Properties

Label 775.2.ck.a.474.3
Level $775$
Weight $2$
Character 775.474
Analytic conductor $6.188$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 474.3
Character \(\chi\) \(=\) 775.474
Dual form 775.2.ck.a.224.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17187 + 0.380762i) q^{2} +(-0.431412 + 2.02963i) q^{3} +(-0.389745 - 0.283166i) q^{4} +(-1.27836 + 2.21419i) q^{6} +(-1.54713 - 3.47491i) q^{7} +(-1.79742 - 2.47393i) q^{8} +(-1.19265 - 0.531003i) q^{9} +(0.393186 - 3.74092i) q^{11} +(0.742864 - 0.668878i) q^{12} +(1.95823 + 1.76320i) q^{13} +(-0.489913 - 4.66121i) q^{14} +(-0.866611 - 2.66715i) q^{16} +(3.75366 - 0.394526i) q^{17} +(-1.19544 - 1.07638i) q^{18} +(-4.08057 - 4.53193i) q^{19} +(7.72023 - 1.64099i) q^{21} +(1.88516 - 4.23414i) q^{22} +(0.534795 + 0.736082i) q^{23} +(5.79659 - 2.58081i) q^{24} +(1.62343 + 2.81186i) q^{26} +(-2.06665 + 2.84451i) q^{27} +(-0.380991 + 1.79242i) q^{28} +(2.10397 - 6.47535i) q^{29} +(-3.88819 - 3.98522i) q^{31} +2.66037i q^{32} +(7.42306 + 2.41190i) q^{33} +(4.54901 + 0.966922i) q^{34} +(0.314468 + 0.544675i) q^{36} +(1.57103 + 0.907032i) q^{37} +(-3.05629 - 6.86454i) q^{38} +(-4.42345 + 3.21383i) q^{39} +(-0.329777 + 0.0700963i) q^{41} +(9.67189 + 1.01656i) q^{42} +(2.88637 - 2.59890i) q^{43} +(-1.21255 + 1.34667i) q^{44} +(0.346435 + 1.06622i) q^{46} +(1.13095 - 0.367467i) q^{47} +(5.78721 - 0.608260i) q^{48} +(-4.99745 + 5.55023i) q^{49} +(-0.818631 + 7.78876i) q^{51} +(-0.263933 - 1.24171i) q^{52} +(-0.953442 + 2.14147i) q^{53} +(-3.50492 + 2.54647i) q^{54} +(-5.81584 + 10.0733i) q^{56} +(10.9586 - 6.32692i) q^{57} +(4.93114 - 6.78713i) q^{58} +(7.60885 + 1.61731i) q^{59} -2.72343 q^{61} +(-3.03901 - 6.15062i) q^{62} +4.96588i q^{63} +(-2.74619 + 8.45191i) q^{64} +(7.78047 + 5.65284i) q^{66} +(-6.42693 + 3.71059i) q^{67} +(-1.57469 - 0.909147i) q^{68} +(-1.72469 + 0.767882i) q^{69} +(-4.65742 - 2.07362i) q^{71} +(0.830027 + 3.90497i) q^{72} +(5.36221 + 0.563591i) q^{73} +(1.49567 + 1.66111i) q^{74} +(0.307091 + 2.92178i) q^{76} +(-13.6076 + 4.42139i) q^{77} +(-6.40740 + 2.08189i) q^{78} +(-1.01782 - 9.68388i) q^{79} +(-7.50241 - 8.33227i) q^{81} +(-0.413145 - 0.0434232i) q^{82} +(-1.74545 - 8.21169i) q^{83} +(-3.47359 - 1.54654i) q^{84} +(4.37200 - 1.94654i) q^{86} +(12.2349 + 7.06383i) q^{87} +(-9.96149 + 5.75127i) q^{88} +(4.12243 + 2.99512i) q^{89} +(3.09732 - 9.53258i) q^{91} -0.438320i q^{92} +(9.76595 - 6.17231i) q^{93} +1.46523 q^{94} +(-5.39957 - 1.14771i) q^{96} +(6.41522 - 8.82979i) q^{97} +(-7.96966 + 4.60129i) q^{98} +(-2.45537 + 4.25283i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 28 q^{4} + 22 q^{6} + 20 q^{9} - 14 q^{11} + 12 q^{14} - 4 q^{16} - 32 q^{19} + 18 q^{21} + 40 q^{24} + 18 q^{26} + 28 q^{29} + 30 q^{31} + 64 q^{34} + 2 q^{36} + 6 q^{39} - 16 q^{41} - 78 q^{44}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{1}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17187 + 0.380762i 0.828634 + 0.269240i 0.692470 0.721447i \(-0.256523\pi\)
0.136164 + 0.990686i \(0.456523\pi\)
\(3\) −0.431412 + 2.02963i −0.249076 + 1.17181i 0.658718 + 0.752390i \(0.271099\pi\)
−0.907793 + 0.419418i \(0.862234\pi\)
\(4\) −0.389745 0.283166i −0.194873 0.141583i
\(5\) 0 0
\(6\) −1.27836 + 2.21419i −0.521890 + 0.903939i
\(7\) −1.54713 3.47491i −0.584759 1.31339i −0.927452 0.373943i \(-0.878005\pi\)
0.342692 0.939448i \(-0.388661\pi\)
\(8\) −1.79742 2.47393i −0.635482 0.874666i
\(9\) −1.19265 0.531003i −0.397551 0.177001i
\(10\) 0 0
\(11\) 0.393186 3.74092i 0.118550 1.12793i −0.759882 0.650061i \(-0.774743\pi\)
0.878432 0.477868i \(-0.158590\pi\)
\(12\) 0.742864 0.668878i 0.214446 0.193088i
\(13\) 1.95823 + 1.76320i 0.543116 + 0.489024i 0.894414 0.447240i \(-0.147593\pi\)
−0.351298 + 0.936264i \(0.614260\pi\)
\(14\) −0.489913 4.66121i −0.130935 1.24576i
\(15\) 0 0
\(16\) −0.866611 2.66715i −0.216653 0.666789i
\(17\) 3.75366 0.394526i 0.910397 0.0956866i 0.362262 0.932076i \(-0.382005\pi\)
0.548135 + 0.836390i \(0.315338\pi\)
\(18\) −1.19544 1.07638i −0.281768 0.253705i
\(19\) −4.08057 4.53193i −0.936147 1.03970i −0.999131 0.0416817i \(-0.986728\pi\)
0.0629842 0.998015i \(-0.479938\pi\)
\(20\) 0 0
\(21\) 7.72023 1.64099i 1.68469 0.358092i
\(22\) 1.88516 4.23414i 0.401918 0.902722i
\(23\) 0.534795 + 0.736082i 0.111512 + 0.153484i 0.861125 0.508393i \(-0.169760\pi\)
−0.749613 + 0.661877i \(0.769760\pi\)
\(24\) 5.79659 2.58081i 1.18322 0.526805i
\(25\) 0 0
\(26\) 1.62343 + 2.81186i 0.318380 + 0.551450i
\(27\) −2.06665 + 2.84451i −0.397728 + 0.547425i
\(28\) −0.380991 + 1.79242i −0.0720006 + 0.338736i
\(29\) 2.10397 6.47535i 0.390697 1.20244i −0.541565 0.840659i \(-0.682168\pi\)
0.932262 0.361784i \(-0.117832\pi\)
\(30\) 0 0
\(31\) −3.88819 3.98522i −0.698339 0.715767i
\(32\) 2.66037i 0.470292i
\(33\) 7.42306 + 2.41190i 1.29219 + 0.419858i
\(34\) 4.54901 + 0.966922i 0.780149 + 0.165826i
\(35\) 0 0
\(36\) 0.314468 + 0.544675i 0.0524114 + 0.0907792i
\(37\) 1.57103 + 0.907032i 0.258275 + 0.149115i 0.623547 0.781786i \(-0.285691\pi\)
−0.365272 + 0.930901i \(0.619024\pi\)
\(38\) −3.05629 6.86454i −0.495796 1.11358i
\(39\) −4.42345 + 3.21383i −0.708320 + 0.514624i
\(40\) 0 0
\(41\) −0.329777 + 0.0700963i −0.0515026 + 0.0109472i −0.233591 0.972335i \(-0.575048\pi\)
0.182088 + 0.983282i \(0.441714\pi\)
\(42\) 9.67189 + 1.01656i 1.49241 + 0.156858i
\(43\) 2.88637 2.59890i 0.440167 0.396329i −0.419030 0.907972i \(-0.637630\pi\)
0.859198 + 0.511644i \(0.170963\pi\)
\(44\) −1.21255 + 1.34667i −0.182798 + 0.203018i
\(45\) 0 0
\(46\) 0.346435 + 1.06622i 0.0510791 + 0.157205i
\(47\) 1.13095 0.367467i 0.164965 0.0536005i −0.225370 0.974273i \(-0.572359\pi\)
