Properties

Label 775.2.k.c.101.1
Level $775$
Weight $2$
Character 775.101
Analytic conductor $6.188$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(101,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 101.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 775.101
Dual form 775.2.k.c.376.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.190983 - 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{3} +(1.30902 + 0.951057i) q^{4} +0.618034 q^{6} +(2.42705 + 1.76336i) q^{7} +(1.80902 - 1.31433i) q^{8} +(1.61803 - 1.17557i) q^{9} +(0.618034 + 0.449028i) q^{11} +(-0.500000 + 1.53884i) q^{12} +(-1.50000 - 4.61653i) q^{13} +(1.50000 - 1.08981i) q^{14} +(0.572949 + 1.76336i) q^{16} +(0.190983 - 0.138757i) q^{17} +(-0.381966 - 1.17557i) q^{18} +(1.54508 - 4.75528i) q^{19} +(-0.927051 + 2.85317i) q^{21} +(0.381966 - 0.277515i) q^{22} +(-4.42705 + 3.21644i) q^{23} +(1.80902 + 1.31433i) q^{24} -3.00000 q^{26} +(4.04508 + 2.93893i) q^{27} +(1.50000 + 4.61653i) q^{28} +(-2.66312 + 8.19624i) q^{29} +(-5.54508 - 0.502029i) q^{31} +5.61803 q^{32} +(-0.236068 + 0.726543i) q^{33} +(-0.0450850 - 0.138757i) q^{34} +3.23607 q^{36} -0.236068 q^{37} +(-2.50000 - 1.81636i) q^{38} +(3.92705 - 2.85317i) q^{39} +(2.00000 - 6.15537i) q^{41} +(1.50000 + 1.08981i) q^{42} +(1.42705 - 4.39201i) q^{43} +(0.381966 + 1.17557i) q^{44} +(1.04508 + 3.21644i) q^{46} +(1.04508 + 3.21644i) q^{47} +(-1.50000 + 1.08981i) q^{48} +(0.618034 + 1.90211i) q^{49} +(0.190983 + 0.138757i) q^{51} +(2.42705 - 7.46969i) q^{52} +(-10.2812 + 7.46969i) q^{53} +(2.50000 - 1.81636i) q^{54} +6.70820 q^{56} +5.00000 q^{57} +(4.30902 + 3.13068i) q^{58} +(2.92705 + 9.00854i) q^{59} -6.94427 q^{61} +(-1.35410 + 3.16344i) q^{62} +6.00000 q^{63} +(-0.0729490 + 0.224514i) q^{64} +(0.381966 + 0.277515i) q^{66} +4.23607 q^{67} +0.381966 q^{68} +(-4.42705 - 3.21644i) q^{69} +(-0.0729490 + 0.0530006i) q^{71} +(1.38197 - 4.25325i) q^{72} +(-6.92705 - 5.03280i) q^{73} +(-0.0450850 + 0.138757i) q^{74} +(6.54508 - 4.75528i) q^{76} +(0.708204 + 2.17963i) q^{77} +(-0.927051 - 2.85317i) q^{78} +(0.309017 - 0.951057i) q^{81} +(-3.23607 - 2.35114i) q^{82} +(1.26393 - 3.88998i) q^{83} +(-3.92705 + 2.85317i) q^{84} +(-2.30902 - 1.67760i) q^{86} -8.61803 q^{87} +1.70820 q^{88} +(5.16312 + 3.75123i) q^{89} +(4.50000 - 13.8496i) q^{91} -8.85410 q^{92} +(-1.23607 - 5.42882i) q^{93} +2.09017 q^{94} +(1.73607 + 5.34307i) q^{96} +(-4.28115 - 3.11044i) q^{97} +1.23607 q^{98} +1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - q^{3} + 3 q^{4} - 2 q^{6} + 3 q^{7} + 5 q^{8} + 2 q^{9} - 2 q^{11} - 2 q^{12} - 6 q^{13} + 6 q^{14} + 9 q^{16} + 3 q^{17} - 6 q^{18} - 5 q^{19} + 3 q^{21} + 6 q^{22} - 11 q^{23} + 5 q^{24}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.190983 0.587785i 0.135045 0.415627i −0.860552 0.509363i \(-0.829881\pi\)
0.995597 + 0.0937362i \(0.0298810\pi\)
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i 0.999773 0.0213149i \(-0.00678525\pi\)
−0.821362 + 0.570408i \(0.806785\pi\)
\(4\) 1.30902 + 0.951057i 0.654508 + 0.475528i
\(5\) 0 0
\(6\) 0.618034 0.252311
\(7\) 2.42705 + 1.76336i 0.917339 + 0.666486i 0.942860 0.333188i \(-0.108125\pi\)
−0.0255212 + 0.999674i \(0.508125\pi\)
\(8\) 1.80902 1.31433i 0.639584 0.464685i
\(9\) 1.61803 1.17557i 0.539345 0.391857i
\(10\) 0 0
\(11\) 0.618034 + 0.449028i 0.186344 + 0.135387i 0.677046 0.735940i \(-0.263260\pi\)
−0.490702 + 0.871327i \(0.663260\pi\)
\(12\) −0.500000 + 1.53884i −0.144338 + 0.444225i
\(13\) −1.50000 4.61653i −0.416025 1.28039i −0.911331 0.411675i \(-0.864944\pi\)
0.495306 0.868719i \(-0.335056\pi\)
\(14\) 1.50000 1.08981i 0.400892 0.291265i
\(15\) 0 0
\(16\) 0.572949 + 1.76336i 0.143237 + 0.440839i
\(17\) 0.190983 0.138757i 0.0463202 0.0336536i −0.564384 0.825512i \(-0.690886\pi\)
0.610704 + 0.791859i \(0.290886\pi\)
\(18\) −0.381966 1.17557i −0.0900303 0.277085i
\(19\) 1.54508 4.75528i 0.354467 1.09094i −0.601851 0.798608i \(-0.705570\pi\)
0.956318 0.292328i \(-0.0944300\pi\)
\(20\) 0 0
\(21\) −0.927051 + 2.85317i −0.202299 + 0.622613i
\(22\) 0.381966 0.277515i 0.0814354 0.0591663i
\(23\) −4.42705 + 3.21644i −0.923104 + 0.670674i −0.944295 0.329101i \(-0.893254\pi\)
0.0211907 + 0.999775i \(0.493254\pi\)
\(24\) 1.80902 + 1.31433i 0.369264 + 0.268286i
\(25\) 0 0
\(26\) −3.00000 −0.588348
\(27\) 4.04508 + 2.93893i 0.778477 + 0.565597i
\(28\) 1.50000 + 4.61653i 0.283473 + 0.872441i
\(29\) −2.66312 + 8.19624i −0.494529 + 1.52200i 0.323161 + 0.946344i \(0.395254\pi\)
−0.817690 + 0.575659i \(0.804746\pi\)
\(30\) 0 0
\(31\) −5.54508 0.502029i −0.995927 0.0901670i
\(32\) 5.61803 0.993137
\(33\) −0.236068 + 0.726543i −0.0410942 + 0.126475i
\(34\) −0.0450850 0.138757i −0.00773201 0.0237967i
\(35\) 0 0
\(36\) 3.23607 0.539345
\(37\) −0.236068 −0.0388093 −0.0194047 0.999812i \(-0.506177\pi\)
−0.0194047 + 0.999812i \(0.506177\pi\)
\(38\) −2.50000 1.81636i −0.405554 0.294652i
\(39\) 3.92705 2.85317i 0.628831 0.456873i
\(40\) 0 0
\(41\) 2.00000 6.15537i 0.312348 0.961307i −0.664485 0.747302i \(-0.731349\pi\)
0.976833 0.214005i \(-0.0686510\pi\)
\(42\) 1.50000 + 1.08981i 0.231455 + 0.168162i
\(43\) 1.42705 4.39201i 0.217623 0.669775i −0.781334 0.624113i \(-0.785460\pi\)
0.998957 0.0456620i \(-0.0145397\pi\)
\(44\) 0.381966 + 1.17557i 0.0575835 + 0.177224i
\(45\) 0 0
\(46\) 1.04508 + 3.21644i 0.154089 + 0.474238i
\(47\) 1.04508 + 3.21644i 0.152441 + 0.469166i 0.997893 0.0648863i \(-0.0206685\pi\)
−0.845451 + 0.534052i \(0.820668\pi\)
\(48\) −1.50000 + 1.08981i −0.216506 + 0.157301i
\(49\) 0.618034 + 1.90211i 0.0882906 + 0.271730i
\(50\) 0 0
\(51\) 0.190983 + 0.138757i 0.0267430 + 0.0194299i
\(52\) 2.42705 7.46969i 0.336571 1.03586i
\(53\) −10.2812 + 7.46969i −1.41222 + 1.02604i −0.419231 + 0.907880i \(0.637700\pi\)
−0.992994 + 0.118162i \(0.962300\pi\)
\(54\) 2.50000 1.81636i 0.340207 0.247175i
\(55\) 0 0
\(56\) 6.70820 0.896421
\(57\) 5.00000 0.662266
\(58\) 4.30902 + 3.13068i 0.565802 + 0.411079i
\(59\) 2.92705 + 9.00854i 0.381070 + 1.17281i 0.939292 + 0.343120i \(0.111484\pi\)
−0.558222 + 0.829692i \(0.688516\pi\)
\(60\) 0 0
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) −1.35410 + 3.16344i −0.171971 + 0.401757i
\(63\) 6.00000 0.755929
\(64\) −0.0729490 + 0.224514i −0.00911863 + 0.0280642i
\(65\) 0 0
\(66\) 0.381966 + 0.277515i 0.0470168 + 0.0341597i
\(67\) 4.23607 0.517518 0.258759 0.965942i \(-0.416686\pi\)
0.258759 + 0.965942i \(0.416686\pi\)
\(68\) 0.381966 0.0463202
\(69\) −4.42705 3.21644i −0.532954 0.387214i
\(70\) 0 0
\(71\) −0.0729490 + 0.0530006i −0.00865746 + 0.00629001i −0.592106 0.805860i \(-0.701703\pi\)
0.583448 + 0.812150i \(0.301703\pi\)
\(72\) 1.38197 4.25325i 0.162866 0.501251i
\(73\) −6.92705 5.03280i −0.810750 0.589044i 0.103298 0.994650i \(-0.467060\pi\)
−0.914048 + 0.405606i \(0.867060\pi\)
\(74\) −0.0450850 + 0.138757i −0.00524102 + 0.0161302i
