265146 + 0.0150338i 0.0181675 + 0.00103010i
$$214$$ −3.26245 + 3.26245i −0.223016 + 0.223016i
$$215$$ 16.6453 16.6453i 1.13520 1.13520i
$$216$$ −5.12132 0.878680i −0.348462 0.0597866i
$$217$$ −1.69334 −0.114952
$$218$$ −13.0326 −0.882680
$$219$$ −8.76544 0.497002i −0.592314 0.0335843i
$$220$$ 8.43090i 0.568411i
$$221$$ −2.19848 4.33362i −0.147886 0.291511i
$$222$$ −3.18578 3.56877i −0.213816 0.239520i
$$223$$ −5.89367 + 5.89367i −0.394669 + 0.394669i −0.876348 0.481679i $$-0.840027\pi$$
0.481679 + 0.876348i $$0.340027\pi$$
$$224$$ 3.72111i 0.248627i
$$225$$ 5.00240 + 0.569103i 0.333493 + 0.0379402i
$$226$$ 2.43090 2.43090i 0.161701 0.161701i
$$227$$ −9.22759 9.22759i −0.612457 0.612457i 0.331129 0.943586i $$-0.392571\pi$$
−0.943586 + 0.331129i $$0.892571\pi$$
$$228$$ −8.76544 0.497002i −0.580506 0.0329148i
$$229$$ 9.21545 + 9.21545i 0.608974 + 0.608974i 0.942678 0.333704i $$-0.108299\pi$$
−0.333704 + 0.942678i $$0.608299\pi$$
$$230$$ 9.44443i 0.622747i
$$231$$ 15.6862 14.0028i 1.03207 0.921316i
$$232$$ 2.58423 + 2.58423i 0.169663 + 0.169663i
$$233$$ −2.52374 −0.165335 −0.0826677 0.996577i $$-0.526344\pi$$
−0.0826677 + 0.996577i $$0.526344\pi$$
$$234$$ −9.83557 4.50128i −0.642971 0.294258i
$$235$$ 17.2580 1.12579
$$236$$ −3.65465 3.65465i −0.237897 0.237897i
$$237$$ 5.28990 4.72222i 0.343616 0.306741i
$$238$$ 5.01512i 0.325082i
$$239$$ −7.20087 7.20087i −0.465786 0.465786i 0.434760 0.900546i $$-0.356833\pi$$
−0.900546 + 0.434760i $$0.856833\pi$$
$$240$$ −4.46883 0.253383i −0.288462 0.0163558i
$$241$$ 20.4460 + 20.4460i 1.31704 + 1.31704i 0.916105 + 0.400939i $$0.131316\pi$$
0.400939 + 0.916105i $$0.368684\pi$$
$$242$$ 0.252043 0.252043i 0.0162019 0.0162019i
$$243$$ −13.6637 + 7.50359i −0.876525 + 0.481356i
$$244$$ 6.52489i 0.417713i
$$245$$ −12.5111 + 12.5111i −0.799304 + 0.799304i
$$246$$ 12.8822 + 14.4309i 0.821342 + 0.920080i
$$247$$ −17.3716 5.67822i −1.10533 0.361297i
$$248$$ 0.455064i 0.0288966i
$$249$$ 25.8626 + 1.46642i 1.63898 + 0.0929303i
$$250$$ −8.58423 −0.542914
$$251$$ 18.4901 1.16708 0.583541 0.812083i $$-0.301667\pi$$
0.583541 + 0.812083i $$0.301667\pi$$
$$252$$ −6.95080 8.73535i −0.437859 0.550276i
$$253$$ −8.43090 + 8.43090i −0.530046 + 0.530046i
$$254$$ 7.83082 7.83082i 0.491349 0.491349i
$$255$$ −6.02286 0.341497i −0.377166 0.0213854i
$$256$$ 1.00000 0.0625000
$$257$$ 13.6696 0.852688 0.426344 0.904561i $$-0.359801\pi$$
0.426344 + 0.904561i $$0.359801\pi$$
$$258$$ −0.893149 + 15.7522i −0.0556050 + 0.980686i
$$259$$ 10.2776i 0.638617i
$$260$$ −8.85644 2.89489i −0.549253 0.179534i
$$261$$ 10.8937 + 1.23933i 0.674301 + 0.0767126i
$$262$$ 12.7997 12.7997i 0.790767 0.790767i
$$263$$ 14.6186i 0.901421i −0.892670 0.450710i $$-0.851171\pi$$
0.892670 0.450710i $$-0.148829\pi$$
$$264$$ 3.76307 + 4.21545i 0.231601 + 0.259443i
$$265$$ −0.396234 + 0.396234i −0.0243405 + 0.0243405i
$$266$$ −13.3373 13.3373i −0.817763 0.817763i
$$267$$ 1.22807 21.6590i 0.0751564 1.32551i
$$268$$ 2.26245 + 2.26245i 0.138201 + 0.138201i
$$269$$ 15.7946i 0.963012i 0.876443 + 0.481506i $$0.159910\pi$$
−0.876443 + 0.481506i $$0.840090\pi$$
$$270$$ −10.9639 + 7.75268i −0.667244 + 0.471813i
$$271$$ 16.2306 + 16.2306i 0.985937 + 0.985937i 0.999902 0.0139655i $$-0.00444549\pi$$
−0.0139655 + 0.999902i $$0.504445\pi$$
$$272$$ 1.34775 0.0817193
$$273$$ −9.32345 21.2860i −0.564281 1.28829i
$$274$$ −1.38111 −0.0834360
$$275$$ −3.87149 3.87149i −0.233459 0.233459i
$$276$$ 4.21545 + 4.72222i 0.253740 + 0.284244i
$$277$$ 26.1489i 1.57114i −0.618775 0.785568i $$-0.712371\pi$$
0.618775 0.785568i $$-0.287629\pi$$
$$278$$ 5.02691 + 5.02691i 0.301494 + 0.301494i
$$279$$ −0.850031 1.06827i −0.0508900 0.0639555i
$$280$$ −6.79967 6.79967i −0.406358 0.406358i
$$281$$ −3.06665 + 3.06665i −0.182941 + 0.182941i −0.792636 0.609695i $$-0.791292\pi$$