0.390335 + 0.920673i \(0.372359\pi\)
\(48\) 5.78721 0.608260i 0.835311 0.0877948i
\(49\) −4.99745 + 5.55023i −0.713922 + 0.792890i
\(50\) 0 0
\(51\) −0.818631 + 7.78876i −0.114631 + 1.09064i
\(52\) −0.263933 1.24171i −0.0366009 0.172194i
\(53\) −0.953442 + 2.14147i −0.130965 + 0.294153i −0.967111 0.254354i \(-0.918137\pi\)
0.836146 + 0.548507i \(0.184804\pi\)
\(54\) −3.50492 + 2.54647i −0.476959 + 0.346531i
\(55\) 0 0
\(56\) −5.81584 + 10.0733i −0.777175 + 1.34611i
\(57\) 10.9586 6.32692i 1.45150 0.838022i
\(58\) 4.93114 6.78713i 0.647490 0.891194i
\(59\) 7.60885 + 1.61731i 0.990587 + 0.210556i 0.674581 0.738201i \(-0.264324\pi\)
0.316007 + 0.948757i \(0.397658\pi\)
\(60\) 0 0
\(61\) −2.72343 −0.348700 −0.174350 0.984684i \(-0.555782\pi\)
−0.174350 + 0.984684i \(0.555782\pi\)
\(62\) −3.03901 6.15062i −0.385954 0.781130i
\(63\) 4.96588i 0.625642i
\(64\) −2.74619 + 8.45191i −0.343274 + 1.05649i
\(65\) 0 0
\(66\) 7.78047 + 5.65284i 0.957709 + 0.695817i
\(67\) −6.42693 + 3.71059i −0.785175 + 0.453321i −0.838261 0.545269i \(-0.816427\pi\)
0.0530864 + 0.998590i \(0.483094\pi\)
\(68\) −1.57469 0.909147i −0.190959 0.110250i
\(69\) −1.72469 + 0.767882i −0.207628 + 0.0924421i
\(70\) 0 0
\(71\) −4.65742 2.07362i −0.552734 0.246093i 0.111311 0.993786i \(-0.464495\pi\)
−0.664045 + 0.747693i \(0.731162\pi\)
\(72\) 0.830027 + 3.90497i 0.0978196 + 0.460205i
\(73\) 5.36221 + 0.563591i 0.627599 + 0.0659633i 0.412988 0.910736i \(-0.364485\pi\)
0.214611 + 0.976700i \(0.431152\pi\)
\(74\) 1.49567 + 1.66111i 0.173868 + 0.193100i
\(75\) 0 0
\(76\) 0.307091 + 2.92178i 0.0352258 + 0.335151i
\(77\) −13.6076 + 4.42139i −1.55074 + 0.503865i
\(78\) −6.40740 + 2.08189i −0.725495 + 0.235728i
\(79\) −1.01782 9.68388i −0.114513 1.08952i −0.889308 0.457309i \(-0.848813\pi\)
0.774795 0.632213i \(-0.217853\pi\)
\(80\) 0 0
\(81\) −7.50241 8.33227i −0.833601 0.925808i
\(82\) −0.413145 0.0434232i −0.0456242 0.00479530i
\(83\) −1.74545 8.21169i −0.191588 0.901350i −0.963933 0.266147i \(-0.914249\pi\)
0.772345 0.635204i \(-0.219084\pi\)
\(84\) −3.47359 1.54654i −0.379000 0.168742i
\(85\) 0 0
\(86\) 4.37200 1.94654i 0.471445 0.209901i
\(87\) 12.2349 + 7.06383i 1.31172 + 0.757322i
\(88\) −9.96149 + 5.75127i −1.06190 + 0.613087i
\(89\) 4.12243 + 2.99512i 0.436976 + 0.317482i 0.784432 0.620214i \(-0.212954\pi\)
−0.347456 + 0.937696i \(0.612954\pi\)
\(90\) 0 0
\(91\) 3.09732 9.53258i 0.324688 0.999285i
\(92\) 0.438320i 0.0456980i
\(93\) 9.76595 6.17231i 1.01268 0.640039i
\(94\) 1.46523 0.151127
\(95\) 0 0
\(96\) −5.39957 1.14771i −0.551092 0.117138i
\(97\) 6.41522 8.82979i 0.651367 0.896530i −0.347791 0.937572i \(-0.613068\pi\)
0.999157 + 0.0410427i \(0.0130680\pi\)
\(98\) −7.96966 + 4.60129i −0.805057 + 0.464800i
\(99\) −2.45537 + 4.25283i −0.246774 + 0.427426i
\(100\) 0 0
\(101\) 0.322577 0.234366i 0.0320976 0.0233203i −0.571621 0.820518i \(-0.693685\pi\)
0.603718 + 0.797198i \(0.293685\pi\)
\(102\) −3.92499 + 8.81567i −0.388632 + 0.872881i
\(103\) 0.681286 + 3.20520i 0.0671291 + 0.315817i 0.998882 0.0472758i \(-0.0150540\pi\)
−0.931753 + 0.363093i \(0.881721\pi\)
\(104\) 0.842278 8.01374i 0.0825921 0.785812i
\(105\) 0 0
\(106\) −1.93269 + 2.14647i −0.187720 + 0.208484i
\(107\) 3.13955 0.329980i 0.303512 0.0319004i 0.0484517 0.998826i \(-0.484571\pi\)
0.255060 + 0.966925i \(0.417905\pi\)
\(108\) 1.61094 0.523425i 0.155013 0.0503666i
\(109\) −2.14959 6.61576i −0.205893 0.633675i −0.999676 0.0254724i \(-0.991891\pi\)
0.793782 0.608202i \(-0.208109\pi\)
\(110\) 0 0
\(111\) −2.51870 + 2.79730i −0.239064 + 0.265508i
\(112\) −7.92735 + 7.13782i −0.749064 + 0.674461i
\(113\) −15.1633 1.59372i −1.42644 0.149925i −0.640372 0.768065i \(-0.721220\pi\)
−0.786068 + 0.618140i \(0.787886\pi\)
\(114\) 15.2510 3.24170i 1.42839 0.303613i
\(115\) 0 0
\(116\) −2.65362 + 1.92796i −0.246382 + 0.179007i
\(117\) −1.39923 3.14271i −0.129359 0.290544i
\(118\) 8.30073 + 4.79243i 0.764144 + 0.441179i
\(119\) −7.17834 12.4332i −0.658037 1.13975i
\(120\) 0 0
\(121\) −3.08025 0.654727i −0.280023 0.0595207i
\(122\) −3.19150 1.03698i −0.288945 0.0938838i
\(123\) 0.699567i 0.0630778i
\(124\) 0.386920 + 2.65423i 0.0347464 + 0.238357i
\(125\) 0 0
\(126\) −1.89082 + 5.81935i −0.168448 + 0.518429i
\(127\) −4.20530 + 19.7844i −0.373160 + 1.75558i 0.244996 + 0.969524i \(0.421213\pi\)
−0.618156 + 0.786055i \(0.712120\pi\)
\(128\) −3.30888 + 4.55428i −0.292466 + 0.402545i
\(129\) 4.02960 + 6.97946i 0.354786 + 0.614508i
\(130\) 0 0
\(131\) 11.5575 5.14574i 1.00979 0.449585i 0.165919 0.986139i \(-0.446941\pi\)
0.843866 + 0.536554i \(0.180274\pi\)
\(132\) −2.21013 3.04199i −0.192367 0.264771i
\(133\) −9.43487 + 21.1911i −0.818107 + 1.83750i
\(134\) −8.94435 + 1.90118i −0.772674 + 0.164237i
\(135\) 0 0
\(136\) −7.72292 8.57717i −0.662235 0.735486i
\(137\) −7.34079 6.60968i −0.627166 0.564703i 0.293058 0.956095i \(-0.405327\pi\)
−0.920224 + 0.391392i \(0.871994\pi\)
\(138\) −2.31349 + 0.243157i −0.196937 + 0.0206989i
\(139\) 4.78945 + 14.7404i 0.406236 + 1.25026i 0.919859 + 0.392249i \(0.128303\pi\)
−0.513623 + 0.858016i \(0.671697\pi\)
\(140\) 0 0
\(141\) 0.257919 + 2.45393i 0.0217207 + 0.206658i
\(142\) −4.66831 4.20337i −0.391756 0.352739i
\(143\) 7.36594 6.63233i 0.615971 0.554623i
\(144\) −0.382701 + 3.64116i −0.0318918 + 0.303430i
\(145\) 0 0
\(146\) 6.06919 + 2.70218i 0.502290 + 0.223634i
\(147\) −9.10897 12.5374i −0.751295 1.03407i
\(148\) −0.355459 0.798373i −0.0292185 0.0656259i
\(149\) −7.62162 + 13.2010i −0.624388 + 1.08147i 0.364271 + 0.931293i \(0.381318\pi\)
−0.988659 + 0.150178i \(0.952015\pi\)
\(150\) 0 0
\(151\) 0.211823 + 0.153899i 0.0172379 + 0.0125241i 0.596371 0.802709i \(-0.296609\pi\)