\(75\) 0 0
\(76\) 6.54508 4.75528i 0.750773 0.545468i
\(77\) 0.708204 + 2.17963i 0.0807073 + 0.248392i
\(78\) −0.927051 2.85317i −0.104968 0.323058i
\(79\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) −3.23607 2.35114i −0.357364 0.259640i
\(83\) 1.26393 3.88998i 0.138735 0.426981i −0.857418 0.514621i \(-0.827933\pi\)
0.996152 + 0.0876401i \(0.0279326\pi\)
\(84\) −3.92705 + 2.85317i −0.428476 + 0.311306i
\(85\) 0 0
\(86\) −2.30902 1.67760i −0.248988 0.180900i
\(87\) −8.61803 −0.923950
\(88\) 1.70820 0.182095
\(89\) 5.16312 + 3.75123i 0.547290 + 0.397629i 0.826785 0.562518i \(-0.190167\pi\)
−0.279496 + 0.960147i \(0.590167\pi\)
\(90\) 0 0
\(91\) 4.50000 13.8496i 0.471728 1.45183i
\(92\) −8.85410 −0.923104
\(93\) −1.23607 5.42882i −0.128174 0.562943i
\(94\) 2.09017 0.215585
\(95\) 0 0
\(96\) 1.73607 + 5.34307i 0.177187 + 0.545325i
\(97\) −4.28115 3.11044i −0.434685 0.315817i 0.348834 0.937184i \(-0.386578\pi\)
−0.783520 + 0.621367i \(0.786578\pi\)
\(98\) 1.23607 0.124862
\(99\) 1.52786 0.153556
\(100\) 0 0
\(101\) −3.85410 + 2.80017i −0.383497 + 0.278627i −0.762786 0.646651i \(-0.776169\pi\)
0.379288 + 0.925279i \(0.376169\pi\)
\(102\) 0.118034 0.0857567i 0.0116871 0.00849118i
\(103\) 0.0450850 0.138757i 0.00444235 0.0136722i −0.948811 0.315845i \(-0.897712\pi\)
0.953253 + 0.302173i \(0.0977120\pi\)
\(104\) −8.78115 6.37988i −0.861063 0.625599i
\(105\) 0 0
\(106\) 2.42705 + 7.46969i 0.235736 + 0.725521i
\(107\) 0.881966 0.640786i 0.0852629 0.0619471i −0.544337 0.838867i \(-0.683219\pi\)
0.629600 + 0.776919i \(0.283219\pi\)
\(108\) 2.50000 + 7.69421i 0.240563 + 0.740376i
\(109\) −2.60081 8.00448i −0.249113 0.766690i −0.994933 0.100543i \(-0.967942\pi\)
0.745820 0.666147i \(-0.232058\pi\)
\(110\) 0 0
\(111\) −0.0729490 0.224514i −0.00692401 0.0213099i
\(112\) −1.71885 + 5.29007i −0.162416 + 0.499864i
\(113\) −1.50000 1.08981i −0.141108 0.102521i 0.514992 0.857195i \(-0.327795\pi\)
−0.656100 + 0.754674i \(0.727795\pi\)
\(114\) 0.954915 2.93893i 0.0894360 0.275256i
\(115\) 0 0
\(116\) −11.2812 + 8.19624i −1.04743 + 0.761002i
\(117\) −7.85410 5.70634i −0.726112 0.527551i
\(118\) 5.85410 0.538914
\(119\) 0.708204 0.0649209
\(120\) 0 0
\(121\) −3.21885 9.90659i −0.292622 0.900599i
\(122\) −1.32624 + 4.08174i −0.120072 + 0.369543i
\(123\) 6.47214 0.583573
\(124\) −6.78115 5.93085i −0.608966 0.532606i
\(125\) 0 0
\(126\) 1.14590 3.52671i 0.102085 0.314184i
\(127\) −3.16312 9.73508i −0.280681 0.863849i −0.987660 0.156614i \(-0.949942\pi\)
0.706979 0.707235i \(-0.250058\pi\)
\(128\) 9.20820 + 6.69015i 0.813898 + 0.591331i
\(129\) 4.61803 0.406595
\(130\) 0 0
\(131\) −0.0729490 0.0530006i −0.00637359 0.00463068i 0.584594 0.811326i \(-0.301254\pi\)
−0.590967 + 0.806695i \(0.701254\pi\)
\(132\) −1.00000 + 0.726543i −0.0870388 + 0.0632374i
\(133\) 12.1353 8.81678i 1.05226 0.764512i
\(134\) 0.809017 2.48990i 0.0698884 0.215094i
\(135\) 0 0
\(136\) 0.163119 0.502029i 0.0139873 0.0430486i
\(137\) 2.00000 + 6.15537i 0.170872 + 0.525888i 0.999421 0.0340275i \(-0.0108334\pi\)
−0.828549 + 0.559916i \(0.810833\pi\)
\(138\) −2.73607 + 1.98787i −0.232910 + 0.169219i
\(139\) 1.80902 + 5.56758i 0.153439 + 0.472236i 0.997999 0.0632239i \(-0.0201382\pi\)
−0.844561 + 0.535460i \(0.820138\pi\)
\(140\) 0 0
\(141\) −2.73607 + 1.98787i −0.230418 + 0.167409i
\(142\) 0.0172209 + 0.0530006i 0.00144515 + 0.00444771i
\(143\) 1.14590 3.52671i 0.0958248 0.294918i
\(144\) 3.00000 + 2.17963i 0.250000 + 0.181636i
\(145\) 0 0
\(146\) −4.28115 + 3.11044i −0.354311 + 0.257422i
\(147\) −1.61803 + 1.17557i −0.133453 + 0.0969594i
\(148\) −0.309017 0.224514i −0.0254010 0.0184549i
\(149\) −17.0344 −1.39552 −0.697758 0.716334i \(-0.745819\pi\)
−0.697758 + 0.716334i \(0.745819\pi\)
\(150\) 0 0
\(151\) 15.7812 + 11.4657i 1.28425 + 0.933064i 0.999673 0.0255888i \(-0.00814604\pi\)
0.284579 + 0.958652i \(0.408146\pi\)
\(152\) −3.45492 10.6331i −0.280231 0.862461i
\(153\) 0.145898 0.449028i 0.0117952 0.0363018i
\(154\) 1.41641 0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) −3.00000 + 9.23305i −0.239426 + 0.736878i 0.757077 + 0.653325i \(0.226627\pi\)
−0.996503 + 0.0835524i \(0.973373\pi\)
\(158\) 0 0
\(159\) −10.2812 7.46969i −0.815348 0.592385i
\(160\) 0 0
\(161\) −16.4164 −1.29379
\(162\) −0.500000 0.363271i −0.0392837 0.0285413i
\(163\) −10.2812 + 7.46969i −0.805282 + 0.585072i −0.912459 0.409168i \(-0.865819\pi\)
0.107177 + 0.994240i \(0.465819\pi\)
\(164\) 8.47214 6.15537i 0.661563 0.480653i
\(165\) 0 0
\(166\) −2.04508 1.48584i −0.158729 0.115324i
\(167\) 2.85410 8.78402i 0.220857 0.679728i −0.777829 0.628476i \(-0.783679\pi\)
0.998686 0.0512518i \(-0.0163211\pi\)
\(168\) 2.07295 + 6.37988i 0.159931 + 0.492219i
\(169\) −8.54508 + 6.20837i −0.657314 + 0.477567i
\(170\) 0 0
\(171\) −3.09017 9.51057i −0.236311 0.727291i
\(172\) 6.04508 4.39201i 0.460933 0.334888i
\(173\) −0.281153 0.865300i −0.0213757 0.0657875i 0.939800 0.341726i \(-0.111011\pi\)
−0.961175 + 0.275938i \(0.911011\pi\)
\(174\) −1.64590 + 5.06555i −0.124775 + 0.384019i
\(175\) 0 0
\(176\) −0.437694 + 1.34708i −0.0329924 + 0.101540i
\(177\) −7.66312 + 5.56758i −0.575995 + 0.418485i
\(178\) 3.19098 2.31838i 0.239174 0.173770i
\(179\) −16.0172 11.6372i −1.19718 0.869805i −0.203179 0.979142i \(-0.565127\pi\)
−0.994005 + 0.109337i \(0.965127\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) −7.28115 5.29007i −0.539715 0.392126i
\(183\) −2.14590 6.60440i −0.158629 0.488211i
\(184\) −3.78115 + 11.6372i −0.278750 + 0.857905i
\(185\) 0 0
\(186\) −3.42705 0.310271i −0.251284 0.0227502i
\(187\) 0.180340 0.0131878
\(188\) −1.69098 + 5.20431i −0.123328 + 0.379563i
\(189\) 4.63525 + 14.2658i 0.337165 + 1.03769i
\(190\) 0 0
\(191\) −16.0902 −1.16424 −0.582122 0.813102i \(-0.697777\pi\)
−0.582122 + 0.813102i \(0.697777\pi\)
\(192\) −0.236068 −0.0170367
\(193\) −1.92705 1.40008i −0.138712 0.100780i 0.516265 0.856429i \(-0.327322\pi\)
−0.654977 + 0.755648i \(0.727322\pi\)
\(194\) −2.64590 + 1.92236i −0.189964 + 0.138017i
\(195\) 0 0
\(196\) −1.00000 + 3.07768i −0.0714286 + 0.219835i
\(197\) 13.2812 + 9.64932i 0.946243 + 0.687486i 0.949915 0.312507i \(-0.101169\pi\)
−0.00367232 + 0.999993i \(0.501169\pi\)
\(198\) 0.291796 0.898056i 0.0207370 0.0638221i
\(199\) −8.25329 25.4010i −0.585060 1.80063i −0.599029 0.800728i \(-0.704446\pi\)
0.0139686 0.999902i \(-0.495554\pi\)
\(200\) 0 0
\(201\) 1.30902 + 4.02874i 0.0923309 + 0.284165i
\(202\) 0.909830 + 2.80017i 0.0640154 + 0.197019i
\(203\) −20.9164 + 15.1967i −1.46804 + 1.06660i
\(204\) 0.118034 + 0.363271i 0.00826403 + 0.0254341i
\(205\) 0 0
\(206\) −0.0729490 0.0530006i −0.00508260 0.00369272i
\(207\) −3.38197 + 10.4086i −0.235063 + 0.723449i
\(208\) 7.28115 5.29007i 0.504857 0.366800i
\(209\) 3.09017 2.24514i 0.213752 0.155300i
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −20.5623 −1.41222