0.609695 + 0.792636i $$0.291292\pi$$
$$282$$ −8.62901 + 7.70299i −0.513850 + 0.458706i
$$283$$ 9.35644i 0.556183i 0.960555 + 0.278091i $$0.0897018\pi$$
−0.960555 + 0.278091i $$0.910298\pi$$
$$284$$ −0.108419 + 0.108419i −0.00643350 + 0.00643350i
$$285$$ −16.9255 + 15.1091i −1.00258 + 0.894987i
$$286$$ 5.32178 + 10.4902i 0.314683 + 0.620300i
$$287$$ 41.5591i 2.45315i
$$288$$ 2.34751 1.86794i 0.138328 0.110069i
$$289$$ −15.1836 −0.893151
$$290$$ 9.44443 0.554596
$$291$$ 0.0233580 0.411957i 0.00136927 0.0241493i
$$292$$ 3.58423 3.58423i 0.209751 0.209751i
$$293$$ −3.00331 + 3.00331i −0.175455 + 0.175455i −0.789371 0.613916i $$-0.789593\pi$$
0.613916 + 0.789371i $$0.289593\pi$$
$$294$$ 0.671316 11.8398i 0.0391520 0.690509i
$$295$$ −13.3564 −0.777642
$$296$$ 2.76196 0.160536
$$297$$ 16.7080 + 2.86665i 0.969498 + 0.166340i
$$298$$ 12.5249i 0.725548i
$$299$$ 5.96154 + 11.7513i 0.344765 + 0.679597i
$$300$$ −2.16845 + 1.93574i −0.125196 + 0.111760i
$$301$$ −23.9681 + 23.9681i −1.38150 + 1.38150i
$$302$$ 16.6873i 0.960244i
$$303$$ −22.8870 + 20.4309i −1.31483 + 1.17372i
$$304$$ 3.58423 3.58423i 0.205569 0.205569i
$$305$$ 11.9231 + 11.9231i 0.682714 + 0.682714i
$$306$$ 3.16386 2.51751i 0.180866 0.143916i
$$307$$ −3.24732 3.24732i −0.185335 0.185335i 0.608341 0.793676i $$-0.291835\pi$$
−0.793676 + 0.608341i $$0.791835\pi$$
$$308$$ 12.1399i 0.691737i
$$309$$ 9.11917 + 10.2154i 0.518772 + 0.581137i
$$310$$ −0.831549 0.831549i −0.0472288 0.0472288i
$$311$$ −3.43781 −0.194940 −0.0974701 0.995238i $$-0.531075\pi$$
−0.0974701 + 0.995238i $$0.531075\pi$$
$$312$$ 5.72033 2.50556i 0.323850 0.141849i
$$313$$ 1.50977 0.0853373 0.0426686 0.999089i $$-0.486414\pi$$
0.0426686 + 0.999089i $$0.486414\pi$$
$$314$$ 13.3373 + 13.3373i 0.752668 + 0.752668i
$$315$$ −28.6637 3.26095i −1.61502 0.183734i
$$316$$ 4.09400i 0.230305i
$$317$$ −16.1657 16.1657i −0.907958 0.907958i 0.0881494 0.996107i $$-0.471905\pi$$
−0.996107 + 0.0881494i $$0.971905\pi$$
$$318$$ 0.0212610 0.374973i 0.00119226 0.0210274i
$$319$$ −8.43090 8.43090i −0.472040 0.472040i
$$320$$ 1.82732 1.82732i 0.102150 0.102150i
$$321$$ −5.32178 5.96154i −0.297033 0.332741i
$$322$$ 13.5993i 0.757862i
$$323$$ 4.83063 4.83063i 0.268784 0.268784i
$$324$$ 2.02162 8.77001i 0.112312 0.487223i
$$325$$ −5.39623 + 2.73755i −0.299329 + 0.151852i
$$326$$ 3.97678i 0.220254i
$$327$$ 1.27785 22.5369i 0.0706652 1.24630i
$$328$$ −11.1685 −0.616675
$$329$$ −24.8504 −1.37005
$$330$$ 14.5793 + 0.826650i 0.802565 + 0.0455056i
$$331$$ 5.52489 5.52489i 0.303676 0.303676i −0.538774 0.842450i $$-0.681112\pi$$
0.842450 + 0.538774i $$0.181112\pi$$
$$332$$ −10.5753 + 10.5753i −0.580397 + 0.580397i
$$333$$ 6.48374 5.15917i 0.355307 0.282721i
$$334$$ 1.35644 0.0742212
$$335$$ 8.26844 0.451753
$$336$$ 6.43482 + 0.364855i 0.351048 + 0.0199045i
$$337$$ 18.8271i 1.02558i −0.858514 0.512790i $$-0.828612\pi$$
0.858514 0.512790i $$-0.171388\pi$$
$$338$$ 12.8470 1.98839i 0.698787 0.108154i
$$339$$ 3.96534 + 4.44204i 0.215368 + 0.241258i
$$340$$ 2.46277 2.46277i 0.133563 0.133563i
$$341$$ 1.48462i 0.0803968i
$$342$$ 1.71890 15.1091i 0.0929477 0.817008i
$$343$$ −0.403440 + 0.403440i −0.0217837 + 0.0217837i
$$344$$ −6.44112 6.44112i −0.347282 0.347282i
$$345$$ 16.3320 + 0.926027i 0.879285 + 0.0498556i
$$346$$ −12.3716 12.3716i −0.665099 0.665099i
$$347$$ 29.2823i 1.57195i −0.618256 0.785977i $$-0.712160\pi$$
0.618256 0.785977i $$-0.287840\pi$$
$$348$$ −4.72222 + 4.21545i −0.253137 + 0.225972i
$$349$$ 4.87855 + 4.87855i 0.261143 + 0.261143i 0.825518 0.564376i $$-0.190883\pi$$
−0.564376 + 0.825518i $$0.690883\pi$$
$$350$$ −6.24485 −0.333801
$$351$$ 8.74832 16.5670i 0.466951 0.884283i
$$352$$ −3.26245 −0.173889