−0.579133 + 0.815233i \(0.696609\pi\)
\(152\) −3.87720 + 18.2408i −0.314483 + 1.47952i
\(153\) −4.68631 1.52267i −0.378866 0.123101i
\(154\) −17.6298 −1.42065
\(155\) 0 0
\(156\) 2.63407 0.210894
\(157\) 15.1470 + 4.92157i 1.20886 + 0.392784i 0.843015 0.537890i \(-0.180778\pi\)
0.365850 + 0.930674i \(0.380778\pi\)
\(158\) 2.49451 11.7358i 0.198453 0.933647i
\(159\) −3.93506 2.85899i −0.312071 0.226733i
\(160\) 0 0
\(161\) 1.73042 2.99717i 0.136376 0.236210i
\(162\) −5.61920 12.6209i −0.441486 0.991594i
\(163\) −0.0782785 0.107741i −0.00613125 0.00843894i 0.805940 0.591997i \(-0.201660\pi\)
−0.812072 + 0.583558i \(0.801660\pi\)
\(164\) 0.148378 + 0.0660621i 0.0115864 + 0.00515859i
\(165\) 0 0
\(166\) 1.08127 10.2876i 0.0839228 0.798472i
\(167\) 2.93451 2.64225i 0.227080 0.204463i −0.547735 0.836652i \(-0.684510\pi\)
0.774815 + 0.632188i \(0.217843\pi\)
\(168\) −17.9361 16.1498i −1.38380 1.24598i
\(169\) −0.633070 6.02326i −0.0486977 0.463328i
\(170\) 0 0
\(171\) 2.46023 + 7.57181i 0.188139 + 0.579031i
\(172\) −1.86087 + 0.195585i −0.141890 + 0.0149132i
\(173\) 10.7436 + 9.67358i 0.816821 + 0.735469i 0.967434 0.253124i \(-0.0814581\pi\)
−0.150613 + 0.988593i \(0.548125\pi\)
\(174\) 11.6480 + 12.9364i 0.883035 + 0.980709i
\(175\) 0 0
\(176\) −10.3183 + 2.19323i −0.777775 + 0.165321i
\(177\) −6.56509 + 14.7454i −0.493462 + 1.10833i
\(178\) 3.69050 + 5.07954i 0.276615 + 0.380727i
\(179\) 16.1879 7.20733i 1.20994 0.538701i 0.300201 0.953876i \(-0.402946\pi\)
0.909741 + 0.415175i \(0.136280\pi\)
\(180\) 0 0
\(181\) 6.02958 + 10.4435i 0.448175 + 0.776262i 0.998267 0.0588418i \(-0.0187408\pi\)
−0.550092 + 0.835104i \(0.685407\pi\)
\(182\) 7.25929 9.99155i 0.538094 0.740623i
\(183\) 1.17492 5.52757i 0.0868526 0.408609i
\(184\) 0.859766 2.64609i 0.0633828 0.195072i
\(185\) 0 0
\(186\) 13.7946 3.51462i 1.01147 0.257704i
\(187\) 14.1973i 1.03821i
\(188\) −0.544835 0.177028i −0.0397362 0.0129111i
\(189\) 13.0818 + 2.78062i 0.951559 + 0.202260i
\(190\) 0 0
\(191\) −2.53576 4.39207i −0.183481 0.317799i 0.759583 0.650411i \(-0.225403\pi\)
−0.943064 + 0.332612i \(0.892070\pi\)
\(192\) −15.9695 9.22001i −1.15250 0.665397i
\(193\) 8.15171 + 18.3090i 0.586773 + 1.31791i 0.926112 + 0.377250i \(0.123130\pi\)
−0.339339 + 0.940664i \(0.610203\pi\)
\(194\) 10.8798 7.90466i 0.781126 0.567521i
\(195\) 0 0
\(196\) 3.51937 0.748066i 0.251384 0.0534333i
\(197\) −21.5894 2.26914i −1.53818 0.161670i −0.702820 0.711367i \(-0.748076\pi\)
−0.835364 + 0.549698i \(0.814743\pi\)
\(198\) −4.49668 + 4.04883i −0.319565 + 0.287738i
\(199\) −10.1477 + 11.2702i −0.719352 + 0.798921i −0.986330 0.164781i \(-0.947308\pi\)
0.266978 + 0.963703i \(0.413975\pi\)
\(200\) 0 0
\(201\) −4.75848 14.6451i −0.335637 1.03299i
\(202\) 0.467255 0.151820i 0.0328759 0.0106820i
\(203\) −25.7564 + 2.70710i −1.80774 + 0.190001i
\(204\) 2.52457 2.80382i 0.176755 0.196307i
\(205\) 0 0
\(206\) −0.422043 + 4.01547i −0.0294051 + 0.279771i
\(207\) −0.246962 1.16187i −0.0171651 0.0807553i
\(208\) 3.00570 6.75092i 0.208408 0.468092i
\(209\) −18.5580 + 13.4832i −1.28368 + 0.932651i
\(210\) 0 0
\(211\) −3.15220 + 5.45978i −0.217007 + 0.375867i −0.953891 0.300152i \(-0.902963\pi\)
0.736885 + 0.676018i \(0.236296\pi\)
\(212\) 0.977990 0.564643i 0.0671687 0.0387798i
\(213\) 6.21794 8.55826i 0.426046 0.586403i
\(214\) 3.80478 + 0.808730i 0.260089 + 0.0552837i
\(215\) 0 0
\(216\) 10.7517 0.731564
\(217\) −7.83276 + 19.6767i −0.531722 + 1.33574i
\(218\) 8.57126i 0.580519i
\(219\) −3.45720 + 10.6402i −0.233616 + 0.718996i
\(220\) 0 0
\(221\) 8.04618 + 5.84589i 0.541245 + 0.393237i
\(222\) −4.01668 + 2.31903i −0.269582 + 0.155643i
\(223\) 6.39915 + 3.69455i 0.428519 + 0.247406i 0.698716 0.715400i \(-0.253755\pi\)
−0.270196 + 0.962805i \(0.587089\pi\)
\(224\) 9.24454 4.11594i 0.617677 0.275007i
\(225\) 0 0
\(226\) −17.1625 7.64123i −1.14163 0.508287i
\(227\) −4.00018 18.8193i −0.265501 1.24908i −0.885559 0.464528i \(-0.846224\pi\)
0.620058 0.784556i \(-0.287109\pi\)
\(228\) −6.06262 0.637207i −0.401507 0.0422000i
\(229\) 4.07307 + 4.52360i 0.269156 + 0.298928i 0.862537 0.505994i \(-0.168874\pi\)
−0.593381 + 0.804921i \(0.702207\pi\)
\(230\) 0 0
\(231\) −3.10330 29.5260i −0.204182 1.94267i
\(232\) −19.8013 + 6.43383i −1.30002 + 0.422401i
\(233\) 16.6702 5.41646i 1.09210 0.354844i 0.293042 0.956100i \(-0.405333\pi\)
0.799057 + 0.601255i \(0.205333\pi\)
\(234\) −0.443078 4.21561i −0.0289649 0.275583i
\(235\) 0 0
\(236\) −2.50754 2.78491i −0.163227 0.181282i
\(237\) 20.0938 + 2.11195i 1.30523 + 0.137186i
\(238\) −3.67794 17.3033i −0.238405 1.12161i
\(239\) 25.4989 + 11.3529i 1.64939 + 0.734355i 0.999667 0.0258176i \(-0.00821891\pi\)
0.649721 + 0.760172i \(0.274886\pi\)
\(240\) 0 0
\(241\) 20.7829 9.25315i 1.33875 0.596048i 0.392576 0.919720i \(-0.371584\pi\)
0.946169 + 0.323672i \(0.104917\pi\)
\(242\) −3.36034 1.94010i −0.216011 0.124714i
\(243\) 11.0132 6.35849i 0.706499 0.407897i
\(244\) 1.06144 + 0.771185i 0.0679520 + 0.0493701i
\(245\) 0 0
\(246\) 0.266369 0.819798i 0.0169830 0.0522684i
\(247\) 16.0694i 1.02247i
\(248\) −2.87048 + 16.7822i −0.182276 + 1.06567i
\(249\) 17.4197 1.10393
\(250\) 0 0
\(251\) 15.8797 + 3.37534i 1.00232 + 0.213050i 0.679709 0.733482i \(-0.262106\pi\)
0.322611 + 0.946532i \(0.395439\pi\)
\(252\) 1.40617 1.93543i 0.0885805 0.121921i
\(253\) 2.96390 1.71121i 0.186339 0.107583i
\(254\) −12.4612 + 21.5834i −0.781884 + 1.35426i
\(255\) 0 0
\(256\) 8.76759 6.37002i 0.547974 0.398126i
\(257\) −9.49816 + 21.3332i −0.592479 + 1.33073i 0.329744 + 0.944070i \(0.393037\pi\)
−0.922223 + 0.386659i \(0.873629\pi\)