\(213\) −0.0729490 0.0530006i −0.00499838 0.00363154i
\(214\) −0.208204 0.640786i −0.0142325 0.0438032i
\(215\) 0 0
\(216\) 11.1803 0.760726
\(217\) −12.5729 10.9964i −0.853507 0.746485i
\(218\) −5.20163 −0.352299
\(219\) 2.64590 8.14324i 0.178793 0.550269i
\(220\) 0 0
\(221\) −0.927051 0.673542i −0.0623602 0.0453073i
\(222\) −0.145898 −0.00979203
\(223\) −0.708204 −0.0474248 −0.0237124 0.999719i \(-0.507549\pi\)
−0.0237124 + 0.999719i \(0.507549\pi\)
\(224\) 13.6353 + 9.90659i 0.911044 + 0.661912i
\(225\) 0 0
\(226\) −0.927051 + 0.673542i −0.0616665 + 0.0448033i
\(227\) 6.40983 19.7274i 0.425435 1.30936i −0.477141 0.878827i \(-0.658327\pi\)
0.902577 0.430529i \(-0.141673\pi\)
\(228\) 6.54508 + 4.75528i 0.433459 + 0.314926i
\(229\) −2.23607 + 6.88191i −0.147764 + 0.454769i −0.997356 0.0726703i \(-0.976848\pi\)
0.849592 + 0.527440i \(0.176848\pi\)
\(230\) 0 0
\(231\) −1.85410 + 1.34708i −0.121991 + 0.0886316i
\(232\) 5.95492 + 18.3273i 0.390959 + 1.20325i
\(233\) −5.80902 17.8783i −0.380561 1.17125i −0.939649 0.342139i \(-0.888849\pi\)
0.559088 0.829108i \(-0.311151\pi\)
\(234\) −4.85410 + 3.52671i −0.317323 + 0.230548i
\(235\) 0 0
\(236\) −4.73607 + 14.5761i −0.308292 + 0.948824i
\(237\) 0 0
\(238\) 0.135255 0.416272i 0.00876727 0.0269829i
\(239\) 10.8541 7.88597i 0.702093 0.510101i −0.178520 0.983936i \(-0.557131\pi\)
0.880613 + 0.473836i \(0.157131\pi\)
\(240\) 0 0
\(241\) 6.89919 + 5.01255i 0.444416 + 0.322887i 0.787387 0.616459i \(-0.211433\pi\)
−0.342971 + 0.939346i \(0.611433\pi\)
\(242\) −6.43769 −0.413831
\(243\) 16.0000 1.02640
\(244\) −9.09017 6.60440i −0.581938 0.422803i
\(245\) 0 0
\(246\) 1.23607 3.80423i 0.0788088 0.242549i
\(247\) −24.2705 −1.54430
\(248\) −10.6910 + 6.37988i −0.678878 + 0.405123i
\(249\) 4.09017 0.259204
\(250\) 0 0
\(251\) 0.291796 + 0.898056i 0.0184180 + 0.0566848i 0.959843 0.280537i \(-0.0905127\pi\)
−0.941425 + 0.337222i \(0.890513\pi\)
\(252\) 7.85410 + 5.70634i 0.494762 + 0.359466i
\(253\) −4.18034 −0.262816
\(254\) −6.32624 −0.396943
\(255\) 0 0
\(256\) 5.30902 3.85723i 0.331814 0.241077i
\(257\) 1.14590 0.832544i 0.0714792 0.0519326i −0.551472 0.834194i \(-0.685934\pi\)
0.622951 + 0.782261i \(0.285934\pi\)
\(258\) 0.881966 2.71441i 0.0549088 0.168992i
\(259\) −0.572949 0.416272i −0.0356013 0.0258659i
\(260\) 0 0
\(261\) 5.32624 + 16.3925i 0.329686 + 1.01467i
\(262\) −0.0450850 + 0.0327561i −0.00278536 + 0.00202368i
\(263\) 3.33688 + 10.2699i 0.205761 + 0.633267i 0.999681 + 0.0252452i \(0.00803665\pi\)
−0.793920 + 0.608022i \(0.791963\pi\)
\(264\) 0.527864 + 1.62460i 0.0324878 + 0.0999871i
\(265\) 0 0
\(266\) −2.86475 8.81678i −0.175649 0.540591i
\(267\) −1.97214 + 6.06961i −0.120693 + 0.371454i
\(268\) 5.54508 + 4.02874i 0.338720 + 0.246094i
\(269\) −0.427051 + 1.31433i −0.0260378 + 0.0801360i −0.963231 0.268675i \(-0.913414\pi\)
0.937193 + 0.348811i \(0.113414\pi\)
\(270\) 0 0
\(271\) −7.73607 + 5.62058i −0.469933 + 0.341426i −0.797415 0.603431i \(-0.793800\pi\)
0.327482 + 0.944857i \(0.393800\pi\)
\(272\) 0.354102 + 0.257270i 0.0214706 + 0.0155993i
\(273\) 14.5623 0.881351
\(274\) 4.00000 0.241649
\(275\) 0 0
\(276\) −2.73607 8.42075i −0.164692 0.506870i
\(277\) −4.11803 + 12.6740i −0.247429 + 0.761507i 0.747799 + 0.663925i \(0.231111\pi\)
−0.995228 + 0.0975818i \(0.968889\pi\)
\(278\) 3.61803 0.216995
\(279\) −9.56231 + 5.70634i −0.572480 + 0.341630i
\(280\) 0 0
\(281\) 5.88197 18.1028i 0.350889 1.07992i −0.607466 0.794345i \(-0.707814\pi\)
0.958355 0.285579i \(-0.0921859\pi\)
\(282\) 0.645898 + 1.98787i 0.0384627 + 0.118376i
\(283\) 5.30902 + 3.85723i 0.315588 + 0.229288i 0.734291 0.678835i \(-0.237515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(284\) −0.145898 −0.00865746
\(285\) 0 0
\(286\) −1.85410 1.34708i −0.109635 0.0796547i
\(287\) 15.7082 11.4127i 0.927226 0.673669i
\(288\) 9.09017 6.60440i 0.535643 0.389168i
\(289\) −5.23607 + 16.1150i −0.308004 + 0.947939i
\(290\) 0 0
\(291\) 1.63525 5.03280i 0.0958603 0.295028i
\(292\) −4.28115 13.1760i −0.250536 0.771069i
\(293\) −6.66312 + 4.84104i −0.389264 + 0.282817i −0.765154 0.643848i \(-0.777337\pi\)
0.375890 + 0.926664i \(0.377337\pi\)
\(294\) 0.381966 + 1.17557i 0.0222767 + 0.0685607i
\(295\) 0 0
\(296\) −0.427051 + 0.310271i −0.0248218 + 0.0180341i
\(297\) 1.18034 + 3.63271i 0.0684903 + 0.210791i
\(298\) −3.25329 + 10.0126i −0.188458 + 0.580014i
\(299\) 21.4894 + 15.6129i 1.24276 + 0.902919i
\(300\) 0 0
\(301\) 11.2082 8.14324i 0.646030 0.469368i
\(302\) 9.75329 7.08618i 0.561239 0.407764i
\(303\) −3.85410 2.80017i −0.221412 0.160866i
\(304\) 9.27051 0.531700
\(305\) 0 0
\(306\) −0.236068 0.171513i −0.0134951 0.00980477i
\(307\) −1.88197 5.79210i −0.107409 0.330572i 0.882879 0.469601i \(-0.155602\pi\)
−0.990288 + 0.139028i \(0.955602\pi\)
\(308\) −1.14590 + 3.52671i −0.0652936 + 0.200953i
\(309\) 0.145898 0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) 3.35410 10.3229i 0.189889 0.584417i
\(313\) −0.381966 1.17557i −0.0215900 0.0664472i 0.939681 0.342052i \(-0.111122\pi\)
−0.961271 + 0.275605i \(0.911122\pi\)
\(314\) 4.85410 + 3.52671i 0.273933 + 0.199024i
\(315\) 0 0
\(316\) 0 0
\(317\) 20.9443 + 15.2169i 1.17635 + 0.854666i 0.991755 0.128149i \(-0.0409035\pi\)
0.184593 + 0.982815i \(0.440903\pi\)
\(318\) −6.35410 + 4.61653i −0.356320 + 0.258882i
\(319\) −5.32624 + 3.86974i −0.298212 + 0.216664i
\(320\) 0 0
\(321\) 0.881966 + 0.640786i 0.0492265 + 0.0357652i
\(322\) −3.13525 + 9.64932i −0.174721 + 0.537736i
\(323\) −0.364745 1.12257i −0.0202950 0.0624615i
\(324\) 1.30902 0.951057i 0.0727232 0.0528365i
\(325\) 0 0
\(326\) 2.42705 + 7.46969i 0.134422 + 0.413708i
\(327\) 6.80902 4.94704i 0.376540 0.273572i
\(328\) −4.47214 13.7638i −0.246932 0.759980i
\(329\) −3.13525 + 9.64932i −0.172852 + 0.531984i
\(330\) 0 0
\(331\) 3.48278 10.7189i 0.191431 0.589164i −0.808569 0.588402i \(-0.799757\pi\)
1.00000 0.000762014i \(-0.000242557\pi\)
\(332\) 5.35410 3.88998i 0.293845 0.213491i
\(333\) −0.381966 + 0.277515i −0.0209316 + 0.0152077i
\(334\) −4.61803 3.35520i −0.252688 0.183588i
\(335\) 0 0
\(336\) −5.56231 −0.303449
\(337\) 15.3541 + 11.1554i 0.836391 + 0.607674i 0.921360 0.388710i \(-0.127079\pi\)
−0.0849690 + 0.996384i \(0.527079\pi\)
\(338\) 2.01722 + 6.20837i 0.109722 + 0.337691i
\(339\) 0.572949 1.76336i 0.0311183 0.0957723i
\(340\) 0 0
\(341\) −3.20163 2.80017i −0.173378 0.151638i
\(342\) −6.18034 −0.334195
\(343\) 4.63525 14.2658i 0.250280 0.770283i
\(344\) −3.19098 9.82084i −0.172046 0.529504i
\(345\) 0 0
\(346\) −0.562306 −0.0302298
\(347\) −8.12461 −0.436152 −0.218076 0.975932i \(-0.569978\pi\)
−0.218076 + 0.975932i \(0.569978\pi\)
\(348\) −11.2812 8.19624i −0.604733 0.439364i
\(349\) 13.5172 9.82084i 0.723560 0.525697i −0.163959 0.986467i \(-0.552427\pi\)
0.887520 + 0.460770i \(0.152427\pi\)
\(350\) 0 0
\(351\) 7.50000 23.0826i 0.400320 1.23206i