$$353$$ 5.59039 + 5.59039i 0.297546 + 0.297546i 0.840052 0.542506i $$-0.182524\pi$$
−0.542506 + 0.840052i $$0.682524\pi$$
$$354$$ 6.67822 5.96154i 0.354943 0.316853i
$$355$$ 0.396234i 0.0210299i
$$356$$ 8.85644 + 8.85644i 0.469390 + 0.469390i
$$357$$ 8.67252 + 0.491733i 0.458998 + 0.0260253i
$$358$$ 12.7997 + 12.7997i 0.676484 + 0.676484i
$$359$$ −12.8822 + 12.8822i −0.679899 + 0.679899i −0.959977 0.280079i $$-0.909639\pi$$
0.280079 + 0.959977i $$0.409639\pi$$
$$360$$ 0.876338 7.70299i 0.0461871 0.405983i
$$361$$ 6.69334i 0.352281i
$$362$$ 1.34775 1.34775i 0.0708361 0.0708361i
$$363$$ 0.411138 + 0.460564i 0.0215791 + 0.0241733i
$$364$$ 12.7527 + 4.16845i 0.668422 + 0.218486i
$$365$$ 13.0991i 0.685637i
$$366$$ −11.2833 0.639766i −0.589789 0.0334411i
$$367$$ 7.56910 0.395104 0.197552 0.980292i $$-0.436701\pi$$
0.197552 + 0.980292i $$0.436701\pi$$
$$368$$ −3.65465 −0.190512
$$369$$ −26.2181 + 20.8620i −1.36486 + 1.08603i
$$370$$ 5.04700 5.04700i 0.262381 0.262381i
$$371$$ 0.570551 0.570551i 0.0296215 0.0296215i
$$372$$ 0.786930 + 0.0446190i 0.0408004 + 0.00231339i
$$373$$ 15.8120 0.818715 0.409357 0.912374i $$-0.365753\pi$$
0.409357 + 0.912374i $$0.365753\pi$$
$$374$$ −4.39696 −0.227361
$$375$$ 0.841683 14.8445i 0.0434643 0.766565i
$$376$$ 6.67822i 0.344403i
$$377$$ −11.7513 + 5.96154i −0.605224 + 0.307035i
$$378$$ 15.7873 11.1633i 0.812013 0.574180i
$$379$$ 5.33690 5.33690i 0.274138 0.274138i −0.556625 0.830764i $$-0.687904\pi$$
0.830764 + 0.556625i $$0.187904\pi$$
$$380$$ 13.0991i 0.671969i
$$381$$ 12.7738 + 14.3094i 0.654423 + 0.733095i
$$382$$ 4.49023 4.49023i 0.229740 0.229740i
$$383$$ 10.8555 + 10.8555i 0.554691 + 0.554691i 0.927791 0.373100i $$-0.121705\pi$$
−0.373100 + 0.927791i $$0.621705\pi$$
$$384$$ −0.0980500 + 1.72927i −0.00500359 + 0.0882466i
$$385$$ 22.1836 + 22.1836i 1.13058 + 1.13058i
$$386$$ 6.02801i 0.306818i
$$387$$ −27.1522 3.08900i −1.38022 0.157023i
$$388$$ 0.168451 + 0.168451i 0.00855180 + 0.00855180i
$$389$$ 4.61380 0.233929 0.116964 0.993136i $$-0.462684\pi$$
0.116964 + 0.993136i $$0.462684\pi$$
$$390$$ 5.87443 15.0314i 0.297464 0.761142i
$$391$$ −4.92554 −0.249096
$$392$$ 4.84133 + 4.84133i 0.244524 + 0.244524i
$$393$$ 20.8791 + 23.3891i 1.05321 + 1.17983i
$$394$$ 3.94067i 0.198528i
$$395$$ 7.48105 + 7.48105i 0.376413 + 0.376413i
$$396$$ −7.65863 + 6.09404i −0.384861 + 0.306237i
$$397$$ −12.5400 12.5400i −0.629365 0.629365i 0.318543 0.947908i $$-0.396806\pi$$
−0.947908 + 0.318543i $$0.896806\pi$$
$$398$$ 12.2278 12.2278i 0.612923 0.612923i
$$399$$ 24.3716 21.7561i 1.22010 1.08917i
$$400$$ 1.67822i 0.0839111i
$$401$$ 3.63720 3.63720i 0.181633 0.181633i −0.610434 0.792067i $$-0.709005\pi$$
0.792067 + 0.610434i $$0.209005\pi$$
$$402$$ −4.13422 + 3.69056i −0.206196 + 0.184068i
$$403$$ 1.55956 + 0.509770i 0.0776870 + 0.0253935i
$$404$$ 17.7129i 0.881248i
$$405$$ −12.3315 19.7198i −0.612756 0.979885i
$$406$$ −13.5993 −0.674924
$$407$$ −9.01075 −0.446646
$$408$$ −0.132147 + 2.33063i −0.00654224 + 0.115383i
$$409$$ 18.5993 18.5993i 0.919679 0.919679i −0.0773272 0.997006i $$-0.524639\pi$$
0.997006 + 0.0773272i $$0.0246386\pi$$
$$410$$ −20.4084 + 20.4084i −1.00790 + 1.00790i
$$411$$ 0.135418 2.38832i 0.00667968 0.117807i
$$412$$ −7.90600 −0.389501
$$413$$ 19.2324 0.946364
$$414$$ −8.57933 + 6.82665i −0.421651 + 0.335512i
$$415$$ 38.6491i 1.89721i
$$416$$ −1.12022 + 3.42711i −0.0549231 + 0.168028i
$$417$$ −9.18578 + 8.20001i −0.449830 + 0.401556i
$$418$$ −11.6933 + 11.6933i −0.571940 + 0.571940i
$$419$$ 0.353712i 0.0172800i −0.999963 0.00863998i $$-0.997250\pi$$
0.999963 0.00863998i $$-0.00275023\pi$$
$$420$$ 12.4252 11.0918i 0.606288 0.541224i
$$421$$ −22.9088 + 22.9088i −1.11651 + 1.11651i −0.124256 + 0.992250i $$0.539654\pi$$
−0.992250 + 0.124256i $$0.960346\pi$$
$$422$$ −6.65796 6.65796i −0.324104 0.324104i