\(258\) 2.06463 + 9.71331i 0.128538 + 0.604724i
\(259\) 0.721274 6.86246i 0.0448178 0.426412i
\(260\) 0 0
\(261\) −5.94774 + 6.60563i −0.368156 + 0.408878i
\(262\) 15.5032 1.62945i 0.957789 0.100668i
\(263\) −9.88562 + 3.21203i −0.609574 + 0.198062i −0.597506 0.801865i \(-0.703841\pi\)
−0.0120680 + 0.999927i \(0.503841\pi\)
\(264\) −7.37545 22.6993i −0.453928 1.39705i
\(265\) 0 0
\(266\) −19.1252 + 21.2406i −1.17264 + 1.30235i
\(267\) −7.85745 + 7.07488i −0.480868 + 0.432975i
\(268\) 3.55558 + 0.373707i 0.217192 + 0.0228278i
\(269\) −4.32150 + 0.918563i −0.263487 + 0.0560058i −0.337761 0.941232i \(-0.609669\pi\)
0.0742740 + 0.997238i \(0.476336\pi\)
\(270\) 0 0
\(271\) −4.97777 + 3.61656i −0.302378 + 0.219691i −0.728619 0.684919i \(-0.759838\pi\)
0.426241 + 0.904610i \(0.359838\pi\)
\(272\) −4.30523 9.66970i −0.261043 0.586312i
\(273\) 18.0114 + 10.3989i 1.09010 + 0.629369i
\(274\) −6.08571 10.5408i −0.367651 0.636790i
\(275\) 0 0
\(276\) 0.889629 + 0.189096i 0.0535493 + 0.0113823i
\(277\) 20.9683 + 6.81302i 1.25987 + 0.409355i 0.861446 0.507849i \(-0.169559\pi\)
0.398419 + 0.917204i \(0.369559\pi\)
\(278\) 19.0974i 1.14539i
\(279\) 2.52109 + 6.81762i 0.150933 + 0.408160i
\(280\) 0 0
\(281\) −9.50955 + 29.2674i −0.567292 + 1.74595i 0.0937474 + 0.995596i \(0.470115\pi\)
−0.661040 + 0.750351i \(0.729885\pi\)
\(282\) −0.632119 + 2.97389i −0.0376421 + 0.177092i
\(283\) 12.5464 17.2687i 0.745807 1.02652i −0.252456 0.967608i \(-0.581238\pi\)
0.998263 0.0589075i \(-0.0187617\pi\)
\(284\) 1.22803 + 2.12701i 0.0728701 + 0.126215i
\(285\) 0 0
\(286\) 11.1572 4.96752i 0.659741 0.293736i
\(287\) 0.753786 + 1.03750i 0.0444946 + 0.0612415i
\(288\) 1.41267 3.17290i 0.0832421 0.186965i
\(289\) −2.69417 + 0.572664i −0.158481 + 0.0336861i
\(290\) 0 0
\(291\) 15.1536 + 16.8298i 0.888321 + 0.986581i
\(292\) −1.93030 1.73805i −0.112963 0.101712i
\(293\) 1.78917 0.188050i 0.104525 0.0109860i −0.0521218 0.998641i \(-0.516598\pi\)
0.156646 + 0.987655i \(0.449932\pi\)
\(294\) −5.90071 18.1605i −0.344136 1.05914i
\(295\) 0 0
\(296\) −0.579852 5.51692i −0.0337032 0.320664i
\(297\) 9.82848 + 8.84961i 0.570306 + 0.513506i
\(298\) −13.9580 + 12.5678i −0.808564 + 0.728034i
\(299\) −0.250607 + 2.38437i −0.0144930 + 0.137892i
\(300\) 0 0
\(301\) −13.4965 6.00904i −0.777926 0.346355i
\(302\) 0.189630 + 0.261003i 0.0109120 + 0.0150190i
\(303\) 0.336513 + 0.755821i 0.0193322 + 0.0434208i
\(304\) −8.55109 + 14.8109i −0.490439 + 0.849465i
\(305\) 0 0
\(306\) −4.91195 3.56874i −0.280797 0.204011i
\(307\) 5.56567 26.1844i 0.317650 1.49442i −0.472402 0.881383i \(-0.656613\pi\)
0.790051 0.613041i \(-0.210054\pi\)
\(308\) 6.55551 + 2.13001i 0.373535 + 0.121369i
\(309\) −6.79928 −0.386798
\(310\) 0 0
\(311\) 4.18114 0.237090 0.118545 0.992949i \(-0.462177\pi\)
0.118545 + 0.992949i \(0.462177\pi\)
\(312\) 15.9016 + 5.16673i 0.900249 + 0.292509i
\(313\) 2.35831 11.0950i 0.133299 0.627124i −0.859877 0.510501i \(-0.829460\pi\)
0.993176 0.116623i \(-0.0372069\pi\)
\(314\) 15.8763 + 11.5348i 0.895953 + 0.650948i
\(315\) 0 0
\(316\) −2.34546 + 4.06246i −0.131943 + 0.228531i
\(317\) 10.5269 + 23.6438i 0.591249 + 1.32797i 0.923073 + 0.384626i \(0.125669\pi\)
−0.331824 + 0.943341i \(0.607664\pi\)
\(318\) −3.52277 4.84867i −0.197547 0.271900i
\(319\) −23.3965 10.4168i −1.30995 0.583229i
\(320\) 0 0
\(321\) −0.684701 + 6.51449i −0.0382163 + 0.363604i
\(322\) 3.16903 2.85341i 0.176603 0.159014i
\(323\) −17.1050 15.4015i −0.951750 0.856960i
\(324\) 0.564609 + 5.37189i 0.0313672 + 0.298439i
\(325\) 0 0
\(326\) −0.0507081 0.156064i −0.00280846 0.00864356i
\(327\) 14.3549 1.50876i 0.793828 0.0834347i
\(328\) 0.766160 + 0.689854i 0.0423041 + 0.0380908i
\(329\) −3.02663 3.36141i −0.166864 0.185321i
\(330\) 0 0
\(331\) −0.749053 + 0.159216i −0.0411717 + 0.00875131i −0.228451 0.973555i \(-0.573366\pi\)
0.187280 + 0.982307i \(0.440033\pi\)
\(332\) −1.64500 + 3.69472i −0.0902808 + 0.202774i
\(333\) −1.39205 1.91599i −0.0762839 0.104996i
\(334\) 4.44493 1.97901i 0.243215 0.108287i
\(335\) 0 0
\(336\) −11.0672 19.1689i −0.603765 1.04575i
\(337\) 1.40736 1.93706i 0.0766637 0.105519i −0.768963 0.639293i \(-0.779227\pi\)
0.845627 + 0.533775i \(0.179227\pi\)
\(338\) 1.55156 7.29950i 0.0843936 0.397041i
\(339\) 9.77628 30.0883i 0.530974 1.63417i
\(340\) 0 0
\(341\) −16.4372 + 12.9784i −0.890123 + 0.702822i
\(342\) 9.80991i 0.530459i
\(343\) 1.69511 + 0.550776i 0.0915276 + 0.0297391i
\(344\) −11.6175 2.46938i −0.626374 0.133140i
\(345\) 0 0
\(346\) 8.90672 + 15.4269i 0.478828 + 0.829355i
\(347\) −4.89980 2.82890i −0.263035 0.151863i 0.362683 0.931912i \(-0.381861\pi\)
−0.625718 + 0.780049i \(0.715194\pi\)
\(348\) −2.76826 6.21761i −0.148394 0.333299i
\(349\) 23.5162 17.0855i 1.25879 0.914566i 0.260095 0.965583i \(-0.416246\pi\)
0.998698 + 0.0510167i \(0.0162462\pi\)
\(350\) 0 0
\(351\) −9.06243 + 1.92628i −0.483717 + 0.102817i
\(352\) 9.95223 + 1.04602i 0.530456 + 0.0557532i
\(353\) −14.3243 + 12.8976i −0.762404 + 0.686471i −0.955593 0.294690i \(-0.904784\pi\)
0.193189 + 0.981162i \(0.438117\pi\)
\(354\) −13.3079 + 14.7799i −0.707307 + 0.785544i
\(355\) 0 0
\(356\) −0.758579 2.33467i −0.0402046 0.123737i
\(357\) 28.3317 9.20553i 1.49947 0.487209i
\(358\) 21.7143 2.28227i 1.14764 0.120622i
\(359\) −6.92167 + 7.68729i −0.365312 + 0.405720i −0.897577 0.440858i \(-0.854674\pi\)
0.532265 + 0.846578i \(0.321341\pi\)
\(360\) 0 0
\(361\) −1.90131 + 18.0898i −0.100069 + 0.952095i
\(362\) 3.08935 + 14.5343i 0.162373 + 0.763904i
\(363\) 2.65771 5.96932i 0.139494 0.313308i
\(364\) −3.90647 + 2.83822i −0.204755 + 0.148763i
\(365\) 0 0
\(366\) 3.48154 6.03020i 0.181983 0.315203i
