Properties

Label 78.2.a
Level 78
Weight 2
Character orbit a
Rep. character \(\chi_{78}(1,\cdot)\)
Character field \(\Q\)
Dimension 1
Newforms 1
Sturm bound 28
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 78.a (trivial)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(78))\).

Total New Old
Modular forms 18 1 17
Cusp forms 11 1 10
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(13\)FrickeDim.
\(+\)\(+\)\(-\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\( q - q^{2} - q^{3} + q^{4} + 2q^{5} + q^{6} + 4q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} - q^{3} + q^{4} + 2q^{5} + q^{6} + 4q^{7} - q^{8} + q^{9} - 2q^{10} - 4q^{11} - q^{12} + q^{13} - 4q^{14} - 2q^{15} + q^{16} + 2q^{17} - q^{18} - 8q^{19} + 2q^{20} - 4q^{21} + 4q^{22} + q^{24} - q^{25} - q^{26} - q^{27} + 4q^{28} + 6q^{29} + 2q^{30} - 4q^{31} - q^{32} + 4q^{33} - 2q^{34} + 8q^{35} + q^{36} - 2q^{37} + 8q^{38} - q^{39} - 2q^{40} - 10q^{41} + 4q^{42} + 4q^{43} - 4q^{44} + 2q^{45} + 8q^{47} - q^{48} + 9q^{49} + q^{50} - 2q^{51} + q^{52} - 10q^{53} + q^{54} - 8q^{55} - 4q^{56} + 8q^{57} - 6q^{58} + 4q^{59} - 2q^{60} - 2q^{61} + 4q^{62} + 4q^{63} + q^{64} + 2q^{65} - 4q^{66} - 16q^{67} + 2q^{68} - 8q^{70} - 8q^{71} - q^{72} + 2q^{73} + 2q^{74} + q^{75} - 8q^{76} - 16q^{77} + q^{78} + 8q^{79} + 2q^{80} + q^{81} + 10q^{82} + 12q^{83} - 4q^{84} + 4q^{85} - 4q^{86} - 6q^{87} + 4q^{88} + 14q^{89} - 2q^{90} + 4q^{91} + 4q^{93} - 8q^{94} - 16q^{95} + q^{96} + 10q^{97} - 9q^{98} - 4q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(78))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 13
78.2.a.a \(1\) \(0.623\) \(\Q\) None \(-1\) \(-1\) \(2\) \(4\) \(+\) \(+\) \(-\) \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}+4q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(78))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(78)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)