$$423$$ −12.4745 15.6772i −0.606531 0.762252i
$$424$$ 0.153328 + 0.153328i 0.00744626 + 0.00744626i
$$425$$ 2.26182i 0.109714i
$$426$$ −0.176856 0.198117i −0.00856870 0.00959880i
$$427$$ −17.1685 17.1685i −0.830840 0.830840i
$$428$$ 4.61380 0.223016
$$429$$ −18.6623 + 8.17424i −0.901023 + 0.394656i
$$430$$ −23.5400 −1.13520
$$431$$ 5.89820 + 5.89820i 0.284106 + 0.284106i 0.834744 0.550638i $$-0.185615\pi$$
−0.550638 + 0.834744i $$0.685615\pi$$
$$432$$ 3.00000 + 4.24264i 0.144338 + 0.204124i
$$433$$ 37.6093i 1.80739i −0.428177 0.903695i $$-0.640844\pi$$
0.428177 0.903695i $$-0.359156\pi$$
$$434$$ 1.19738 + 1.19738i 0.0574758 + 0.0574758i
$$435$$ −0.926027 + 16.3320i −0.0443996 + 0.783060i
$$436$$ 9.21545 + 9.21545i 0.441340 + 0.441340i
$$437$$ −13.0991 + 13.0991i −0.626614 + 0.626614i
$$438$$ 5.84667 + 6.54954i 0.279365 + 0.312949i
$$439$$ 18.0000i 0.859093i −0.903045 0.429547i $$-0.858673\pi$$
0.903045 0.429547i $$-0.141327\pi$$
$$440$$ −5.96154 + 5.96154i −0.284205 + 0.284205i
$$441$$ 20.4084 + 2.32178i 0.971827 + 0.110561i
$$442$$ −1.50977 + 4.61889i −0.0718124 + 0.219698i
$$443$$ 30.8018i 1.46344i −0.681608 0.731718i $$-0.738719\pi$$
0.681608 0.731718i $$-0.261281\pi$$
$$444$$ −0.270810 + 4.77619i −0.0128521 + 0.226668i
$$445$$ 32.3671 1.53435
$$446$$ 8.33491 0.394669
$$447$$ 21.6590 + 1.22807i 1.02443 + 0.0580855i
$$448$$ −2.63122 + 2.63122i −0.124314 + 0.124314i
$$449$$ −19.2149 + 19.2149i −0.906809 + 0.906809i −0.996013 0.0892043i $$-0.971568\pi$$
0.0892043 + 0.996013i $$0.471568\pi$$
$$450$$ −3.13481 3.93964i −0.147776 0.185717i
$$451$$ 36.4365 1.71573
$$452$$ −3.43781 −0.161701
$$453$$ −28.8568 1.63619i −1.35581 0.0768747i
$$454$$ 13.0498i 0.612457i
$$455$$ 30.9204 15.6862i 1.44957 0.735378i
$$456$$ 5.84667 + 6.54954i 0.273796 + 0.306710i
$$457$$ 11.4656 11.4656i 0.536336 0.536336i −0.386115 0.922451i $$-0.626183\pi$$
0.922451 + 0.386115i $$0.126183\pi$$
$$458$$ 13.0326i 0.608974i
$$459$$ 4.04325 + 5.71801i 0.188723 + 0.266894i
$$460$$ −6.67822 + 6.67822i −0.311374 + 0.311374i
$$461$$ −2.60452 2.60452i −0.121305 0.121305i 0.643848 0.765153i $$-0.277337\pi$$
−0.765153 + 0.643848i $$0.777337\pi$$
$$462$$ −20.9933 1.19032i −0.976695 0.0553787i
$$463$$ 8.20311 + 8.20311i 0.381231 + 0.381231i 0.871546 0.490315i $$-0.163118\pi$$
−0.490315 + 0.871546i $$0.663118\pi$$
$$464$$ 3.65465i 0.169663i
$$465$$ 1.51951 1.35644i 0.0704655 0.0629035i
$$466$$ 1.78455 + 1.78455i 0.0826677 + 0.0826677i
$$467$$ −22.7603 −1.05322 −0.526612 0.850106i $$-0.676538\pi$$
−0.526612 + 0.850106i $$0.676538\pi$$
$$468$$ 3.77191 + 10.1377i 0.174357 + 0.468615i
$$469$$ −11.9060 −0.549768
$$470$$ −12.2033 12.2033i −0.562895 0.562895i
$$471$$ −24.3716 + 21.7561i −1.12298 + 1.00247i
$$472$$ 5.16845i 0.237897i
$$473$$ 21.0138 + 21.0138i 0.966216 + 0.966216i
$$474$$ −7.07964 0.401416i −0.325179 0.0184377i
$$475$$ −6.01512 6.01512i −0.275993 0.275993i
$$476$$ −3.54623 + 3.54623i −0.162541 + 0.162541i
$$477$$ 0.646346 + 0.0735322i 0.0295942 + 0.00336681i
$$478$$ 10.1836i 0.465786i
$$479$$ 17.3876 17.3876i 0.794460 0.794460i −0.187755 0.982216i $$-0.560121\pi$$
0.982216 + 0.187755i $$0.0601212\pi$$
$$480$$ 2.98077 + 3.33911i 0.136053 + 0.152409i
$$481$$ −3.09400 + 9.46556i −0.141074 + 0.431592i
$$482$$ 28.9150i 1.31704i
$$483$$ −23.5170 1.33342i −1.07006 0.0606725i
$$484$$ −0.356442 −0.0162019
$$485$$ 0.615628 0.0279542
$$486$$ 14.9675 + 4.35584i 0.678941 + 0.197585i
$$487$$ −10.0151 + 10.0151i −0.453829 + 0.453829i −0.896623 0.442795i $$-0.853987\pi$$
0.442795 + 0.896623i $$0.353987\pi$$
$$488$$ 4.61380 4.61380i 0.208857 0.208857i
$$489$$ −6.87694 0.389923i −0.310986 0.0176329i
$$490$$ 17.6933 0.799304
$$491$$ 0.822276 0.0371088 0.0185544 0.999828i $$-0.494094\pi$$
0.0185544 + 0.999828i $$0.494094\pi$$