\(367\) −0.118268 + 0.0682819i −0.00617352 + 0.00356428i −0.503084 0.864238i \(-0.667801\pi\)
0.496910 + 0.867802i \(0.334468\pi\)
\(368\) 1.49978 2.06428i 0.0781817 0.107608i
\(369\) 0.430531 + 0.0915122i 0.0224125 + 0.00476393i
\(370\) 0 0
\(371\) 8.91649 0.462921
\(372\) −5.55402 0.359759i −0.287963 0.0186527i
\(373\) 7.36393i 0.381290i 0.981659 + 0.190645i \(0.0610579\pi\)
−0.981659 + 0.190645i \(0.938942\pi\)
\(374\) 5.40578 16.6373i 0.279526 0.860294i
\(375\) 0 0
\(376\) −2.94187 2.13739i −0.151715 0.110228i
\(377\) 15.5374 8.97053i 0.800218 0.462006i
\(378\) 14.2713 + 8.23955i 0.734038 + 0.423797i
\(379\) 4.20974 1.87430i 0.216240 0.0962762i −0.295758 0.955263i \(-0.595572\pi\)
0.511998 + 0.858987i \(0.328906\pi\)
\(380\) 0 0
\(381\) −38.3408 17.0704i −1.96426 0.874544i
\(382\) −1.29924 6.11243i −0.0664748 0.312739i
\(383\) −32.1179 3.37572i −1.64115 0.172491i −0.761515 0.648147i \(-0.775544\pi\)
−0.879631 + 0.475656i \(0.842211\pi\)
\(384\) −7.81602 8.68057i −0.398860 0.442979i
\(385\) 0 0
\(386\) 2.58132 + 24.5596i 0.131386 + 1.25005i
\(387\) −4.82246 + 1.56691i −0.245139 + 0.0796506i
\(388\) −5.00060 + 1.62479i −0.253867 + 0.0824864i
\(389\) −3.68685 35.0781i −0.186931 1.77853i −0.538756 0.842462i \(-0.681105\pi\)
0.351825 0.936066i \(-0.385561\pi\)
\(390\) 0 0
\(391\) 2.29784 + 2.55201i 0.116207 + 0.129061i
\(392\) 22.7134 + 2.38727i 1.14720 + 0.120575i
\(393\) 5.45791 + 25.6774i 0.275315 + 1.29526i
\(394\) −24.4359 10.8796i −1.23106 0.548105i
\(395\) 0 0
\(396\) 2.16123 0.962241i 0.108606 0.0483544i
\(397\) 3.49356 + 2.01701i 0.175337 + 0.101231i 0.585100 0.810961i \(-0.301055\pi\)
−0.409763 + 0.912192i \(0.634389\pi\)
\(398\) −16.1830 + 9.34326i −0.811181 + 0.468335i
\(399\) −38.9398 28.2914i −1.94943 1.41634i
\(400\) 0 0
\(401\) 7.68933 23.6653i 0.383987 1.18179i −0.553225 0.833032i \(-0.686603\pi\)
0.937212 0.348759i \(-0.113397\pi\)
\(402\) 18.9739i 0.946334i
\(403\) −0.587221 14.6597i −0.0292516 0.730249i
\(404\) −0.192087 −0.00955671
\(405\) 0 0
\(406\) −31.2137 6.63469i −1.54911 0.329274i
\(407\) 4.01084 5.52044i 0.198810 0.273638i
\(408\) 20.7403 11.9744i 1.02680 0.592821i
\(409\) 1.75361 3.03734i 0.0867105 0.150187i −0.819408 0.573210i \(-0.805698\pi\)
0.906119 + 0.423023i \(0.139031\pi\)
\(410\) 0 0
\(411\) 16.5821 12.0476i 0.817936 0.594265i
\(412\) 0.642076 1.44213i 0.0316328 0.0710485i
\(413\) −6.15186 28.9422i −0.302713 1.42415i
\(414\) 0.152988 1.45559i 0.00751896 0.0715381i
\(415\) 0 0
\(416\) −4.69077 + 5.20963i −0.229984 + 0.255423i
\(417\) −31.9838 + 3.36163i −1.56625 + 0.164620i
\(418\) −26.8814 + 8.73429i −1.31481 + 0.427208i
\(419\) −1.27325 3.91865i −0.0622022 0.191439i 0.915126 0.403167i \(-0.132091\pi\)
−0.977328 + 0.211729i \(0.932091\pi\)
\(420\) 0 0
\(421\) 18.4689 20.5118i 0.900121 0.999686i −0.0998679 0.995001i \(-0.531842\pi\)
0.999989 0.00468505i \(-0.00149130\pi\)
\(422\) −5.77283 + 5.19788i −0.281017 + 0.253029i
\(423\) −1.54395 0.162276i −0.0750695 0.00789012i
\(424\) 7.01157 1.49035i 0.340512 0.0723780i
\(425\) 0 0
\(426\) 10.5453 7.66158i 0.510919 0.371205i
\(427\) 4.21350 + 9.46367i 0.203905 + 0.457979i
\(428\) −1.31706 0.760408i −0.0636627 0.0367557i
\(429\) 10.2834 + 17.8114i 0.496488 + 0.859943i
\(430\) 0 0
\(431\) 14.5489 + 3.09247i 0.700796 + 0.148959i 0.544512 0.838753i \(-0.316715\pi\)
0.156284 + 0.987712i \(0.450048\pi\)
\(432\) 9.37772 + 3.04701i 0.451186 + 0.146599i
\(433\) 9.26195i 0.445101i −0.974921 0.222550i \(-0.928562\pi\)
0.974921 0.222550i \(-0.0714382\pi\)
\(434\) −16.6711 + 20.0761i −0.800238 + 0.963682i
\(435\) 0 0
\(436\) −1.03557 + 3.18715i −0.0495947 + 0.152637i
\(437\) 1.15361 5.42728i 0.0551844 0.259622i
\(438\) −8.10275 + 11.1525i −0.387164 + 0.532886i
\(439\) 8.85909 + 15.3444i 0.422821 + 0.732348i 0.996214 0.0869324i \(-0.0277064\pi\)
−0.573393 + 0.819281i \(0.694373\pi\)
\(440\) 0 0
\(441\) 8.90741 3.96584i 0.424163 0.188849i
\(442\) 7.20314 + 9.91428i 0.342619 + 0.471574i
\(443\) −7.50439 + 16.8551i −0.356544 + 0.800811i 0.642850 + 0.765993i \(0.277752\pi\)
−0.999394 + 0.0348187i \(0.988915\pi\)
\(444\) 1.77375 0.377023i 0.0841785 0.0178927i
\(445\) 0 0
\(446\) 6.09220 + 6.76608i 0.288474 + 0.320383i
\(447\) −23.5052 21.1642i −1.11176 1.00103i
\(448\) 33.6183 3.53342i 1.58831 0.166939i
\(449\) −7.01784 21.5987i −0.331192 1.01931i −0.968567 0.248752i \(-0.919980\pi\)
0.637375 0.770554i \(-0.280020\pi\)
\(450\) 0 0
\(451\) 0.132561 + 1.26123i 0.00624204 + 0.0593890i
\(452\) 5.45852 + 4.91487i 0.256747 + 0.231176i
\(453\) −0.403740 + 0.363530i −0.0189694 + 0.0170801i
\(454\) 2.47803 23.5769i 0.116300 1.10652i
\(455\) 0 0
\(456\) −35.3494 15.7386i −1.65539 0.737027i
\(457\) 9.49970 + 13.0752i 0.444377 + 0.611633i 0.971178 0.238356i \(-0.0766085\pi\)
−0.526800 + 0.849989i \(0.676608\pi\)
\(458\) 3.05067 + 6.85192i 0.142549 + 0.320169i
\(459\) −6.63529 + 11.4927i −0.309709 + 0.536432i
\(460\) 0 0
\(461\) −17.4252 12.6602i −0.811573 0.589642i 0.102713 0.994711i \(-0.467248\pi\)
−0.914286 + 0.405069i \(0.867248\pi\)
\(462\) 7.60571 35.7821i 0.353850 1.66473i
\(463\) 16.6528 + 5.41083i 0.773922 + 0.251462i 0.669243 0.743044i \(-0.266619\pi\)
0.104679 + 0.994506i \(0.466619\pi\)
\(464\) −19.0941 −0.886421
\(465\) 0 0
\(466\) 21.5976 1.00049
\(467\) −11.2288 3.64845i −0.519605 0.168830i 0.0374608 0.999298i \(-0.488073\pi\)
−0.557066 + 0.830468i \(0.688073\pi\)
\(468\) −0.344569 + 1.62107i −0.0159277 + 0.0749341i
\(469\) 22.8372 + 16.5922i 1.05453 + 0.766158i
\(470\) 0 0
\(471\) −16.5236 + 28.6197i −0.761366 + 1.31872i
\(472\) −9.67514 21.7307i −0.445335 1.00024i
\(473\) −8.58739 11.8195i −0.394849 0.543463i
\(474\) 22.7431 + 10.1259i 1.04463 + 0.465097i
