Newspace parameters
Level: | \( N \) | \(=\) | \( 775 = 5^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 775.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.18840615665\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
Defining polynomial: |
\( x^{4} + 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 31) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).
\(n\) | \(251\) | \(652\) |
\(\chi(n)\) | \(-1 - \beta_{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
501.1 |
|
−0.414214 | 0.207107 | − | 0.358719i | −1.82843 | 0 | −0.0857864 | + | 0.148586i | −0.207107 | + | 0.358719i | 1.58579 | 1.41421 | + | 2.44949i | 0 | ||||||||||||||||||||||
501.2 | 2.41421 | −1.20711 | + | 2.09077i | 3.82843 | 0 | −2.91421 | + | 5.04757i | 1.20711 | − | 2.09077i | 4.41421 | −1.41421 | − | 2.44949i | 0 | |||||||||||||||||||||||
676.1 | −0.414214 | 0.207107 | + | 0.358719i | −1.82843 | 0 | −0.0857864 | − | 0.148586i | −0.207107 | − | 0.358719i | 1.58579 | 1.41421 | − | 2.44949i | 0 | |||||||||||||||||||||||
676.2 | 2.41421 | −1.20711 | − | 2.09077i | 3.82843 | 0 | −2.91421 | − | 5.04757i | 1.20711 | + | 2.09077i | 4.41421 | −1.41421 | + | 2.44949i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 775.2.e.e | 4 | |
5.b | even | 2 | 1 | 31.2.c.a | ✓ | 4 | |
5.c | odd | 4 | 2 | 775.2.o.d | 8 | ||
15.d | odd | 2 | 1 | 279.2.h.c | 4 | ||
20.d | odd | 2 | 1 | 496.2.i.h | 4 | ||
31.c | even | 3 | 1 | inner | 775.2.e.e | 4 | |
155.c | odd | 2 | 1 | 961.2.c.a | 4 | ||
155.i | odd | 6 | 1 | 961.2.a.c | 2 | ||
155.i | odd | 6 | 1 | 961.2.c.a | 4 | ||
155.j | even | 6 | 1 | 31.2.c.a | ✓ | 4 | |
155.j | even | 6 | 1 | 961.2.a.a | 2 | ||
155.m | odd | 10 | 4 | 961.2.g.r | 16 | ||
155.n | even | 10 | 4 | 961.2.g.o | 16 | ||
155.o | odd | 12 | 2 | 775.2.o.d | 8 | ||
155.u | even | 30 | 4 | 961.2.d.l | 8 | ||
155.u | even | 30 | 4 | 961.2.g.o | 16 | ||
155.v | odd | 30 | 4 | 961.2.d.i | 8 | ||
155.v | odd | 30 | 4 | 961.2.g.r | 16 | ||
465.t | even | 6 | 1 | 8649.2.a.k | 2 | ||
465.u | odd | 6 | 1 | 279.2.h.c | 4 | ||
465.u | odd | 6 | 1 | 8649.2.a.l | 2 | ||
620.o | odd | 6 | 1 | 496.2.i.h | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
31.2.c.a | ✓ | 4 | 5.b | even | 2 | 1 | |
31.2.c.a | ✓ | 4 | 155.j | even | 6 | 1 | |
279.2.h.c | 4 | 15.d | odd | 2 | 1 | ||
279.2.h.c | 4 | 465.u | odd | 6 | 1 | ||
496.2.i.h | 4 | 20.d | odd | 2 | 1 | ||
496.2.i.h | 4 | 620.o | odd | 6 | 1 | ||
775.2.e.e | 4 | 1.a | even | 1 | 1 | trivial | |
775.2.e.e | 4 | 31.c | even | 3 | 1 | inner | |
775.2.o.d | 8 | 5.c | odd | 4 | 2 | ||
775.2.o.d | 8 | 155.o | odd | 12 | 2 | ||
961.2.a.a | 2 | 155.j | even | 6 | 1 | ||
961.2.a.c | 2 | 155.i | odd | 6 | 1 | ||
961.2.c.a | 4 | 155.c | odd | 2 | 1 | ||
961.2.c.a | 4 | 155.i | odd | 6 | 1 | ||
961.2.d.i | 8 | 155.v | odd | 30 | 4 | ||
961.2.d.l | 8 | 155.u | even | 30 | 4 | ||
961.2.g.o | 16 | 155.n | even | 10 | 4 | ||
961.2.g.o | 16 | 155.u | even | 30 | 4 | ||
961.2.g.r | 16 | 155.m | odd | 10 | 4 | ||
961.2.g.r | 16 | 155.v | odd | 30 | 4 | ||
8649.2.a.k | 2 | 465.t | even | 6 | 1 | ||
8649.2.a.l | 2 | 465.u | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - 2T_{2} - 1 \)
acting on \(S_{2}^{\mathrm{new}}(775, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2 T - 1)^{2} \)
$3$
\( T^{4} + 2 T^{3} + 5 T^{2} - 2 T + 1 \)
$5$
\( T^{4} \)
$7$
\( T^{4} - 2 T^{3} + 5 T^{2} + 2 T + 1 \)
$11$
\( T^{4} - 2 T^{3} + 21 T^{2} + 34 T + 289 \)
$13$
\( T^{4} + 2 T^{3} + 11 T^{2} - 14 T + 49 \)
$17$
\( T^{4} + 6 T^{3} + 35 T^{2} + 6 T + 1 \)
$19$
\( T^{4} + 6 T^{3} + 29 T^{2} + 42 T + 49 \)
$23$
\( (T - 4)^{4} \)
$29$
\( (T^{2} + 8 T + 8)^{2} \)
$31$
\( (T^{2} + 10 T + 31)^{2} \)
$37$
\( (T^{2} - T + 1)^{2} \)
$41$
\( T^{4} + 2 T^{3} + 75 T^{2} + \cdots + 5041 \)
$43$
\( T^{4} + 2 T^{3} + 101 T^{2} + \cdots + 9409 \)
$47$
\( (T^{2} + 8 T - 16)^{2} \)
$53$
\( T^{4} - 6 T^{3} + 35 T^{2} - 6 T + 1 \)
$59$
\( T^{4} - 6 T^{3} + 77 T^{2} + \cdots + 1681 \)
$61$
\( (T^{2} - 8)^{2} \)
$67$
\( T^{4} + 2 T^{3} + 21 T^{2} - 34 T + 289 \)
$71$
\( T^{4} - 14 T^{3} + 197 T^{2} + 14 T + 1 \)
$73$
\( T^{4} - 2 T^{3} + 11 T^{2} + 14 T + 49 \)
$79$
\( T^{4} - 22 T^{3} + 381 T^{2} + \cdots + 10609 \)
$83$
\( T^{4} + 6 T^{3} + 77 T^{2} + \cdots + 1681 \)
$89$
\( (T^{2} + 8 T - 56)^{2} \)
$97$
\( (T^{2} + 16 T + 56)^{2} \)
show more
show less