$$492$$ 1.09507 19.3133i 0.0493694 0.870711i
$$493$$ 4.92554i 0.221835i
$$494$$ 8.26844 + 16.2987i 0.372015 + 0.733311i
$$495$$ −2.85901 + 25.1306i −0.128503 + 1.12954i
$$496$$ −0.321779 + 0.321779i −0.0144483 + 0.0144483i
$$497$$ 0.570551i 0.0255927i
$$498$$ −17.2507 19.3246i −0.773024 0.865955i
$$499$$ −4.32178 + 4.32178i −0.193469 + 0.193469i −0.797193 0.603724i $$-0.793683\pi$$
0.603724 + 0.797193i $$0.293683\pi$$
$$500$$ 6.06996 + 6.06996i 0.271457 + 0.271457i
$$501$$ −0.132999 + 2.34566i −0.00594197 + 0.104796i
$$502$$ −13.0745 13.0745i −0.583541 0.583541i
$$503$$ 38.1212i 1.69974i 0.526991 + 0.849871i $$0.323320\pi$$
−0.526991 + 0.849871i $$0.676680\pi$$
$$504$$ −1.26187 + 11.0918i −0.0562081 + 0.494067i
$$505$$ −32.3671 32.3671i −1.44032 1.44032i
$$506$$ 11.9231 0.530046
$$507$$ 2.17882 + 22.4110i 0.0967647 + 0.995307i
$$508$$ −11.0745 −0.491349
$$509$$ −20.7795 20.7795i −0.921036 0.921036i 0.0760664 0.997103i $$-0.475764\pi$$
−0.997103 + 0.0760664i $$0.975764\pi$$
$$510$$ 4.01733 + 4.50028i 0.177890 + 0.199276i
$$511$$ 18.8618i 0.834397i
$$512$$ −0.707107 0.707107i −0.0312500 0.0312500i
$$513$$ 25.9593 + 4.45390i 1.14613 + 0.196645i
$$514$$ −9.66589 9.66589i −0.426344 0.426344i
$$515$$ −14.4468 + 14.4468i −0.636603 + 0.636603i
$$516$$ 11.7700 10.5069i 0.518146 0.462541i
$$517$$ 21.7873i 0.958206i
$$518$$ −7.26734 + 7.26734i −0.319309 + 0.319309i
$$519$$ 22.6068 20.1808i 0.992331 0.885838i
$$520$$ 4.21545 + 8.30944i 0.184860 + 0.364393i
$$521$$ 0.171761i 0.00752497i 0.999993 + 0.00376248i $$0.00119764\pi$$
−0.999993 + 0.00376248i $$0.998802\pi$$
$$522$$ −6.82665 8.57933i −0.298794 0.375507i
$$523$$ 20.8618 0.912223 0.456111 0.889923i $$-0.349242\pi$$
0.456111 + 0.889923i $$0.349242\pi$$
$$524$$ −18.1015 −0.790767
$$525$$ 0.612308 10.7990i 0.0267233 0.471309i
$$526$$ −10.3369 + 10.3369i −0.450710 + 0.450710i
$$527$$ −0.433677 + 0.433677i −0.0188913 + 0.0188913i
$$528$$ 0.319883 5.64166i 0.0139211 0.245522i
$$529$$ −9.64356 −0.419285
$$530$$ 0.560360 0.0243405
$$531$$ 9.65434 + 12.1330i 0.418963 + 0.526527i
$$532$$ 18.8618i 0.817763i
$$533$$ 12.5111 38.2756i 0.541915 1.65790i
$$534$$ −16.1836 + 14.4468i −0.700332 + 0.625175i
$$535$$ 8.43090 8.43090i 0.364499 0.364499i
$$536$$ 3.19958i 0.138201i
$$537$$ −23.3891 + 20.8791i −1.00932 + 0.901001i
$$538$$ 11.1685 11.1685i 0.481506 0.481506i
$$539$$ −15.7946 15.7946i −0.680320 0.680320i
$$540$$ 13.2346 + 2.27071i 0.569528 + 0.0977156i
$$541$$ −22.6021 22.6021i −0.971742 0.971742i 0.0278698 0.999612i $$-0.491128\pi$$
−0.999612 + 0.0278698i $$0.991128\pi$$
$$542$$ 22.9535i 0.985937i
$$543$$ 2.19848 + 2.46277i 0.0943458 + 0.105688i
$$544$$ −0.953002 0.953002i −0.0408596 0.0408596i
$$545$$ 33.6792 1.44266
$$546$$ −8.45879 + 21.6441i −0.362003 + 0.926284i
$$547$$ 33.7527 1.44316 0.721580 0.692331i $$-0.243416\pi$$
0.721580 + 0.692331i $$0.243416\pi$$
$$548$$ 0.976593 + 0.976593i 0.0417180 + 0.0417180i
$$549$$ 2.21266 19.4492i 0.0944340 0.830073i
$$550$$ 5.47511i 0.233459i
$$551$$ −13.0991 13.0991i −0.558039 0.558039i
$$552$$ 0.358338 6.31988i 0.0152519 0.268992i
$$553$$ −10.7722 10.7722i −0.458081 0.458081i
$$554$$ −18.4901 + 18.4901i −0.785568 + 0.785568i
$$555$$ 8.23278 + 9.22250i 0.349462 + 0.391473i
$$556$$ 7.10912i 0.301494i
$$557$$ −7.40027 + 7.40027i −0.313559 + 0.313559i −0.846287 0.532727i $$-0.821167\pi$$
0.532727 + 0.846287i $$0.321167\pi$$
$$558$$ −0.154317 + 1.35644i −0.00653276 + 0.0574228i
$$559$$ 29.2899 14.8590i 1.23883 0.628469i
$$560$$ 9.61619i 0.406358i
$$561$$ 0.431122 7.60354i 0.0182020 0.321022i
$$562$$ 4.33690 0.182941
$$563$$ −38.1111 −1.60619 −0.803095 0.595851i $$-0.796815\pi$$
−0.803095 + 0.595851i $$0.796815\pi$$
$$564$$ 11.5485 + 0.654800i 0.486278 + 0.0275720i