\(352\) 3.47214 + 2.52265i 0.185065 + 0.134458i
\(353\) 10.0066 30.7971i 0.532596 1.63916i −0.216190 0.976351i \(-0.569363\pi\)
0.748786 0.662812i \(-0.230637\pi\)
\(354\) 1.80902 + 5.56758i 0.0961482 + 0.295914i
\(355\) 0 0
\(356\) 3.19098 + 9.82084i 0.169122 + 0.520503i
\(357\) 0.218847 + 0.673542i 0.0115826 + 0.0356476i
\(358\) −9.89919 + 7.19218i −0.523188 + 0.380119i
\(359\) −7.82624 24.0867i −0.413053 1.27125i −0.913981 0.405757i \(-0.867008\pi\)
0.500928 0.865489i \(-0.332992\pi\)
\(360\) 0 0
\(361\) −4.85410 3.52671i −0.255479 0.185616i
\(362\) 3.24671 9.99235i 0.170643 0.525186i
\(363\) 8.42705 6.12261i 0.442305 0.321354i
\(364\) 19.0623 13.8496i 0.999136 0.725915i
\(365\) 0 0
\(366\) −4.29180 −0.224336
\(367\) 36.2705 1.89331 0.946653 0.322256i \(-0.104441\pi\)
0.946653 + 0.322256i \(0.104441\pi\)
\(368\) −8.20820 5.96361i −0.427882 0.310875i
\(369\) −4.00000 12.3107i −0.208232 0.640871i
\(370\) 0 0
\(371\) −38.1246 −1.97933
\(372\) 3.54508 8.28199i 0.183804 0.429401i
\(373\) 0.347524 0.0179941 0.00899706 0.999960i \(-0.497136\pi\)
0.00899706 + 0.999960i \(0.497136\pi\)
\(374\) 0.0344419 0.106001i 0.00178095 0.00548119i
\(375\) 0 0
\(376\) 6.11803 + 4.44501i 0.315514 + 0.229234i
\(377\) 41.8328 2.15450
\(378\) 9.27051 0.476824
\(379\) 14.8992 + 10.8249i 0.765320 + 0.556037i 0.900537 0.434779i \(-0.143173\pi\)
−0.135218 + 0.990816i \(0.543173\pi\)
\(380\) 0 0
\(381\) 8.28115 6.01661i 0.424256 0.308240i
\(382\) −3.07295 + 9.45756i −0.157226 + 0.483891i
\(383\) −13.6353 9.90659i −0.696729 0.506203i 0.182136 0.983273i \(-0.441699\pi\)
−0.878865 + 0.477070i \(0.841699\pi\)
\(384\) −3.51722 + 10.8249i −0.179487 + 0.552406i
\(385\) 0 0
\(386\) −1.19098 + 0.865300i −0.0606194 + 0.0440426i
\(387\) −2.85410 8.78402i −0.145082 0.446517i
\(388\) −2.64590 8.14324i −0.134325 0.413410i
\(389\) 23.5172 17.0863i 1.19237 0.866308i 0.198858 0.980028i \(-0.436277\pi\)
0.993513 + 0.113721i \(0.0362769\pi\)
\(390\) 0 0
\(391\) −0.399187 + 1.22857i −0.0201878 + 0.0621315i
\(392\) 3.61803 + 2.62866i 0.182738 + 0.132767i
\(393\) 0.0278640 0.0857567i 0.00140556 0.00432585i
\(394\) 8.20820 5.96361i 0.413523 0.300442i
\(395\) 0 0
\(396\) 2.00000 + 1.45309i 0.100504 + 0.0730203i
\(397\) −16.2918 −0.817662 −0.408831 0.912610i \(-0.634063\pi\)
−0.408831 + 0.912610i \(0.634063\pi\)
\(398\) −16.5066 −0.827400
\(399\) 12.1353 + 8.81678i 0.607523 + 0.441391i
\(400\) 0 0
\(401\) −9.21885 + 28.3727i −0.460367 + 1.41686i 0.404349 + 0.914605i \(0.367498\pi\)
−0.864717 + 0.502260i \(0.832502\pi\)
\(402\) 2.61803 0.130576
\(403\) 6.00000 + 26.3521i 0.298881 + 1.31269i
\(404\) −7.70820 −0.383497
\(405\) 0 0
\(406\) 4.93769 + 15.1967i 0.245054 + 0.754198i
\(407\) −0.145898 0.106001i −0.00723190 0.00525428i
\(408\) 0.527864 0.0261332
\(409\) −6.18034 −0.305598 −0.152799 0.988257i \(-0.548829\pi\)
−0.152799 + 0.988257i \(0.548829\pi\)
\(410\) 0 0
\(411\) −5.23607 + 3.80423i −0.258276 + 0.187649i
\(412\) 0.190983 0.138757i 0.00940906 0.00683608i
\(413\) −8.78115 + 27.0256i −0.432092 + 1.32984i
\(414\) 5.47214 + 3.97574i 0.268941 + 0.195397i
\(415\) 0 0
\(416\) −8.42705 25.9358i −0.413170 1.27161i
\(417\) −4.73607 + 3.44095i −0.231926 + 0.168504i
\(418\) −0.729490 2.24514i −0.0356805 0.109813i
\(419\) 1.38197 + 4.25325i 0.0675135 + 0.207785i 0.979122 0.203275i \(-0.0651586\pi\)
−0.911608 + 0.411060i \(0.865159\pi\)
\(420\) 0 0
\(421\) 4.56231 + 14.0413i 0.222353 + 0.684333i 0.998549 + 0.0538414i \(0.0171466\pi\)
−0.776196 + 0.630491i \(0.782853\pi\)
\(422\) −1.52786 + 4.70228i −0.0743753 + 0.228904i
\(423\) 5.47214 + 3.97574i 0.266064 + 0.193307i
\(424\) −8.78115 + 27.0256i −0.426450 + 1.31248i
\(425\) 0 0
\(426\) −0.0450850 + 0.0327561i −0.00218437 + 0.00158704i
\(427\) −16.8541 12.2452i −0.815627 0.592588i
\(428\) 1.76393 0.0852629
\(429\) 3.70820 0.179034
\(430\) 0 0
\(431\) 9.03444 + 27.8052i 0.435174 + 1.33933i 0.892908 + 0.450238i \(0.148661\pi\)
−0.457735 + 0.889089i \(0.651339\pi\)
\(432\) −2.86475 + 8.81678i −0.137830 + 0.424197i
\(433\) −0.583592 −0.0280456 −0.0140228 0.999902i \(-0.504464\pi\)
−0.0140228 + 0.999902i \(0.504464\pi\)
\(434\) −8.86475 + 5.29007i −0.425521 + 0.253931i
\(435\) 0 0
\(436\) 4.20820 12.9515i 0.201536 0.620265i
\(437\) 8.45492 + 26.0216i 0.404453 + 1.24478i
\(438\) −4.28115 3.11044i −0.204561 0.148623i
\(439\) 41.8328 1.99657 0.998286 0.0585295i \(-0.0186412\pi\)
0.998286 + 0.0585295i \(0.0186412\pi\)
\(440\) 0 0
\(441\) 3.23607 + 2.35114i 0.154098 + 0.111959i
\(442\) −0.572949 + 0.416272i −0.0272524 + 0.0198000i
\(443\) −33.2705 + 24.1724i −1.58073 + 1.14847i −0.664877 + 0.746953i \(0.731516\pi\)
−0.915853 + 0.401514i \(0.868484\pi\)
\(444\) 0.118034 0.363271i 0.00560165 0.0172401i
\(445\) 0 0
\(446\) −0.135255 + 0.416272i −0.00640451 + 0.0197110i
\(447\) −5.26393 16.2007i −0.248975 0.766268i
\(448\) −0.572949 + 0.416272i −0.0270693 + 0.0196670i
\(449\) 7.43769 + 22.8909i 0.351006 + 1.08029i 0.958289 + 0.285801i \(0.0922596\pi\)
−0.607283 + 0.794486i \(0.707740\pi\)
\(450\) 0 0
\(451\) 4.00000 2.90617i 0.188353 0.136846i
\(452\) −0.927051 2.85317i −0.0436048 0.134202i
\(453\) −6.02786 + 18.5519i −0.283214 + 0.871642i
\(454\) −10.3713 7.53521i −0.486750 0.353645i
\(455\) 0 0
\(456\) 9.04508 6.57164i 0.423575 0.307745i
\(457\) −12.7361 + 9.25330i −0.595768 + 0.432851i −0.844374 0.535754i \(-0.820028\pi\)
0.248606 + 0.968605i \(0.420028\pi\)
\(458\) 3.61803 + 2.62866i 0.169060 + 0.122829i
\(459\) 1.18034 0.0550935
\(460\) 0 0
\(461\) −8.69098 6.31437i −0.404779 0.294089i 0.366705 0.930337i \(-0.380486\pi\)
−0.771485 + 0.636248i \(0.780486\pi\)
\(462\) 0.437694 + 1.34708i 0.0203634 + 0.0626720i
\(463\) 9.61803 29.6013i 0.446988 1.37569i −0.433301 0.901249i \(-0.642651\pi\)
0.880289 0.474438i \(-0.157349\pi\)
\(464\) −15.9787 −0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) 10.1287 31.1729i 0.468699 1.44251i −0.385571 0.922678i \(-0.625995\pi\)
0.854270 0.519830i \(-0.174005\pi\)
\(468\) −4.85410 14.9394i −0.224381 0.690574i
\(469\) 10.2812 + 7.46969i 0.474740 + 0.344918i
\(470\) 0 0
\(471\) −9.70820 −0.447330
\(472\) 17.1353 + 12.4495i 0.788714 + 0.573034i
\(473\) 2.85410 2.07363i 0.131232 0.0953454i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.927051 + 0.673542i 0.0424913 + 0.0308717i
\(477\) −7.85410 + 24.1724i −0.359615 + 1.10678i
\(478\) −2.56231 7.88597i −0.117197 0.360696i
\(479\) 7.23607 5.25731i 0.330624 0.240213i −0.410071 0.912054i \(-0.634496\pi\)
0.740696 + 0.671841i \(0.234496\pi\)
\(480\) 0 0
\(481\) 0.354102 + 1.08981i 0.0161457 + 0.0496912i
\(482\) 4.26393 3.09793i 0.194217 0.141107i
\(483\) −5.07295 15.6129i −0.230827 0.710413i
\(484\) 5.20820 16.0292i 0.236737 0.728600i
\(485\) 0 0
\(486\) 3.05573 9.40456i 0.138611 0.426600i
\(487\) 18.5451 13.4738i 0.840358 0.610556i −0.0821126 0.996623i \(-0.526167\pi\)