\(475\) 0 0
\(476\) −0.722955 + 6.87846i −0.0331366 + 0.315274i
\(477\) 2.27425 2.04774i 0.104131 0.0937597i
\(478\) 25.5586 + 23.0130i 1.16902 + 1.05259i
\(479\) −1.65246 15.7221i −0.0755029 0.718362i −0.965147 0.261708i \(-0.915714\pi\)
0.889644 0.456654i \(-0.150952\pi\)
\(480\) 0 0
\(481\) 1.47715 + 4.54621i 0.0673525 + 0.207290i
\(482\) 27.8780 2.93010i 1.26981 0.133462i
\(483\) 5.33664 + 4.80513i 0.242825 + 0.218641i
\(484\) 1.01512 + 1.12740i 0.0461416 + 0.0512455i
\(485\) 0 0
\(486\) 15.3271 3.25787i 0.695251 0.147780i
\(487\) −5.20283 + 11.6857i −0.235763 + 0.529532i −0.992218 0.124514i \(-0.960263\pi\)
0.756455 + 0.654046i \(0.226930\pi\)
\(488\) 4.89514 + 6.73758i 0.221593 + 0.304996i
\(489\) 0.252445 0.112396i 0.0114160 0.00508271i
\(490\) 0 0
\(491\) 9.26410 + 16.0459i 0.418083 + 0.724141i 0.995747 0.0921341i \(-0.0293688\pi\)
−0.577664 + 0.816275i \(0.696036\pi\)
\(492\) −0.198094 + 0.272653i −0.00893076 + 0.0122921i
\(493\) 5.34290 25.1364i 0.240632 1.13209i
\(494\) 6.11864 18.8312i 0.275290 0.847257i
\(495\) 0 0
\(496\) −7.25967 + 13.8240i −0.325969 + 0.620717i
\(497\) 19.3922i 0.869861i
\(498\) 20.4136 + 6.63277i 0.914754 + 0.297221i
\(499\) 39.9938 + 8.50094i 1.79037 + 0.380554i 0.978980 0.203955i \(-0.0653797\pi\)
0.811387 + 0.584510i \(0.198713\pi\)
\(500\) 0 0
\(501\) 4.09681 + 7.09588i 0.183032 + 0.317021i
\(502\) 17.3237 + 10.0018i 0.773195 + 0.446404i
\(503\) −8.16609 18.3413i −0.364108 0.817800i −0.998979 0.0451817i \(-0.985613\pi\)
0.634871 0.772618i \(-0.281053\pi\)
\(504\) 12.2852 8.92575i 0.547228 0.397585i
\(505\) 0 0
\(506\) 4.12485 0.876764i 0.183372 0.0389769i
\(507\) 12.4981 + 1.31361i 0.555061 + 0.0583393i
\(508\) 7.24127 6.52007i 0.321279 0.289281i
\(509\) 21.3528 23.7147i 0.946445 1.05113i −0.0521763 0.998638i \(-0.516616\pi\)
0.998621 0.0524956i \(-0.0167176\pi\)
\(510\) 0 0
\(511\) −6.33760 19.5051i −0.280359 0.862855i
\(512\) 23.4076 7.60561i 1.03448 0.336123i
\(513\) 21.3242 2.24127i 0.941488 0.0989544i
\(514\) −19.2534 + 21.3831i −0.849233 + 0.943169i
\(515\) 0 0
\(516\) 0.405835 3.86126i 0.0178659 0.169982i
\(517\) −0.929990 4.37526i −0.0409009 0.192424i
\(518\) 3.45820 7.76725i 0.151945 0.341273i
\(519\) −24.2687 + 17.6323i −1.06528 + 0.773970i
\(520\) 0 0
\(521\) −1.05378 + 1.82520i −0.0461670 + 0.0799635i −0.888185 0.459485i \(-0.848034\pi\)
0.842019 + 0.539449i \(0.181367\pi\)
\(522\) −9.48512 + 5.47624i −0.415152 + 0.239688i
\(523\) −2.88471 + 3.97047i −0.126140 + 0.173616i −0.867416 0.497584i \(-0.834221\pi\)
0.741276 + 0.671200i \(0.234221\pi\)
\(524\) −5.96159 1.26717i −0.260433 0.0553568i
\(525\) 0 0
\(526\) −12.8076 −0.558440
\(527\) −16.1672 13.4252i −0.704255 0.584811i
\(528\) 21.8886i 0.952580i
\(529\) 6.85158 21.0870i 0.297895 0.916826i
\(530\) 0 0
\(531\) −8.21591 5.96921i −0.356540 0.259042i
\(532\) 9.67780 5.58748i 0.419586 0.242248i
\(533\) −0.769375 0.444199i −0.0333253 0.0192404i
\(534\) −11.9017 + 5.29898i −0.515038 + 0.229310i
\(535\) 0 0
\(536\) 20.7316 + 9.23030i 0.895469 + 0.398688i
\(537\) 7.64456 + 35.9648i 0.329887 + 1.55200i
\(538\) −5.41397 0.569031i −0.233413 0.0245327i
\(539\) 18.7980 + 20.8773i 0.809689 + 0.899251i
\(540\) 0 0
\(541\) 1.30002 + 12.3689i 0.0558923 + 0.531780i 0.986266 + 0.165167i \(0.0528162\pi\)
−0.930373 + 0.366613i \(0.880517\pi\)
\(542\) −7.21033 + 2.34278i −0.309710 + 0.100631i
\(543\) −23.7978 + 7.73236i −1.02126 + 0.331827i
\(544\) 1.04959 + 9.98614i 0.0450006 + 0.428152i
\(545\) 0 0
\(546\) 17.1474 + 19.0442i 0.733842 + 0.815014i
\(547\) 13.8885 + 1.45974i 0.593830 + 0.0624140i 0.396676 0.917959i \(-0.370164\pi\)
0.197154 + 0.980373i \(0.436830\pi\)
\(548\) 0.989399 + 4.65476i 0.0422650 + 0.198841i
\(549\) 3.24811 + 1.44615i 0.138626 + 0.0617202i
\(550\) 0 0
\(551\) −37.9313 + 16.8881i −1.61593 + 0.719456i
\(552\) 4.99967 + 2.88656i 0.212800 + 0.122860i
\(553\) −32.0759 + 18.5190i −1.36401 + 0.787509i
\(554\) 21.9779 + 15.9679i 0.933752 + 0.678411i
\(555\) 0 0
\(556\) 2.30732 7.10121i 0.0978523 0.301159i
\(557\) 37.2207i 1.57709i −0.614976 0.788546i \(-0.710834\pi\)
0.614976 0.788546i \(-0.289166\pi\)
\(558\) 0.358481 + 8.94927i 0.0151757 + 0.378853i
\(559\) 10.2346 0.432876
\(560\) 0 0
\(561\) 28.8152 + 6.12487i 1.21658 + 0.258592i
\(562\) −22.2878 + 30.6766i −0.940156 + 1.29401i
\(563\) 26.0039 15.0134i 1.09593 0.632738i 0.160784 0.986990i \(-0.448598\pi\)
0.935150 + 0.354252i \(0.115264\pi\)
\(564\) 0.594349 1.02944i 0.0250266 0.0433474i
\(565\) 0 0
\(566\) 21.2780 15.4594i 0.894380 0.649805i
\(567\) −17.3467 + 38.9613i −0.728492 + 1.63622i
\(568\) 3.24133 + 15.2493i 0.136003 + 0.639846i
\(569\) −4.21995 + 40.1502i −0.176910 + 1.68318i 0.441449 + 0.897286i \(0.354464\pi\)
−0.618359 + 0.785896i \(0.712202\pi\)
\(570\) 0 0
\(571\) 28.5060 31.6591i 1.19294 1.32489i 0.259677 0.965696i \(-0.416384\pi\)
0.933262 0.359197i \(-0.116949\pi\)
\(572\) −4.74889 + 0.499129i −0.198561 + 0.0208696i
\(573\) 10.0082 3.25187i 0.418100 0.135849i
\(574\) 0.488296 + 1.50282i 0.0203811 + 0.0627265i
\(575\) 0 0
\(576\) 7.76324 8.62195i 0.323468 0.359248i
\(577\) 4.85851 4.37462i 0.202262 0.182118i −0.561775 0.827290i \(-0.689881\pi\)
0.764037 + 0.645173i \(0.223215\pi\)
\(578\) −3.37526 0.354754i −0.140392 0.0147558i
\(579\) −40.6774 + 8.64624i −1.69049 + 0.359325i
\(580\) 0 0
\(581\) −25.8344 + 18.7698i −1.07179 + 0.778703i
\(582\) 11.3499 + 25.4922i 0.470467 + 1.05669i
\(583\) 7.63617 + 4.40874i 0.316258 + 0.182591i
\(584\) −8.24383 14.2787i −0.341132 0.590858i
\(585\) 0 0
\(586\) 2.16827 + 0.460880i 0.0895704 + 0.0190388i
\(587\) −20.3314 6.60607i −0.839167 0.272662i −0.142265 0.989829i \(-0.545439\pi\)