$$565$$ −6.28199 + 6.28199i −0.264285 + 0.264285i
$$566$$ 6.61600 6.61600i 0.278091 0.278091i
$$567$$ 17.7565 + 28.3952i 0.745703 + 1.19249i
$$568$$ 0.153328 0.00643350
$$569$$ 38.2930 1.60533 0.802663 0.596433i $$-0.203416\pi$$
0.802663 + 0.596433i $$0.203416\pi$$
$$570$$ 22.6519 + 1.28436i 0.948783 + 0.0537961i
$$571$$ 34.6145i 1.44857i 0.689500 + 0.724285i $$0.257830\pi$$
−0.689500 + 0.724285i $$0.742170\pi$$
$$572$$ 3.65465 11.1808i 0.152808 0.467492i
$$573$$ 7.32457 + 8.20510i 0.305988 + 0.342773i
$$574$$ 29.3867 29.3867i 1.22658 1.22658i
$$575$$ 6.13331i 0.255777i
$$576$$ −2.98077 0.339111i −0.124199 0.0141296i
$$577$$ 4.72243 4.72243i 0.196597 0.196597i −0.601942 0.798540i $$-0.705606\pi$$
0.798540 + 0.601942i $$0.205606\pi$$
$$578$$ 10.7364 + 10.7364i 0.446576 + 0.446576i
$$579$$ −10.4241 0.591046i −0.433210 0.0245631i
$$580$$ −6.67822 6.67822i −0.277298 0.277298i
$$581$$ 55.6522i 2.30884i
$$582$$ −0.307814 + 0.274781i −0.0127593 + 0.0113900i
$$583$$ −0.500224 0.500224i −0.0207172 0.0207172i
$$584$$ −5.06886 −0.209751
$$585$$ 25.4173 + 11.6323i 1.05088 + 0.480937i
$$586$$ 4.24732 0.175455
$$587$$ 11.0090 + 11.0090i 0.454391 + 0.454391i 0.896809 0.442418i $$-0.145879\pi$$
−0.442418 + 0.896809i $$0.645879\pi$$
$$588$$ −8.84667 + 7.89729i −0.364831 + 0.325679i
$$589$$ 2.30666i 0.0950441i
$$590$$ 9.44443 + 9.44443i 0.388821 + 0.388821i
$$591$$ −6.81449 0.386383i −0.280311 0.0158937i
$$592$$ −1.95300 1.95300i −0.0802679 0.0802679i
$$593$$ 8.06905 8.06905i 0.331356 0.331356i −0.521745 0.853101i $$-0.674719\pi$$
0.853101 + 0.521745i $$0.174719\pi$$
$$594$$ −9.78734 13.8414i −0.401579 0.567919i
$$595$$ 12.9602i 0.531317i
$$596$$ −8.85644 + 8.85644i −0.362774 + 0.362774i
$$597$$ 19.9462 + 22.3441i 0.816345 + 0.914483i
$$598$$ 4.09400 12.5249i 0.167416 0.512181i
$$599$$ 22.0180i 0.899633i −0.893121 0.449816i $$-0.851489\pi$$
0.893121 0.449816i $$-0.148511\pi$$
$$600$$ 2.90210 + 0.164550i 0.118478 + 0.00671771i
$$601$$ −38.2529 −1.56037 −0.780184 0.625550i $$-0.784875\pi$$
−0.780184 + 0.625550i $$0.784875\pi$$
$$602$$ 33.8960 1.38150
$$603$$ −5.97662 7.51106i −0.243387 0.305874i
$$604$$ 11.7997 11.7997i 0.480122 0.480122i
$$605$$ −0.651335 + 0.651335i −0.0264805 + 0.0264805i
$$606$$ 30.6304 + 1.73675i 1.24427 + 0.0705506i
$$607$$ 8.06933 0.327524 0.163762 0.986500i $$-0.447637\pi$$
0.163762 + 0.986500i $$0.447637\pi$$
$$608$$ −5.06886 −0.205569
$$609$$ 1.33342 23.5170i 0.0540328 0.952957i
$$610$$ 16.8618i 0.682714i
$$611$$ 22.8870 + 7.48105i 0.925910 + 0.302651i
$$612$$ −4.01733 0.457036i −0.162391 0.0184746i
$$613$$ −23.0896 + 23.0896i −0.932579 + 0.932579i −0.997867 0.0652872i $$-0.979204\pi$$
0.0652872 + 0.997867i $$0.479204\pi$$
$$614$$ 4.59241i 0.185335i
$$615$$ −33.2906 37.2927i −1.34241 1.50379i
$$616$$ 8.58423 8.58423i 0.345868 0.345868i
$$617$$ −32.9195 32.9195i −1.32529 1.32529i −0.909430 0.415858i $$-0.863481\pi$$
−0.415858 0.909430i $$-0.636519\pi$$
$$618$$ 0.775184 13.6716i 0.0311825 0.549954i
$$619$$ −25.3716 25.3716i −1.01977 1.01977i −0.999801 0.0199687i $$-0.993643\pi$$
−0.0199687 0.999801i $$-0.506357\pi$$
$$620$$ 1.17599i 0.0472288i
$$621$$ −10.9639 15.5054i −0.439968 0.622208i
$$622$$ 2.43090 + 2.43090i 0.0974701 + 0.0974701i
$$623$$ −46.6065 −1.86725
$$624$$ −5.81658 2.27319i −0.232850 0.0910004i
$$625$$ 30.5747 1.22299
$$626$$ −1.06757 1.06757i −0.0426686 0.0426686i
$$627$$ −19.0745 21.3675i −0.761760 0.853337i
$$628$$ 18.8618i 0.752668i
$$629$$ −2.63216 2.63216i −0.104951 0.104951i
$$630$$ 17.9624 + 22.5741i 0.715641 + 0.899375i
$$631$$ −0.200326 0.200326i −0.00797485 0.00797485i 0.703108 0.711083i $$-0.251795\pi$$
−0.711083 + 0.703108i $$0.751795\pi$$
$$632$$ 2.89489 2.89489i 0.115153 0.115153i
$$633$$ 12.1662 10.8606i 0.483565 0.431671i
$$634$$ 22.8618i 0.907958i
