Properties

Label 78.2.g
Level $78$
Weight $2$
Character orbit 78.g
Rep. character $\chi_{78}(5,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $12$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 78.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(78, [\chi])\).

Total New Old
Modular forms 36 12 24
Cusp forms 20 12 8
Eisenstein series 16 0 16

Trace form

\( 12 q - 12 q^{7} + O(q^{10}) \) \( 12 q - 12 q^{7} - 12 q^{16} - 12 q^{19} - 36 q^{27} + 12 q^{28} + 12 q^{31} + 36 q^{33} + 12 q^{37} + 36 q^{42} + 36 q^{45} + 12 q^{52} - 36 q^{54} - 36 q^{57} - 36 q^{63} - 12 q^{67} - 12 q^{73} - 12 q^{76} - 36 q^{78} + 72 q^{79} - 72 q^{85} - 12 q^{91} + 36 q^{93} - 72 q^{94} - 60 q^{97} + 36 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(78, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
78.2.g.a 78.g 39.f $12$ $0.623$ 12.0.\(\cdots\).52 None \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}-\beta _{4}q^{3}+\beta _{8}q^{4}+(-\beta _{1}-\beta _{11})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(78, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(78, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)