0.922471 + 0.386067i \(0.126167\pi\)
\(488\) −12.5623 + 9.12705i −0.568669 + 0.413162i
\(489\) −10.2812 7.46969i −0.464930 0.337791i
\(490\) 0 0
\(491\) −27.5967 −1.24542 −0.622712 0.782451i \(-0.713969\pi\)
−0.622712 + 0.782451i \(0.713969\pi\)
\(492\) 8.47214 + 6.15537i 0.381953 + 0.277505i
\(493\) 0.628677 + 1.93487i 0.0283142 + 0.0871421i
\(494\) −4.63525 + 14.2658i −0.208550 + 0.641851i
\(495\) 0 0
\(496\) −2.29180 10.0656i −0.102905 0.451959i
\(497\) −0.270510 −0.0121340
\(498\) 0.781153 2.40414i 0.0350043 0.107732i
\(499\) 1.28115 + 3.94298i 0.0573523 + 0.176512i 0.975629 0.219427i \(-0.0704189\pi\)
−0.918277 + 0.395940i \(0.870419\pi\)
\(500\) 0 0
\(501\) 9.23607 0.412637
\(502\) 0.583592 0.0260470
\(503\) 10.6353 + 7.72696i 0.474203 + 0.344528i 0.799077 0.601229i \(-0.205322\pi\)
−0.324874 + 0.945757i \(0.605322\pi\)
\(504\) 10.8541 7.88597i 0.483480 0.351269i
\(505\) 0 0
\(506\) −0.798374 + 2.45714i −0.0354920 + 0.109233i
\(507\) −8.54508 6.20837i −0.379501 0.275723i
\(508\) 5.11803 15.7517i 0.227076 0.698868i
\(509\) −0.590170 1.81636i −0.0261588 0.0805086i 0.937125 0.348994i \(-0.113477\pi\)
−0.963284 + 0.268486i \(0.913477\pi\)
\(510\) 0 0
\(511\) −7.93769 24.4297i −0.351143 1.08071i
\(512\) 5.78115 + 17.7926i 0.255493 + 0.786327i
\(513\) 20.2254 14.6946i 0.892974 0.648784i
\(514\) −0.270510 0.832544i −0.0119317 0.0367219i
\(515\) 0 0
\(516\) 6.04508 + 4.39201i 0.266120 + 0.193348i
\(517\) −0.798374 + 2.45714i −0.0351124 + 0.108065i
\(518\) −0.354102 + 0.257270i −0.0155583 + 0.0113038i
\(519\) 0.736068 0.534785i 0.0323098 0.0234744i
\(520\) 0 0
\(521\) 31.0689 1.36115 0.680576 0.732677i \(-0.261729\pi\)
0.680576 + 0.732677i \(0.261729\pi\)
\(522\) 10.6525 0.466246
\(523\) 27.6074 + 20.0579i 1.20719 + 0.877073i 0.994972 0.100150i \(-0.0319324\pi\)
0.212215 + 0.977223i \(0.431932\pi\)
\(524\) −0.0450850 0.138757i −0.00196955 0.00606164i
\(525\) 0 0
\(526\) 6.67376 0.290990
\(527\) −1.12868 + 0.673542i −0.0491659 + 0.0293399i
\(528\) −1.41641 −0.0616412
\(529\) 2.14590 6.60440i 0.0932999 0.287148i
\(530\) 0 0
\(531\) 15.3262 + 11.1352i 0.665102 + 0.483225i
\(532\) 24.2705 1.05226
\(533\) −31.4164 −1.36080
\(534\) 3.19098 + 2.31838i 0.138087 + 0.100326i
\(535\) 0 0
\(536\) 7.66312 5.56758i 0.330996 0.240483i
\(537\) 6.11803 18.8294i 0.264013 0.812547i
\(538\) 0.690983 + 0.502029i 0.0297904 + 0.0216440i
\(539\) −0.472136 + 1.45309i −0.0203363 + 0.0625888i
\(540\) 0 0
\(541\) −17.7984 + 12.9313i −0.765212 + 0.555959i −0.900504 0.434847i \(-0.856803\pi\)
0.135293 + 0.990806i \(0.456803\pi\)
\(542\) 1.82624 + 5.62058i 0.0784436 + 0.241425i
\(543\) 5.25329 + 16.1680i 0.225440 + 0.693834i
\(544\) 1.07295 0.779543i 0.0460023 0.0334226i
\(545\) 0 0
\(546\) 2.78115 8.55951i 0.119022 0.366313i
\(547\) −19.1803 13.9353i −0.820092 0.595832i 0.0966468 0.995319i \(-0.469188\pi\)
−0.916739 + 0.399487i \(0.869188\pi\)
\(548\) −3.23607 + 9.95959i −0.138238 + 0.425453i
\(549\) −11.2361 + 8.16348i −0.479544 + 0.348409i
\(550\) 0 0
\(551\) 34.8607 + 25.3278i 1.48511 + 1.07900i
\(552\) −12.2361 −0.520802
\(553\) 0 0
\(554\) 6.66312 + 4.84104i 0.283089 + 0.205676i
\(555\) 0 0
\(556\) −2.92705 + 9.00854i −0.124135 + 0.382047i
\(557\) −35.8885 −1.52065 −0.760323 0.649545i \(-0.774959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(558\) 1.52786 + 6.71040i 0.0646796 + 0.284074i
\(559\) −22.4164 −0.948113
\(560\) 0 0
\(561\) 0.0557281 + 0.171513i 0.00235284 + 0.00724130i
\(562\) −9.51722 6.91467i −0.401460 0.291678i
\(563\) 8.56231 0.360858 0.180429 0.983588i \(-0.442251\pi\)
0.180429 + 0.983588i \(0.442251\pi\)
\(564\) −5.47214 −0.230418
\(565\) 0 0
\(566\) 3.28115 2.38390i 0.137917 0.100203i
\(567\) 2.42705 1.76336i 0.101927 0.0740540i
\(568\) −0.0623059 + 0.191758i −0.00261430 + 0.00804598i
\(569\) −12.5623 9.12705i −0.526639 0.382626i 0.292460 0.956278i \(-0.405526\pi\)
−0.819099 + 0.573652i \(0.805526\pi\)
\(570\) 0 0
\(571\) 2.16312 + 6.65740i 0.0905237 + 0.278603i 0.986061 0.166383i \(-0.0532087\pi\)
−0.895538 + 0.444986i \(0.853209\pi\)
\(572\) 4.85410 3.52671i 0.202960 0.147459i
\(573\) −4.97214 15.3027i −0.207714 0.639278i
\(574\) −3.70820 11.4127i −0.154777 0.476356i
\(575\) 0 0
\(576\) 0.145898 + 0.449028i 0.00607908 + 0.0187095i
\(577\) −12.0451 + 37.0710i −0.501443 + 1.54328i 0.305225 + 0.952280i \(0.401268\pi\)
−0.806669 + 0.591004i \(0.798732\pi\)
\(578\) 8.47214 + 6.15537i 0.352394 + 0.256030i
\(579\) 0.736068 2.26538i 0.0305899 0.0941462i
\(580\) 0 0
\(581\) 9.92705 7.21242i 0.411843 0.299222i
\(582\) −2.64590 1.92236i −0.109676 0.0796843i
\(583\) −9.70820 −0.402073
\(584\) −19.1459 −0.792263
\(585\) 0 0
\(586\) 1.57295 + 4.84104i 0.0649779 + 0.199981i
\(587\) −11.1287 + 34.2505i −0.459330 + 1.41367i 0.406646 + 0.913586i \(0.366698\pi\)
−0.865976 + 0.500086i \(0.833302\pi\)
\(588\) −3.23607 −0.133453
\(589\) −10.9549 + 25.5928i −0.451389 + 1.05453i
\(590\) 0 0
\(591\) −5.07295 + 15.6129i −0.208673 + 0.642230i
\(592\) −0.135255 0.416272i −0.00555894 0.0171087i
\(593\) 4.94427 + 3.59222i 0.203037 + 0.147515i 0.684658 0.728865i \(-0.259952\pi\)
−0.481621 + 0.876380i \(0.659952\pi\)
\(594\) 2.36068 0.0968599
\(595\) 0 0
\(596\) −22.2984 16.2007i −0.913377 0.663607i
\(597\) 21.6074 15.6987i 0.884332 0.642505i
\(598\) 13.2812 9.64932i 0.543107 0.394590i
\(599\) 9.20820 28.3399i 0.376237 1.15794i −0.566403 0.824128i \(-0.691666\pi\)
0.942640 0.333810i \(-0.108334\pi\)
\(600\) 0 0
\(601\) 6.79837 20.9232i 0.277311 0.853477i −0.711287 0.702902i \(-0.751887\pi\)
0.988599 0.150575i \(-0.0481126\pi\)
\(602\) −2.64590 8.14324i −0.107839 0.331894i
\(603\) 6.85410 4.97980i 0.279121 0.202793i
\(604\) 9.75329 + 30.0175i 0.396856 + 1.22140i
\(605\) 0 0
\(606\) −2.38197 + 1.73060i −0.0967608 + 0.0703008i
\(607\) 7.85410 + 24.1724i 0.318788 + 0.981129i 0.974167 + 0.225829i \(0.0725090\pi\)
−0.655379 + 0.755300i \(0.727491\pi\)
\(608\) 8.68034 26.7153i 0.352034 1.08345i
\(609\) −20.9164 15.1967i −0.847576 0.615800i
\(610\) 0 0
\(611\) 13.2812 9.64932i 0.537298 0.390370i
\(612\) 0.618034 0.449028i 0.0249825 0.0181509i
\(613\) 20.2705 + 14.7274i 0.818718 + 0.594834i 0.916345 0.400390i \(-0.131125\pi\)
−0.0976269 + 0.995223i \(0.531125\pi\)
\(614\) −3.76393 −0.151900
\(615\) 0 0
\(616\) 4.14590 + 3.01217i 0.167043 + 0.121364i
\(617\) 4.39919 + 13.5393i 0.177105 + 0.545072i 0.999723 0.0235215i \(-0.00748780\pi\)
−0.822619 + 0.568593i \(0.807488\pi\)
\(618\) 0.0278640 0.0857567i 0.00112086 0.00344964i
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) 3.14590 9.68208i 0.126139 0.388216i
\(623\) 5.91641 + 18.2088i 0.237036 + 0.729521i
\(624\) 7.28115 + 5.29007i 0.291479 + 0.211772i
\(625\) 0 0
\(626\) −0.763932 −0.0305329
\(627\) 3.09017 + 2.24514i 0.123410 + 0.0896623i
\(628\) −12.7082 + 9.23305i −0.507113 + 0.368439i
\(629\) −0.0450850 + 0.0327561i −0.00179766 + 0.00130607i
\(630\) 0 0