$$635$$ −20.2366 + 20.2366i −0.803065 + 0.803065i
$$636$$ −0.280180 + 0.250112i −0.0111099 + 0.00991759i
$$637$$ −22.0151 + 11.1685i −0.872271 + 0.442510i
$$638$$ 11.9231i 0.472040i
$$639$$ 0.359939 0.286407i 0.0142390 0.0113301i
$$640$$ −2.58423 −0.102150
$$641$$ 34.2846 1.35416 0.677081 0.735908i $$-0.263245\pi$$
0.677081 + 0.735908i $$0.263245\pi$$
$$642$$ −0.452383 + 7.97851i −0.0178541 + 0.314887i
$$643$$ −10.7873 + 10.7873i −0.425411 + 0.425411i −0.887062 0.461651i $$-0.847257\pi$$
0.461651 + 0.887062i $$0.347257\pi$$
$$644$$ 9.61619 9.61619i 0.378931 0.378931i
$$645$$ 2.30810 40.7071i 0.0908813 1.60284i
$$646$$ −6.83155 −0.268784
$$647$$ −2.69550 −0.105971 −0.0529855 0.998595i $$-0.516874\pi$$
−0.0529855 + 0.998595i $$0.516874\pi$$
$$648$$ −7.63084 + 4.77183i −0.299768 + 0.187455i
$$649$$ 16.8618i 0.661883i
$$650$$ 5.75146 + 1.87997i 0.225591 + 0.0737385i
$$651$$ −2.18799 + 1.95319i −0.0857541 + 0.0765514i
$$652$$ 2.81201 2.81201i 0.110127 0.110127i
$$653$$ 43.4774i 1.70140i 0.525651 + 0.850700i $$0.323822\pi$$
−0.525651 + 0.850700i $$0.676178\pi$$
$$654$$ −16.8396 + 15.0325i −0.658481 + 0.587815i
$$655$$ −33.0772 + 33.0772i −1.29243 + 1.29243i
$$656$$ 7.89729 + 7.89729i 0.308337 + 0.308337i
$$657$$ −11.8992 + 9.46831i −0.464232 + 0.369394i
$$658$$ 17.5719 + 17.5719i 0.685024 + 0.685024i
$$659$$ 39.2972i 1.53080i 0.643553 + 0.765401i $$0.277460\pi$$
−0.643553 + 0.765401i $$0.722540\pi$$
$$660$$ −9.72461 10.8937i −0.378530 0.424036i
$$661$$ 27.4958 + 27.4958i 1.06946 + 1.06946i 0.997400 + 0.0720628i $$0.0229582\pi$$
0.0720628 + 0.997400i $$0.477042\pi$$
$$662$$ −7.81338 −0.303676
$$663$$ −7.83929 3.06369i −0.304453 0.118984i
$$664$$ 14.9558 0.580397
$$665$$ 34.4666 + 34.4666i 1.33656 + 1.33656i
$$666$$ −8.23278 0.936611i −0.319014 0.0362929i
$$667$$ 13.3564i 0.517164i
$$668$$ −0.959150 0.959150i −0.0371106 0.0371106i
$$669$$ −0.817238 + 14.4133i −0.0315962 + 0.557252i
$$670$$ −5.84667 5.84667i −0.225877 0.225877i
$$671$$ −15.0523 + 15.0523i −0.581086 + 0.581086i
$$672$$ −4.29211 4.80810i −0.165572 0.185476i
$$673$$ 7.29153i 0.281068i −0.990076 0.140534i $$-0.955118\pi$$
0.990076 0.140534i $$-0.0448819\pi$$
$$674$$ −13.3128 + 13.3128i −0.512790 + 0.512790i
$$675$$ 7.12009 5.03466i 0.274052 0.193784i
$$676$$ −10.4902 7.67822i −0.403470 0.295316i
$$677$$ 16.3200i 0.627230i 0.949550 + 0.313615i $$0.101540\pi$$
−0.949550 + 0.313615i $$0.898460\pi$$
$$678$$ 0.337077 5.94491i 0.0129454 0.228313i
$$679$$ −0.886464 −0.0340194
$$680$$ −3.48289 −0.133563
$$681$$ −22.5666 1.27953i −0.864756 0.0490318i
$$682$$ 1.04979 1.04979i 0.0401984 0.0401984i
$$683$$ −0.171761 + 0.171761i −0.00657223 + 0.00657223i −0.710385 0.703813i $$-0.751479\pi$$
0.703813 + 0.710385i $$0.251479\pi$$
$$684$$ −11.8992 + 9.46831i −0.454978 + 0.362030i
$$685$$ 3.56910 0.136368
$$686$$ 0.570551 0.0217837
$$687$$ 22.5369 + 1.27785i 0.859838 + 0.0487529i
$$688$$ 9.10912i 0.347282i
$$689$$ −0.697233 + 0.353712i −0.0265625 + 0.0134754i
$$690$$ −10.8937 12.2033i −0.414715 0.464571i
$$691$$ 18.3218 18.3218i 0.696993 0.696993i −0.266768 0.963761i $$-0.585956\pi$$
0.963761 + 0.266768i $$0.0859556\pi$$
$$692$$ 17.4960i 0.665099i
$$693$$ 4.11678 36.1864i 0.156383 1.37461i
$$694$$ −20.7057 + 20.7057i −0.785977 + 0.785977i
$$695$$ −12.9907 12.9907i −0.492764 0.492764i
$$696$$ 6.31988 + 0.358338i 0.239555 + 0.0135828i
$$697$$ 10.6436 + 10.6436i 0.403153 + 0.403153i
$$698$$ 6.89931i 0.261143i
$$699$$ −3.26095 + 2.91100i −0.123341 + 0.110104i
$$700$$ 4.41577 + 4.41577i 0.166901 + 0.166901i
$$701$$ −33.7243 −1.27375 −0.636874 0.770968i $$-0.719773\pi$$
−0.636874 + 0.770968i $$0.719773\pi$$
$$702$$ −17.9007 + 5.52867i −0.675617 + 0.208666i
$$703$$ −14.0000 −0.528020
$$704$$ 2.30690 + 2.30690i 0.0869445 + 0.0869445i