−0.696902 + 0.717167i \(0.745439\pi\)
\(588\) 7.46576i 0.307883i
\(589\) −2.19476 + 33.8830i −0.0904333 + 1.39612i
\(590\) 0 0
\(591\) 13.9195 42.8397i 0.572570 1.76219i
\(592\) 1.05773 4.97621i 0.0434723 0.204521i
\(593\) −15.2769 + 21.0268i −0.627347 + 0.863468i −0.997862 0.0653579i \(-0.979181\pi\)
0.370515 + 0.928826i \(0.379181\pi\)
\(594\) 8.14807 + 14.1129i 0.334319 + 0.579058i
\(595\) 0 0
\(596\) 6.70858 2.98685i 0.274794 0.122346i
\(597\) −18.4965 25.4582i −0.757010 1.04193i
\(598\) −1.20156 + 2.69874i −0.0491353 + 0.110360i
\(599\) −8.98718 + 1.91028i −0.367206 + 0.0780521i −0.387819 0.921735i \(-0.626772\pi\)
0.0206131 + 0.999788i \(0.493438\pi\)
\(600\) 0 0
\(601\) 22.2948 + 24.7609i 0.909423 + 1.01002i 0.999900 + 0.0141185i \(0.00449419\pi\)
−0.0904769 + 0.995899i \(0.528839\pi\)
\(602\) −13.5281 12.1807i −0.551364 0.496450i
\(603\) 9.63543 1.01272i 0.392385 0.0412413i
\(604\) −0.0389782 0.119962i −0.00158600 0.00488120i
\(605\) 0 0
\(606\) 0.106560 + 1.01385i 0.00432871 + 0.0411849i
\(607\) −36.1917 32.5872i −1.46898 1.32267i −0.836322 0.548238i \(-0.815299\pi\)
−0.632654 0.774434i \(-0.718035\pi\)
\(608\) 12.0566 10.8558i 0.488961 0.440262i
\(609\) 5.61717 53.4438i 0.227619 2.16565i
\(610\) 0 0
\(611\) 2.86257 + 1.27450i 0.115807 + 0.0515608i
\(612\) 1.39530 + 1.92046i 0.0564015 + 0.0776300i
\(613\) −8.50649 19.1059i −0.343574 0.771680i −0.999853 0.0171613i \(-0.994537\pi\)
0.656279 0.754519i \(-0.272130\pi\)
\(614\) 16.4923 28.5654i 0.665573 1.15281i
\(615\) 0 0
\(616\) 35.3968 + 25.7173i 1.42618 + 1.03618i
\(617\) 9.43586 44.3922i 0.379873 1.78716i −0.207913 0.978147i \(-0.566667\pi\)
0.587787 0.809016i \(-0.299999\pi\)
\(618\) −7.96784 2.58891i −0.320514 0.104141i
\(619\) 10.2462 0.411832 0.205916 0.978570i \(-0.433983\pi\)
0.205916 + 0.978570i \(0.433983\pi\)
\(620\) 0 0
\(621\) −3.19902 −0.128372
\(622\) 4.89973 + 1.59202i 0.196461 + 0.0638341i
\(623\) 4.02983 18.9589i 0.161452 0.759571i
\(624\) 12.4052 + 9.01290i 0.496605 + 0.360805i
\(625\) 0 0
\(626\) 6.98816 12.1038i 0.279303 0.483767i
\(627\) −19.3598 43.4827i −0.773154 1.73653i
\(628\) −4.50986 6.20729i −0.179963 0.247698i
\(629\) 6.25495 + 2.78488i 0.249401 + 0.111041i
\(630\) 0 0
\(631\) 1.11605 10.6185i 0.0444291 0.422715i −0.949589 0.313498i \(-0.898499\pi\)
0.994018 0.109217i \(-0.0348343\pi\)
\(632\) −22.1278 + 19.9240i −0.880197 + 0.792533i
\(633\) −9.72144 8.75322i −0.386392 0.347909i
\(634\) 3.33344 + 31.7156i 0.132388 + 1.25959i
\(635\) 0 0
\(636\) 0.724101 + 2.22855i 0.0287125 + 0.0883679i
\(637\) −19.5724 + 2.05714i −0.775485 + 0.0815068i
\(638\) −23.4512 21.1156i −0.928444 0.835975i
\(639\) 4.45358 + 4.94621i 0.176181 + 0.195669i
\(640\) 0 0
\(641\) −23.3407 + 4.96121i −0.921900 + 0.195956i −0.644328 0.764749i \(-0.722863\pi\)
−0.277572 + 0.960705i \(0.589530\pi\)
\(642\) −3.28285 + 7.37340i −0.129564 + 0.291005i
\(643\) −4.66658 6.42300i −0.184032 0.253298i 0.707026 0.707187i \(-0.250036\pi\)
−0.891058 + 0.453889i \(0.850036\pi\)
\(644\) −1.52312 + 0.678137i −0.0600194 + 0.0267224i
\(645\) 0 0
\(646\) −14.1805 24.5614i −0.557925 0.966355i
\(647\) 1.45630 2.00443i 0.0572532 0.0788023i −0.779430 0.626489i \(-0.784491\pi\)
0.836684 + 0.547687i \(0.184491\pi\)
\(648\) −7.12851 + 33.5370i −0.280034 + 1.31746i
\(649\) 9.04192 27.8282i 0.354926 1.09235i
\(650\) 0 0
\(651\) −36.5574 24.3864i −1.43280 0.955778i
\(652\) 0.0641574i 0.00251260i
\(653\) −21.3931 6.95104i −0.837177 0.272015i −0.141112 0.989994i \(-0.545068\pi\)
−0.696065 + 0.717978i \(0.745068\pi\)
\(654\) 17.3965 + 3.69774i 0.680257 + 0.144593i
\(655\) 0 0
\(656\) 0.472746 + 0.818821i 0.0184576 + 0.0319696i
\(657\) −6.09598 3.51952i −0.237827 0.137309i
\(658\) −2.26690 5.09155i −0.0883731 0.198489i
\(659\) −9.67555 + 7.02970i −0.376906 + 0.273838i −0.760069 0.649843i \(-0.774835\pi\)
0.383163 + 0.923681i \(0.374835\pi\)
\(660\) 0 0
\(661\) −23.3151 + 4.95578i −0.906852 + 0.192757i −0.637650 0.770326i \(-0.720093\pi\)
−0.269202 + 0.963084i \(0.586760\pi\)
\(662\) −0.938413 0.0986312i −0.0364725 0.00383341i
\(663\) −15.3362 + 13.8088i −0.595609 + 0.536289i
\(664\) −17.1779 + 19.0779i −0.666630 + 0.740368i
\(665\) 0 0
\(666\) −0.901758 2.77533i −0.0349424 0.107542i
\(667\) 5.89158 1.91429i 0.228123 0.0741216i
\(668\) −1.89191 + 0.198848i −0.0732002 + 0.00769365i
\(669\) −10.2593 + 11.3941i −0.396646 + 0.440520i
\(670\) 0 0
\(671\) −1.07082 + 10.1881i −0.0413384 + 0.393309i
\(672\) 4.36563 + 20.5387i 0.168408 + 0.792297i
\(673\) 1.42119 3.19204i 0.0547827 0.123044i −0.884080 0.467335i \(-0.845214\pi\)
0.938863 + 0.344291i \(0.111881\pi\)
\(674\) 2.38679 1.73411i 0.0919359 0.0667953i
\(675\) 0 0
\(676\) −1.45885 + 2.52680i −0.0561096 + 0.0971847i
\(677\) −16.6673 + 9.62287i −0.640576 + 0.369837i −0.784836 0.619703i \(-0.787253\pi\)
0.144260 + 0.989540i \(0.453920\pi\)
\(678\) 22.9130 31.5370i 0.879967 1.21117i
\(679\) −40.6079 8.63147i −1.55839 0.331245i
\(680\) 0 0
\(681\) 39.9221 1.52982
\(682\) −24.2039 + 8.95034i −0.926814 + 0.342726i
\(683\) 39.8738i 1.52573i 0.646558 + 0.762865i \(0.276208\pi\)
−0.646558 + 0.762865i \(0.723792\pi\)
\(684\) 1.18522 3.64773i 0.0453180 0.139475i
\(685\) 0 0
\(686\) 1.77673 + 1.29087i 0.0678359 + 0.0492857i
\(687\) −10.9384 + 6.31529i −0.417326 + 0.240944i
\(688\) −9.43303 5.44616i −0.359631 0.207633i
\(689\) −5.64290 + 2.51238i −0.214977 + 0.0957140i
\(690\) 0 0
\(691\) 35.0897 + 15.6229i 1.33487 + 0.594325i 0.945159 0.326611i \(-0.105907\pi\)
0.389716 + 0.920935i \(0.372573\pi\)
\(692\) −1.44803 6.81246i −0.0550459 0.258971i
\(693\) 18.5770 + 1.95252i 0.705680 + 0.0741700i
\(694\) −4.66477 5.18075i −0.177072 0.196659i
\(695\) 0 0