\(631\) 7.06231 + 5.13107i 0.281146 + 0.204264i 0.719417 0.694578i \(-0.244409\pi\)
−0.438271 + 0.898843i \(0.644409\pi\)
\(632\) 0 0
\(633\) −2.47214 7.60845i −0.0982586 0.302409i
\(634\) 12.9443 9.40456i 0.514083 0.373503i
\(635\) 0 0
\(636\) −6.35410 19.5559i −0.251957 0.775442i
\(637\) 7.85410 5.70634i 0.311191 0.226093i
\(638\) 1.25735 + 3.86974i 0.0497791 + 0.153204i
\(639\) −0.0557281 + 0.171513i −0.00220457 + 0.00678497i
\(640\) 0 0
\(641\) −12.6976 + 39.0791i −0.501523 + 1.54353i 0.305014 + 0.952348i \(0.401339\pi\)
−0.806538 + 0.591183i \(0.798661\pi\)
\(642\) 0.545085 0.396027i 0.0215128 0.0156300i
\(643\) 6.59017 4.78804i 0.259891 0.188822i −0.450208 0.892924i \(-0.648650\pi\)
0.710099 + 0.704102i \(0.248650\pi\)
\(644\) −21.4894 15.6129i −0.846799 0.615236i
\(645\) 0 0
\(646\) −0.729490 −0.0287014
\(647\) −24.1803 17.5680i −0.950627 0.690671i 0.000327889 1.00000i \(-0.499896\pi\)
−0.950955 + 0.309329i \(0.899896\pi\)
\(648\) −0.690983 2.12663i −0.0271444 0.0835418i
\(649\) −2.23607 + 6.88191i −0.0877733 + 0.270139i
\(650\) 0 0
\(651\) 6.57295 15.3557i 0.257614 0.601836i
\(652\) −20.5623 −0.805282
\(653\) −12.2533 + 37.7117i −0.479508 + 1.47577i 0.360272 + 0.932847i \(0.382684\pi\)
−0.839780 + 0.542927i \(0.817316\pi\)
\(654\) −1.60739 4.94704i −0.0628540 0.193445i
\(655\) 0 0
\(656\) 12.0000 0.468521
\(657\) −17.1246 −0.668095
\(658\) 5.07295 + 3.68571i 0.197764 + 0.143684i
\(659\) −18.3541 + 13.3350i −0.714974 + 0.519459i −0.884775 0.466019i \(-0.845688\pi\)
0.169800 + 0.985478i \(0.445688\pi\)
\(660\) 0 0
\(661\) −5.13525 + 15.8047i −0.199738 + 0.614731i 0.800150 + 0.599800i \(0.204753\pi\)
−0.999889 + 0.0149316i \(0.995247\pi\)
\(662\) −5.63525 4.09425i −0.219020 0.159128i
\(663\) 0.354102 1.08981i 0.0137522 0.0423249i
\(664\) −2.82624 8.69827i −0.109679 0.337558i
\(665\) 0 0
\(666\) 0.0901699 + 0.277515i 0.00349401 + 0.0107535i
\(667\) −14.5729 44.8509i −0.564267 1.73663i
\(668\) 12.0902 8.78402i 0.467783 0.339864i
\(669\) −0.218847 0.673542i −0.00846112 0.0260406i
\(670\) 0 0
\(671\) −4.29180 3.11817i −0.165683 0.120376i
\(672\) −5.20820 + 16.0292i −0.200911 + 0.618340i
\(673\) −3.57295 + 2.59590i −0.137727 + 0.100065i −0.654516 0.756049i \(-0.727127\pi\)
0.516788 + 0.856113i \(0.327127\pi\)
\(674\) 9.48936 6.89442i 0.365516 0.265563i
\(675\) 0 0
\(676\) −17.0902 −0.657314
\(677\) −28.6525 −1.10120 −0.550602 0.834768i \(-0.685602\pi\)
−0.550602 + 0.834768i \(0.685602\pi\)
\(678\) −0.927051 0.673542i −0.0356032 0.0258672i
\(679\) −4.90576 15.0984i −0.188266 0.579423i
\(680\) 0 0
\(681\) 20.7426 0.794860
\(682\) −2.25735 + 1.34708i −0.0864386 + 0.0515825i
\(683\) −10.0557 −0.384772 −0.192386 0.981319i \(-0.561623\pi\)
−0.192386 + 0.981319i \(0.561623\pi\)
\(684\) 5.00000 15.3884i 0.191180 0.588391i
\(685\) 0 0
\(686\) −7.50000 5.44907i −0.286351 0.208046i
\(687\) −7.23607 −0.276073
\(688\) 8.56231 0.326435
\(689\) 49.9058 + 36.2587i 1.90126 + 1.38134i
\(690\) 0 0
\(691\) −3.10081 + 2.25287i −0.117960 + 0.0857033i −0.645201 0.764013i \(-0.723227\pi\)
0.527241 + 0.849716i \(0.323227\pi\)
\(692\) 0.454915 1.40008i 0.0172933 0.0532232i
\(693\) 3.70820 + 2.69417i 0.140863 + 0.102343i
\(694\) −1.55166 + 4.77553i −0.0589003 + 0.181277i
\(695\) 0 0
\(696\) −15.5902 + 11.3269i −0.590944 + 0.429346i
\(697\) −0.472136 1.45309i −0.0178834 0.0550395i
\(698\) −3.19098 9.82084i −0.120780 0.371724i
\(699\) 15.2082 11.0494i 0.575227 0.417927i
\(700\) 0 0
\(701\) −9.28115 + 28.5645i −0.350544 + 1.07886i 0.608004 + 0.793934i \(0.291970\pi\)
−0.958548 + 0.284930i \(0.908030\pi\)
\(702\) −12.1353 8.81678i −0.458016 0.332768i
\(703\) −0.364745 + 1.12257i −0.0137566 + 0.0423385i
\(704\) −0.145898 + 0.106001i −0.00549874 + 0.00399507i
\(705\) 0 0
\(706\) −16.1910 11.7634i −0.609356 0.442723i
\(707\) −14.2918 −0.537498
\(708\) −15.3262 −0.575995
\(709\) −3.35410 2.43690i −0.125966 0.0915196i 0.523018 0.852321i \(-0.324806\pi\)
−0.648984 + 0.760802i \(0.724806\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 14.2705 0.534810
\(713\) 26.1631 15.6129i 0.979817 0.584709i
\(714\) 0.437694 0.0163803
\(715\) 0 0
\(716\) −9.89919 30.4666i −0.369950 1.13859i
\(717\) 10.8541 + 7.88597i 0.405354 + 0.294507i
\(718\) −15.6525 −0.584145
\(719\) −41.3820 −1.54329 −0.771643 0.636055i \(-0.780565\pi\)
−0.771643 + 0.636055i \(0.780565\pi\)
\(720\) 0 0
\(721\) 0.354102 0.257270i 0.0131874 0.00958124i
\(722\) −3.00000 + 2.17963i −0.111648 + 0.0811173i
\(723\) −2.63525 + 8.11048i −0.0980062 + 0.301632i
\(724\) 22.2533 + 16.1680i 0.827037 + 0.600878i
\(725\) 0 0
\(726\) −1.98936 6.12261i −0.0738320 0.227231i
\(727\) −19.2812 + 14.0086i −0.715098 + 0.519549i −0.884814 0.465944i \(-0.845715\pi\)
0.169716 + 0.985493i \(0.445715\pi\)
\(728\) −10.0623 30.9686i −0.372934 1.14777i
\(729\) 4.01722 + 12.3637i 0.148786 + 0.457916i
\(730\) 0 0
\(731\) −0.336881 1.03681i −0.0124600 0.0383479i
\(732\) 3.47214 10.6861i 0.128334 0.394971i
\(733\) 22.6074 + 16.4252i 0.835023 + 0.606680i 0.920976 0.389619i \(-0.127393\pi\)
−0.0859529 + 0.996299i \(0.527393\pi\)
\(734\) 6.92705 21.3193i 0.255682 0.786909i
\(735\) 0 0
\(736\) −24.8713 + 18.0701i −0.916769 + 0.666072i
\(737\) 2.61803 + 1.90211i 0.0964365 + 0.0700652i
\(738\) −8.00000 −0.294484
\(739\) 21.7082 0.798549 0.399275 0.916831i \(-0.369262\pi\)
0.399275 + 0.916831i \(0.369262\pi\)
\(740\) 0 0
\(741\) −7.50000 23.0826i −0.275519 0.847961i
\(742\) −7.28115 + 22.4091i −0.267300 + 0.822663i
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) −9.37132 8.19624i −0.343569 0.300489i
\(745\) 0 0
\(746\) 0.0663712 0.204270i 0.00243002 0.00747884i
\(747\) −2.52786 7.77997i −0.0924897 0.284654i
\(748\) 0.236068 + 0.171513i 0.00863150 + 0.00627115i
\(749\) 3.27051 0.119502
\(750\) 0 0
\(751\) 32.2254 + 23.4131i 1.17592 + 0.854358i 0.991706 0.128528i \(-0.0410252\pi\)
0.184217 + 0.982886i \(0.441025\pi\)
\(752\) −5.07295 + 3.68571i −0.184991 + 0.134404i
\(753\) −0.763932 + 0.555029i −0.0278392 + 0.0202264i
\(754\) 7.98936 24.5887i 0.290955 0.895468i
\(755\) 0 0
\(756\) −7.50000 + 23.0826i −0.272772 + 0.839507i
\(757\) −13.3262 41.0139i −0.484350 1.49068i −0.832920 0.553394i \(-0.813332\pi\)
0.348569 0.937283i \(-0.386668\pi\)
\(758\) 9.20820 6.69015i 0.334457 0.242997i
\(759\) −1.29180 3.97574i −0.0468892 0.144310i
\(760\) 0 0
\(761\) −2.83688 + 2.06111i −0.102837 + 0.0747154i −0.638015 0.770024i \(-0.720244\pi\)
0.535178 + 0.844739i \(0.320244\pi\)
\(762\) −1.95492 6.01661i −0.0708191 0.217959i
\(763\) 7.80244 24.0134i 0.282467 0.869345i
\(764\) −21.0623 15.3027i −0.762007 0.553631i
\(765\) 0 0
\(766\) −8.42705 + 6.12261i −0.304482 + 0.221219i
\(767\) 37.1976 27.0256i 1.34313 0.975838i
\(768\) 5.30902 + 3.85723i 0.191573 + 0.139186i
\(769\) −53.7426 −1.93801 −0.969005 0.247042i \(-0.920541\pi\)
−0.969005 + 0.247042i \(0.920541\pi\)
\(770\) 0 0