$$705$$ 22.2993 19.9063i 0.839841 0.749713i
$$706$$ 7.90600i 0.297546i
$$707$$ 46.6065 + 46.6065i 1.75282 + 1.75282i
$$708$$ −8.93766 0.506767i −0.335898 0.0190455i
$$709$$ −3.79689 3.79689i −0.142595 0.142595i 0.632206 0.774801i $$-0.282150\pi$$
−0.774801 + 0.632206i $$0.782150\pi$$
$$710$$ 0.280180 0.280180i 0.0105150 0.0105150i
$$711$$ 1.38832 12.2033i 0.0520660 0.457658i
$$712$$ 12.5249i 0.469390i
$$713$$ 1.17599 1.17599i 0.0440411 0.0440411i
$$714$$ −5.78469 6.48010i −0.216487 0.242512i
$$715$$ −13.7527 27.1091i −0.514321 1.01382i
$$716$$ 18.1015i 0.676484i
$$717$$ −17.6102 0.998500i −0.657664 0.0372897i
$$718$$ 18.2182 0.679899
$$719$$ 30.6300 1.14231 0.571153 0.820844i $$-0.306496\pi$$
0.571153 + 0.820844i $$0.306496\pi$$
$$720$$ −6.06650 + 4.82717i −0.226085 + 0.179898i
$$721$$ 20.8025 20.8025i 0.774724 0.774724i
$$722$$ −4.73291 + 4.73291i −0.176141 + 0.176141i
$$723$$ 50.0020 + 2.83512i 1.85959 + 0.105439i
$$724$$ −1.90600 −0.0708361
$$725$$ −6.13331 −0.227785
$$726$$ 0.0349492 0.616386i 0.00129709 0.0228762i
$$727$$ 0.430897i 0.0159811i −0.999968 0.00799055i $$-0.997457\pi$$
0.999968 0.00799055i $$-0.00254350\pi$$
$$728$$ −6.06996 11.9650i −0.224968 0.443454i
$$729$$ −9.00000 + 25.4558i −0.333333 + 0.942809i
$$730$$ −9.26245 + 9.26245i −0.342819 + 0.342819i
$$731$$ 12.2768i 0.454074i
$$732$$ 7.52613 + 8.43090i 0.278174 + 0.311615i
$$733$$ 8.50256 8.50256i 0.314049 0.314049i −0.532427 0.846476i $$-0.678720\pi$$
0.846476 + 0.532427i $$0.178720\pi$$
$$734$$ −5.35216 5.35216i −0.197552 0.197552i
$$735$$ −1.73483 + 30.5966i −0.0639903 + 1.12857i
$$736$$ 2.58423 + 2.58423i 0.0952558 + 0.0952558i
$$737$$ 10.4385i 0.384506i
$$738$$ 33.2906 + 3.78734i 1.22544 + 0.139414i
$$739$$ 15.1836 + 15.1836i 0.558537 + 0.558537i 0.928891 0.370354i $$-0.120764\pi$$
−0.370354 + 0.928891i $$0.620764\pi$$
$$740$$ −7.13753 −0.262381
$$741$$ −28.9956 + 12.7003i −1.06518 + 0.466558i
$$742$$ −0.806880 −0.0296215
$$743$$ −1.06757 1.06757i −0.0391653 0.0391653i 0.687253 0.726418i $$-0.258816\pi$$
−0.726418 + 0.687253i $$0.758816\pi$$
$$744$$ −0.524893 0.587994i −0.0192435 0.0215569i
$$745$$ 32.3671i 1.18584i
$$746$$ −11.1808 11.1808i −0.409357 0.409357i
$$747$$ 35.1089 27.9365i 1.28457 1.02214i
$$748$$ 3.10912 + 3.10912i 0.113681 + 0.113681i
$$749$$ −12.1399 + 12.1399i −0.443583 + 0.443583i
$$750$$ −11.0918 + 9.90147i −0.405015 + 0.361550i
$$751$$ 1.88134i 0.0686509i −0.999411 0.0343255i $$-0.989072\pi$$
0.999411 0.0343255i $$-0.0109283\pi$$
$$752$$ −4.72222 + 4.72222i −0.172201 + 0.172201i
$$753$$ 23.8913 21.3274i 0.870646 0.777212i
$$754$$ 12.5249 + 4.09400i 0.456130 + 0.149095i
$$755$$ 43.1236i 1.56943i
$$756$$ −19.0570 3.26967i −0.693097 0.118917i
$$757$$ −28.6189 −1.04017 −0.520086 0.854114i $$-0.674100\pi$$
−0.520086 + 0.854114i $$0.674100\pi$$
$$758$$ −7.54752 −0.274138
$$759$$ −1.16906 + 20.6183i −0.0424342 + 0.748396i
$$760$$ −9.26245 + 9.26245i −0.335984 + 0.335984i
$$761$$ −30.4408 + 30.4408i −1.10348 + 1.10348i −0.109490 + 0.993988i $$0.534922\pi$$
−0.993988 + 0.109490i $$0.965078\pi$$
$$762$$ 1.08585 19.1508i 0.0393362 0.693759i
$$763$$ −48.4958 −1.75567
$$764$$ −6.35014 −0.229740
$$765$$ −8.17612 + 6.50581i −0.295608 + 0.235218i
$$766$$ 15.3520i 0.554691i
$$767$$ −17.7129 5.78978i −0.639575 0.209057i
$$768$$ 1.29211 1.15345i 0.0466251 0.0416215i
$$769$$ 14.9956 14.9956i 0.540755 0.540755i −0.382996 0.923750i $$-0.625108\pi$$
0.923750 + 0.382996i $$0.125108\pi$$
$$770$$ 31.3723i 1.13058i
$$771$$ 17.6627 15.7672i 0.636107 0.567843i
$$772$$ 4.26245 4.26245i 0.153409 0.153409i
$$773$$ 6.25917 + 6.25917i 0.225127 + 0.225127i 0.810653 0.585527i $$-0.199112\pi$$
−0.585527 + 0.810653i $$0.699112\pi$$
$$774$$ 17.0153 + 21.3838i 0.611601 + 0.768623i
$$775$$ 0.540016 + 0.540016i 0.0193980 + 0.0193980i