Newspace parameters
Level: | \( N \) | \(=\) | \( 775 = 5^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 775.j (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.18840615665\) |
Analytic rank: | \(1\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{10})\) |
Defining polynomial: |
\( x^{4} - x^{3} + x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).
\(n\) | \(251\) | \(652\) |
\(\chi(n)\) | \(1\) | \(-\zeta_{10}^{3}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
156.1 |
|
0.618034 | + | 1.90211i | −2.61803 | + | 1.90211i | −1.61803 | + | 1.17557i | −0.690983 | + | 2.12663i | −5.23607 | − | 3.80423i | −0.236068 | 0 | 2.30902 | − | 7.10642i | −4.47214 | ||||||||||||||||||
311.1 | −1.61803 | + | 1.17557i | −0.381966 | + | 1.17557i | 0.618034 | − | 1.90211i | −1.80902 | − | 1.31433i | −0.763932 | − | 2.35114i | 4.23607 | 0 | 1.19098 | + | 0.865300i | 4.47214 | |||||||||||||||||||
466.1 | −1.61803 | − | 1.17557i | −0.381966 | − | 1.17557i | 0.618034 | + | 1.90211i | −1.80902 | + | 1.31433i | −0.763932 | + | 2.35114i | 4.23607 | 0 | 1.19098 | − | 0.865300i | 4.47214 | |||||||||||||||||||
621.1 | 0.618034 | − | 1.90211i | −2.61803 | − | 1.90211i | −1.61803 | − | 1.17557i | −0.690983 | − | 2.12663i | −5.23607 | + | 3.80423i | −0.236068 | 0 | 2.30902 | + | 7.10642i | −4.47214 | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 775.2.j.a | ✓ | 4 |
25.d | even | 5 | 1 | inner | 775.2.j.a | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
775.2.j.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
775.2.j.a | ✓ | 4 | 25.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 2T_{2}^{3} + 4T_{2}^{2} + 8T_{2} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(775, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 2 T^{3} + 4 T^{2} + 8 T + 16 \)
$3$
\( T^{4} + 6 T^{3} + 16 T^{2} + 16 T + 16 \)
$5$
\( T^{4} + 5 T^{3} + 15 T^{2} + 25 T + 25 \)
$7$
\( (T^{2} - 4 T - 1)^{2} \)
$11$
\( T^{4} + 7 T^{3} + 34 T^{2} + 88 T + 121 \)
$13$
\( T^{4} + 6 T^{3} + 16 T^{2} + 11 T + 121 \)
$17$
\( T^{4} + 7 T^{3} + 19 T^{2} + 3 T + 1 \)
$19$
\( T^{4} + 10 T^{3} + 60 T^{2} + \cdots + 400 \)
$23$
\( T^{4} + 11 T^{3} + 51 T^{2} + \cdots + 961 \)
$29$
\( T^{4} + 5 T^{3} + 15 T^{2} + 25 T + 25 \)
$31$
\( T^{4} + T^{3} + T^{2} + T + 1 \)
$37$
\( T^{4} + 17 T^{3} + 114 T^{2} + \cdots + 121 \)
$41$
\( T^{4} + 17 T^{3} + 114 T^{2} + \cdots + 121 \)
$43$
\( (T^{2} - 2 T - 19)^{2} \)
$47$
\( T^{4} + 22 T^{3} + 244 T^{2} + \cdots + 5776 \)
$53$
\( T^{4} - 24 T^{3} + 306 T^{2} + \cdots + 9801 \)
$59$
\( T^{4} - 15 T^{3} + 115 T^{2} + \cdots + 9025 \)
$61$
\( T^{4} + 7 T^{3} + 199 T^{2} + \cdots + 361 \)
$67$
\( T^{4} + 22 T^{3} + 304 T^{2} + \cdots + 10201 \)
$71$
\( T^{4} + 2 T^{3} + 24 T^{2} + 133 T + 361 \)
$73$
\( T^{4} + 16 T^{3} + 106 T^{2} + \cdots + 3721 \)
$79$
\( T^{4} + 15 T^{3} + 100 T^{2} + \cdots + 625 \)
$83$
\( T^{4} + 6 T^{3} + 16 T^{2} + 11 T + 121 \)
$89$
\( T^{4} - 25 T^{3} + 235 T^{2} + \cdots + 3025 \)
$97$
\( T^{4} + 12 T^{3} + 94 T^{2} + \cdots + 7921 \)
show more
show less