\(771\) 1.14590 + 0.832544i 0.0412685 + 0.0299833i
\(772\) −1.19098 3.66547i −0.0428644 0.131923i
\(773\) 5.89919 18.1558i 0.212179 0.653020i −0.787163 0.616745i \(-0.788451\pi\)
0.999342 0.0362746i \(-0.0115491\pi\)
\(774\) −5.70820 −0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) 0.218847 0.673542i 0.00785109 0.0241632i
\(778\) −5.55166 17.0863i −0.199037 0.612572i
\(779\) −26.1803 19.0211i −0.938008 0.681503i
\(780\) 0 0
\(781\) −0.0688837 −0.00246485
\(782\) 0.645898 + 0.469272i 0.0230973 + 0.0167811i
\(783\) −34.8607 + 25.3278i −1.24582 + 0.905141i
\(784\) −3.00000 + 2.17963i −0.107143 + 0.0778438i
\(785\) 0 0
\(786\) −0.0450850 0.0327561i −0.00160813 0.00116837i
\(787\) −9.66970 + 29.7603i −0.344687 + 1.06084i 0.617063 + 0.786913i \(0.288322\pi\)
−0.961751 + 0.273926i \(0.911678\pi\)
\(788\) 8.20820 + 25.2623i 0.292405 + 0.899931i
\(789\) −8.73607 + 6.34712i −0.311012 + 0.225964i
\(790\) 0 0
\(791\) −1.71885 5.29007i −0.0611152 0.188093i
\(792\) 2.76393 2.00811i 0.0982120 0.0713552i
\(793\) 10.4164 + 32.0584i 0.369897 + 1.13843i
\(794\) −3.11146 + 9.57608i −0.110421 + 0.339842i
\(795\) 0 0
\(796\) 13.3541 41.0997i 0.473324 1.45674i
\(797\) 7.32624 5.32282i 0.259509 0.188544i −0.450422 0.892816i \(-0.648726\pi\)
0.709930 + 0.704272i \(0.248726\pi\)
\(798\) 7.50000 5.44907i 0.265497 0.192895i
\(799\) 0.645898 + 0.469272i 0.0228502 + 0.0166017i
\(800\) 0 0
\(801\) 12.7639 0.450991
\(802\) 14.9164 + 10.8374i 0.526717 + 0.382682i
\(803\) −2.02129 6.22088i −0.0713296 0.219530i
\(804\) −2.11803 + 6.51864i −0.0746973 + 0.229895i
\(805\) 0 0
\(806\) 16.6353 + 1.50609i 0.585952 + 0.0530496i
\(807\) −1.38197 −0.0486475
\(808\) −3.29180 + 10.1311i −0.115805 + 0.356411i
\(809\) 16.9336 + 52.1164i 0.595355 + 1.83231i 0.552953 + 0.833213i \(0.313501\pi\)
0.0424020 + 0.999101i \(0.486499\pi\)
\(810\) 0 0
\(811\) 42.7771 1.50211 0.751053 0.660242i \(-0.229546\pi\)
0.751053 + 0.660242i \(0.229546\pi\)
\(812\) −41.8328 −1.46804
\(813\) −7.73607 5.62058i −0.271316 0.197122i
\(814\) −0.0901699 + 0.0655123i −0.00316045 + 0.00229620i
\(815\) 0 0
\(816\) −0.135255 + 0.416272i −0.00473487 + 0.0145724i
\(817\) −18.6803 13.5721i −0.653542 0.474826i
\(818\) −1.18034 + 3.63271i −0.0412696 + 0.127015i
\(819\) −9.00000 27.6992i −0.314485 0.967887i
\(820\) 0 0
\(821\) −10.0344 30.8828i −0.350204 1.07782i −0.958738 0.284290i \(-0.908242\pi\)
0.608534 0.793528i \(-0.291758\pi\)
\(822\) 1.23607 + 3.80423i 0.0431128 + 0.132688i
\(823\) −4.95492 + 3.59996i −0.172717 + 0.125487i −0.670786 0.741651i \(-0.734043\pi\)
0.498068 + 0.867138i \(0.334043\pi\)
\(824\) −0.100813 0.310271i −0.00351199 0.0108088i
\(825\) 0 0
\(826\) 14.2082 + 10.3229i 0.494367 + 0.359178i
\(827\) −0.826238 + 2.54290i −0.0287311 + 0.0884253i −0.964394 0.264470i \(-0.914803\pi\)
0.935663 + 0.352896i \(0.114803\pi\)
\(828\) −14.3262 + 10.4086i −0.497871 + 0.361725i
\(829\) 17.5623 12.7598i 0.609964 0.443165i −0.239438 0.970912i \(-0.576963\pi\)
0.849402 + 0.527747i \(0.176963\pi\)
\(830\) 0 0
\(831\) −13.3262 −0.462282
\(832\) 1.14590 0.0397269
\(833\) 0.381966 + 0.277515i 0.0132343 + 0.00961531i
\(834\) 1.11803 + 3.44095i 0.0387144 + 0.119151i
\(835\) 0 0
\(836\) 6.18034 0.213752
\(837\) −20.9549 18.3273i −0.724308 0.633486i
\(838\) 2.76393 0.0954784
\(839\) 3.45492 10.6331i 0.119277 0.367097i −0.873538 0.486756i \(-0.838180\pi\)
0.992815 + 0.119659i \(0.0381802\pi\)
\(840\) 0 0
\(841\) −36.6246 26.6093i −1.26292 0.917563i
\(842\) 9.12461 0.314455
\(843\) 19.0344 0.655581
\(844\) −10.4721 7.60845i −0.360466 0.261894i
\(845\) 0 0
\(846\) 3.38197 2.45714i 0.116274 0.0844783i
\(847\) 9.65654 29.7198i 0.331803 1.02118i
\(848\) −19.0623 13.8496i −0.654602 0.475596i
\(849\) −2.02786 + 6.24112i −0.0695961 + 0.214195i
\(850\) 0 0
\(851\) 1.04508 0.759299i 0.0358251 0.0260284i
\(852\) −0.0450850 0.138757i −0.00154459 0.00475375i
\(853\) −1.23607 3.80423i −0.0423222 0.130254i 0.927663 0.373419i \(-0.121815\pi\)
−0.969985 + 0.243164i \(0.921815\pi\)
\(854\) −10.4164 + 7.56796i −0.356442 + 0.258970i
\(855\) 0 0
\(856\) 0.753289 2.31838i 0.0257469 0.0792408i
\(857\) −6.61803 4.80828i −0.226068 0.164248i 0.468986 0.883206i \(-0.344619\pi\)
−0.695054 + 0.718958i \(0.744619\pi\)
\(858\) 0.708204 2.17963i 0.0241777 0.0744113i
\(859\) −35.0238 + 25.4463i −1.19500 + 0.868216i −0.993783 0.111332i \(-0.964488\pi\)
−0.201213 + 0.979547i \(0.564488\pi\)
\(860\) 0 0
\(861\) 15.7082 + 11.4127i 0.535334 + 0.388943i
\(862\) 18.0689 0.615429
\(863\) −2.49342 −0.0848771 −0.0424385 0.999099i \(-0.513513\pi\)
−0.0424385 + 0.999099i \(0.513513\pi\)
\(864\) 22.7254 + 16.5110i 0.773135 + 0.561715i
\(865\) 0 0
\(866\) −0.111456 + 0.343027i −0.00378744 + 0.0116565i
\(867\) −16.9443 −0.575458
\(868\) −6.00000 26.3521i −0.203653 0.894447i
\(869\) 0 0
\(870\) 0 0
\(871\) −6.35410 19.5559i −0.215301 0.662627i
\(872\) −15.2254 11.0619i −0.515598 0.374604i
\(873\) −10.5836 −0.358200
\(874\) 16.9098 0.571984
\(875\) 0 0
\(876\) 11.2082 8.14324i 0.378690 0.275134i
\(877\) 13.1803 9.57608i 0.445068 0.323361i −0.342577 0.939490i \(-0.611300\pi\)
0.787646 + 0.616129i \(0.211300\pi\)
\(878\) 7.98936 24.5887i 0.269628 0.829829i
\(879\) −6.66312 4.84104i −0.224741 0.163284i
\(880\) 0 0
\(881\) −4.74671 14.6089i −0.159921 0.492185i 0.838705 0.544585i \(-0.183313\pi\)
−0.998626 + 0.0523999i \(0.983313\pi\)
\(882\) 2.00000 1.45309i 0.0673435 0.0489279i
\(883\) 0.309017 + 0.951057i 0.0103992 + 0.0320056i 0.956121 0.292970i \(-0.0946438\pi\)
−0.945722 + 0.324976i \(0.894644\pi\)
\(884\) −0.572949 1.76336i −0.0192704 0.0593081i
\(885\) 0 0
\(886\) 7.85410 + 24.1724i 0.263864 + 0.812089i
\(887\) −12.0836 + 37.1895i −0.405727 + 1.24870i 0.514559 + 0.857455i \(0.327956\pi\)
−0.920286 + 0.391245i \(0.872044\pi\)
\(888\) −0.427051 0.310271i −0.0143309 0.0104120i
\(889\) 9.48936 29.2052i 0.318263 0.979512i
\(890\) 0 0
\(891\) 0.618034 0.449028i 0.0207049 0.0150430i
\(892\) −0.927051 0.673542i −0.0310400 0.0225519i
\(893\) 16.9098 0.565866
\(894\) −10.5279 −0.352104
\(895\) 0 0
\(896\) 10.5517 + 32.4747i 0.352506 + 1.08490i
\(897\) −8.20820 + 25.2623i −0.274064 + 0.843482i
\(898\) 14.8754 0.496398
\(899\) 18.8820 44.1119i 0.629749 1.47121i
\(900\) 0 0
\(901\) −0.927051 + 2.85317i −0.0308845 + 0.0950529i
\(902\) −0.944272 2.90617i −0.0314408 0.0967649i
\(903\) 11.2082 + 8.14324i 0.372986 + 0.270990i
\(904\) −4.14590 −0.137891
\(905\) 0 0
\(906\) 9.75329 + 7.08618i 0.324031 + 0.235423i
\(907\) 42.8156 31.1074i 1.42167 1.03290i 0.430175 0.902745i \(-0.358452\pi\)
0.991493 0.130157i \(-0.0415482\pi\)
\(908\) 27.1525 19.7274i 0.901087 0.654678i
\(909\) −2.94427 + 9.06154i −0.0976553 + 0.300552i
\(910\) 0 0
\(911\) 2.52786 7.77997i 0.0837519 0.257762i −0.900408 0.435047i \(-0.856732\pi\)
0.984159 + 0.177286i \(0.0567316\pi\)
\(912\) 2.86475 + 8.81678i 0.0948612 + 0.291953i
\(913\) 2.52786 1.83660i 0.0836601 0.0607826i
\(914\) 3.00658 + 9.25330i 0.0994488 + 0.306072i
\(915\) 0 0
\(916\) −9.47214 + 6.88191i −0.312968 + 0.227385i
\(917\) −0.0835921 0.257270i −0.00276046 0.00849581i
\(918\) 0.225425 0.693786i 0.00744013 0.0228984i
\(919\) −7.98936 5.80461i −0.263545 0.191476i 0.448164 0.893952i \(-0.352078\pi\)
−0.711708 + 0.702475i \(0.752078\pi\)
\(920\) 0 0
\(921\) 4.92705 3.57971i 0.162352 0.117956i
\(922\) −5.37132 + 3.90249i −0.176895 + 0.128522i
\(923\) 0.354102 + 0.257270i 0.0116554 + 0.00846815i
\(924\) −3.70820 −0.121991
\(925\) 0 0
\(926\) −15.5623 11.3067i −0.511409 0.371560i
\(927\) −0.0901699 0.277515i −0.00296157 0.00911477i
\(928\) −14.9615 + 46.0467i −0.491135 + 1.51156i
\(929\) 33.5410 1.10045 0.550223 0.835018i \(-0.314543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 9.39919 28.9277i 0.307881 0.947559i
\(933\) 5.09017 + 15.6659i 0.166645 + 0.512880i
\(934\) −16.3885 11.9070i −0.536250 0.389608i
\(935\) 0 0
\(936\) −21.7082 −0.709555
\(937\) 32.7533 + 23.7967i 1.07000 + 0.777403i 0.975913 0.218161i \(-0.0700057\pi\)
0.0940905 + 0.995564i \(0.470006\pi\)
\(938\) 6.35410 4.61653i 0.207469 0.150735i
\(939\) 1.00000 0.726543i 0.0326338 0.0237098i
\(940\) 0 0
\(941\) −23.1246 16.8010i −0.753841 0.547697i 0.143174 0.989698i \(-0.454269\pi\)
−0.897015 + 0.442000i \(0.854269\pi\)
\(942\) −1.85410 + 5.70634i −0.0604099 + 0.185923i
\(943\) 10.9443 + 33.6830i 0.356395 + 1.09687i
\(944\) −14.2082 + 10.3229i −0.462438 + 0.335981i
\(945\) 0 0
\(946\) −0.673762 2.07363i −0.0219059 0.0674194i
\(947\) 17.8541 12.9718i 0.580180 0.421526i −0.258609 0.965982i \(-0.583264\pi\)
0.838789 + 0.544456i \(0.183264\pi\)
\(948\) 0 0
\(949\) −12.8435 + 39.5281i −0.416916 + 1.28314i
\(950\) 0 0
\(951\) −8.00000 + 24.6215i −0.259418 + 0.798406i
\(952\) 1.28115 0.930812i 0.0415224 0.0301678i
\(953\) 34.1525 24.8132i 1.10631 0.803779i 0.124229 0.992254i \(-0.460354\pi\)
0.982078 + 0.188474i \(0.0603542\pi\)
\(954\) 12.7082 + 9.23305i 0.411443 + 0.298931i
\(955\) 0 0
\(956\) 21.7082 0.702093
\(957\) −5.32624 3.86974i −0.172173 0.125091i
\(958\) −1.70820 5.25731i −0.0551896 0.169856i
\(959\) −6.00000 + 18.4661i −0.193750 + 0.596302i
\(960\) 0 0
\(961\) 30.4959 + 5.56758i 0.983740 + 0.179599i
\(962\) 0.708204 0.0228334
\(963\) 0.673762 2.07363i 0.0217117 0.0668217i
\(964\) 4.26393 + 13.1230i 0.137332 + 0.422664i
\(965\) 0 0
\(966\) −10.1459 −0.326439
\(967\) −43.6525 −1.40377 −0.701884 0.712291i \(-0.747658\pi\)
−0.701884 + 0.712291i \(0.747658\pi\)
\(968\) −18.8435 13.6906i −0.605652 0.440032i
\(969\) 0.954915 0.693786i 0.0306763 0.0222876i
\(970\) 0 0
\(971\) −6.35410 + 19.5559i −0.203913 + 0.627579i 0.795843 + 0.605502i \(0.207028\pi\)
−0.999756 + 0.0220767i \(0.992972\pi\)
\(972\) 20.9443 + 15.2169i 0.671788 + 0.488082i
\(973\) −5.42705 + 16.7027i −0.173983 + 0.535465i
\(974\) −4.37790 13.4738i −0.140277 0.431728i
\(975\) 0 0
\(976\) −3.97871 12.2452i −0.127356 0.391960i
\(977\) 1.87539 + 5.77185i 0.0599990 + 0.184658i 0.976564 0.215228i \(-0.0690496\pi\)
−0.916565 + 0.399886i \(0.869050\pi\)
\(978\) −6.35410 + 4.61653i −0.203182 + 0.147620i
\(979\) 1.50658 + 4.63677i 0.0481504 + 0.148192i
\(980\) 0 0
\(981\) −13.6180 9.89408i −0.434790 0.315894i
\(982\) −5.27051 + 16.2210i −0.168189 + 0.517632i
\(983\) 17.0172 12.3637i 0.542765 0.394342i −0.282346 0.959313i \(-0.591113\pi\)
0.825111 + 0.564971i \(0.191113\pi\)
\(984\) 11.7082 8.50651i 0.373244 0.271178i
\(985\) 0 0
\(986\) 1.25735 0.0400423
\(987\) −10.1459 −0.322947
\(988\) −31.7705 23.0826i −1.01075 0.734356i
\(989\) 7.80902 + 24.0337i 0.248312 + 0.764227i
\(990\) 0 0
\(991\) −17.2705 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(992\) −31.1525 2.82041i −0.989092 0.0895482i
\(993\) 11.2705 0.357659
\(994\) −0.0516628 + 0.159002i −0.00163864 + 0.00504323i
\(995\) 0 0
\(996\) 5.35410 + 3.88998i 0.169651 + 0.123259i
\(997\) 27.2492 0.862992 0.431496 0.902115i \(-0.357986\pi\)
0.431496 + 0.902115i \(0.357986\pi\)
\(998\) 2.56231 0.0811084
\(999\) −0.954915 0.693786i −0.0302122 0.0219504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.k.c.101.1 4
5.2 odd 4 775.2.bf.a.349.2 8
5.3 odd 4 775.2.bf.a.349.1 8
5.4 even 2 31.2.d.a.8.1 yes 4
15.14 odd 2 279.2.i.a.163.1 4
20.19 odd 2 496.2.n.b.225.1 4
31.4 even 5 inner 775.2.k.c.376.1 4
155.4 even 10 31.2.d.a.4.1 4
155.9 even 30 961.2.g.f.338.1 8
155.14 even 30 961.2.g.f.235.1 8
155.19 even 30 961.2.c.f.439.1 4
155.24 odd 30 961.2.g.c.547.1 8
155.29 odd 10 961.2.a.e.1.1 2
155.34 odd 30 961.2.g.g.816.1 8
155.39 even 10 961.2.d.f.388.1 4
155.44 odd 30 961.2.g.g.732.1 8
155.49 even 30 961.2.g.f.732.1 8
155.54 odd 10 961.2.d.e.388.1 4
155.59 even 30 961.2.g.f.816.1 8
155.64 even 10 961.2.a.d.1.1 2
155.69 even 30 961.2.g.b.547.1 8
155.74 odd 30 961.2.c.d.439.1 4
155.79 odd 30 961.2.g.g.235.1 8
155.84 odd 30 961.2.g.g.338.1 8
155.89 odd 10 961.2.d.b.531.1 4
155.97 odd 20 775.2.bf.a.624.1 8
155.99 odd 6 961.2.g.c.846.1 8
155.104 odd 30 961.2.g.c.844.1 8
155.109 even 10 961.2.d.f.374.1 4
155.114 odd 30 961.2.c.d.521.1 4
155.119 odd 6 961.2.g.c.448.1 8
155.128 odd 20 775.2.bf.a.624.2 8
155.129 even 6 961.2.g.b.448.1 8
155.134 even 30 961.2.c.f.521.1 4
155.139 odd 10 961.2.d.e.374.1 4
155.144 even 30 961.2.g.b.844.1 8
155.149 even 6 961.2.g.b.846.1 8
155.154 odd 2 961.2.d.b.628.1 4
465.29 even 10 8649.2.a.f.1.2 2
465.314 odd 10 279.2.i.a.190.1 4
465.374 odd 10 8649.2.a.g.1.2 2
620.159 odd 10 496.2.n.b.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 155.4 even 10
31.2.d.a.8.1 yes 4 5.4 even 2
279.2.i.a.163.1 4 15.14 odd 2
279.2.i.a.190.1 4 465.314 odd 10
496.2.n.b.97.1 4 620.159 odd 10
496.2.n.b.225.1 4 20.19 odd 2
775.2.k.c.101.1 4 1.1 even 1 trivial
775.2.k.c.376.1 4 31.4 even 5 inner
775.2.bf.a.349.1 8 5.3 odd 4
775.2.bf.a.349.2 8 5.2 odd 4
775.2.bf.a.624.1 8 155.97 odd 20
775.2.bf.a.624.2 8 155.128 odd 20
961.2.a.d.1.1 2 155.64 even 10
961.2.a.e.1.1 2 155.29 odd 10
961.2.c.d.439.1 4 155.74 odd 30
961.2.c.d.521.1 4 155.114 odd 30
961.2.c.f.439.1 4 155.19 even 30
961.2.c.f.521.1 4 155.134 even 30
961.2.d.b.531.1 4 155.89 odd 10
961.2.d.b.628.1 4 155.154 odd 2
961.2.d.e.374.1 4 155.139 odd 10
961.2.d.e.388.1 4 155.54 odd 10
961.2.d.f.374.1 4 155.109 even 10
961.2.d.f.388.1 4 155.39 even 10
961.2.g.b.448.1 8 155.129 even 6
961.2.g.b.547.1 8 155.69 even 30
961.2.g.b.844.1 8 155.144 even 30
961.2.g.b.846.1 8 155.149 even 6
961.2.g.c.448.1 8 155.119 odd 6
961.2.g.c.547.1 8 155.24 odd 30
961.2.g.c.844.1 8 155.104 odd 30
961.2.g.c.846.1 8 155.99 odd 6
961.2.g.f.235.1 8 155.14 even 30
961.2.g.f.338.1 8 155.9 even 30
961.2.g.f.732.1 8 155.49 even 30
961.2.g.f.816.1 8 155.59 even 30
961.2.g.g.235.1 8 155.79 odd 30
961.2.g.g.338.1 8 155.84 odd 30
961.2.g.g.732.1 8 155.44 odd 30
961.2.g.g.816.1 8 155.34 odd 30
8649.2.a.f.1.2 2 465.29 even 10
8649.2.a.g.1.2 2 465.374 odd 10