\(696\) −4.51580 42.9649i −0.171171 1.62858i
\(697\) −1.21022 + 0.393224i −0.0458403 + 0.0148944i
\(698\) 34.0633 11.0678i 1.28932 0.418924i
\(699\) 3.80173 + 36.1710i 0.143795 + 1.36811i
\(700\) 0 0
\(701\) −23.7043 26.3263i −0.895298 0.994329i 0.104702 0.994504i \(-0.466611\pi\)
−1.00000 0.000174860i \(0.999944\pi\)
\(702\) −11.3534 1.19329i −0.428507 0.0450379i
\(703\) −2.30007 10.8210i −0.0867488 0.408121i
\(704\) 30.5381 + 13.5965i 1.15095 + 0.512436i
\(705\) 0 0
\(706\) −21.6970 + 9.66015i −0.816579 + 0.363564i
\(707\) −1.31347 0.758331i −0.0493980 0.0285200i
\(708\) 6.73412 3.88795i 0.253084 0.146118i
\(709\) −20.8801 15.1703i −0.784170 0.569733i 0.122057 0.992523i \(-0.461051\pi\)
−0.906228 + 0.422790i \(0.861051\pi\)
\(710\) 0 0
\(711\) −3.92827 + 12.0900i −0.147322 + 0.453409i
\(712\) 15.5821i 0.583962i
\(713\) 0.854070 4.99330i 0.0319852 0.187001i
\(714\) 36.7061 1.37369
\(715\) 0 0
\(716\) −8.35004 1.77486i −0.312056 0.0663295i
\(717\) −34.0426 + 46.8557i −1.27135 + 1.74986i
\(718\) −11.0383 + 6.37296i −0.411945 + 0.237837i
\(719\) −19.5234 + 33.8155i −0.728099 + 1.26110i 0.229587 + 0.973288i \(0.426262\pi\)
−0.957686 + 0.287816i \(0.907071\pi\)
\(720\) 0 0
\(721\) 10.0837 7.32625i 0.375537 0.272844i
\(722\) −9.11599 + 20.4749i −0.339262 + 0.761995i
\(723\) 9.81450 + 46.1736i 0.365005 + 1.71721i
\(724\) 0.607260 5.77769i 0.0225686 0.214726i
\(725\) 0 0
\(726\) 5.38737 5.98328i 0.199944 0.222060i
\(727\) 24.8468 2.61150i 0.921516 0.0968552i 0.368124 0.929777i \(-0.380000\pi\)
0.553391 + 0.832921i \(0.313333\pi\)
\(728\) −29.1501 + 9.47144i −1.08037 + 0.351035i
\(729\) −2.24010 6.89433i −0.0829668 0.255345i
\(730\) 0 0
\(731\) 9.80913 10.8941i 0.362804 0.402934i
\(732\) −2.02314 + 1.82164i −0.0747774 + 0.0673299i
\(733\) −16.8562 1.77166i −0.622598 0.0654377i −0.212023 0.977265i \(-0.568005\pi\)
−0.410575 + 0.911827i \(0.634672\pi\)
\(734\) −0.164593 + 0.0349853i −0.00607524 + 0.00129133i
\(735\) 0 0
\(736\) −1.95825 + 1.42275i −0.0721821 + 0.0524434i
\(737\) 11.3540 + 25.5016i 0.418231 + 0.939363i
\(738\) 0.469680 + 0.271170i 0.0172892 + 0.00998190i
\(739\) 7.19107 + 12.4553i 0.264528 + 0.458175i 0.967440 0.253101i \(-0.0814506\pi\)
−0.702912 + 0.711277i \(0.748117\pi\)
\(740\) 0 0
\(741\) 32.6151 + 6.93254i 1.19814 + 0.254673i
\(742\) 10.4489 + 3.39506i 0.383592 + 0.124637i
\(743\) 27.7705i 1.01880i 0.860530 + 0.509400i \(0.170133\pi\)
−0.860530 + 0.509400i \(0.829867\pi\)
\(744\) −32.8233 13.0661i −1.20336 0.479025i
\(745\) 0 0
\(746\) −2.80390 + 8.62953i −0.102658 + 0.315950i
\(747\) −2.27872 + 10.7205i −0.0833740 + 0.392244i
\(748\) −4.02019 + 5.53332i −0.146993 + 0.202318i
\(749\) −6.00394 10.3991i −0.219379 0.379976i
\(750\) 0 0
\(751\) −39.8034 + 17.7216i −1.45245 + 0.646670i −0.972980 0.230891i \(-0.925836\pi\)
−0.479465 + 0.877561i \(0.659169\pi\)
\(752\) −1.96018 2.69796i −0.0714804 0.0983844i
\(753\) −13.7014 + 30.7739i −0.499307 + 1.12146i
\(754\) 21.6234 4.59620i 0.787478 0.167384i
\(755\) 0 0
\(756\) −4.31118 4.78805i −0.156796 0.174140i
\(757\) 18.7400 + 16.8735i 0.681115 + 0.613279i 0.935291 0.353879i \(-0.115138\pi\)
−0.254176 + 0.967158i \(0.581804\pi\)
\(758\) 5.64691 0.593514i 0.205105 0.0215574i
\(759\) 2.19446 + 6.75385i 0.0796538 + 0.245149i
\(760\) 0 0
\(761\) 0.273439 + 2.60160i 0.00991216 + 0.0943079i 0.998359 0.0572569i \(-0.0182354\pi\)
−0.988447 + 0.151565i \(0.951569\pi\)
\(762\) −38.4305 34.6029i −1.39219 1.25353i
\(763\) −19.6634 + 17.7050i −0.711864 + 0.640966i
\(764\) −0.255385 + 2.42983i −0.00923952 + 0.0879081i
\(765\) 0 0
\(766\) −36.3525 16.1852i −1.31347 0.584794i
\(767\) 12.0483 + 16.5830i 0.435037 + 0.598777i
\(768\) 9.14636 + 20.5431i 0.330041 + 0.741284i
\(769\) 5.67534 9.82998i 0.204658 0.354478i −0.745366 0.666656i \(-0.767725\pi\)
0.950024 + 0.312178i \(0.101058\pi\)
\(770\) 0 0
\(771\) −39.2009 28.4811i −1.41179 1.02572i
\(772\) 2.00742 9.44415i 0.0722485 0.339903i
\(773\) 10.8586 + 3.52816i 0.390556 + 0.126899i 0.497711 0.867343i \(-0.334174\pi\)
−0.107155 + 0.994242i \(0.534174\pi\)
\(774\) −6.24789 −0.224576
\(775\) 0 0
\(776\) −33.3751 −1.19810
\(777\) 13.6171 + 4.42446i 0.488511 + 0.158727i
\(778\) 9.03590 42.5106i 0.323953 1.52408i
\(779\) 1.66335 + 1.20849i 0.0595957 + 0.0432988i
\(780\) 0 0
\(781\) −9.58846 + 16.6077i −0.343102 + 0.594270i
\(782\) 1.72105 + 3.86555i 0.0615447 + 0.138232i
\(783\) 14.0710 + 19.3671i 0.502857 + 0.692123i
\(784\) 19.1342 + 8.51909i 0.683364 + 0.304253i
\(785\) 0 0
\(786\) −3.38106 + 32.1687i −0.120599 + 1.14742i
\(787\) 20.1312 18.1262i 0.717600 0.646130i −0.227173 0.973854i \(-0.572948\pi\)
0.944773 + 0.327724i \(0.106282\pi\)
\(788\) 7.77184 + 6.99779i 0.276860 + 0.249286i
\(789\) −2.25447 21.4499i −0.0802614 0.763636i
\(790\) 0 0
\(791\) 17.9215 + 55.1566i 0.637214 + 1.96114i
\(792\) 14.9345 1.56968i 0.530675 0.0557762i
\(793\) −5.33312 4.80196i −0.189385 0.170523i
\(794\) 3.32598 + 3.69388i 0.118035 + 0.131091i
\(795\) 0 0
\(796\) 7.14635 1.51900i 0.253296 0.0538397i
\(797\) −19.7901 + 44.4493i −0.701002 + 1.57448i 0.112988 + 0.993596i \(0.463958\pi\)
−0.813990 + 0.580879i \(0.802709\pi\)
\(798\) −34.8599 47.9805i −1.23403 1.69849i
\(799\) 4.10022 1.82553i 0.145055 0.0645827i
\(800\) 0 0
\(801\) −3.32620 5.76115i −0.117526 0.203560i
\(802\) 18.0217 24.8048i 0.636369 0.875887i
\(803\) 4.21669 19.8380i 0.148804 0.700067i
\(804\) −2.29240 + 7.05530i −0.0808469 + 0.248821i
\(805\) 0 0
\(806\) 4.89370 17.4027i 0.172373 0.612985i
\(807\) 9.16733i 0.322705i
\(808\) −1.15961 0.376780i −0.0407949 0.0132551i
\(809\) −18.3981 3.91064i −0.646843 0.137491i −0.127204 0.991877i \(-0.540600\pi\)
−0.519639 + 0.854386i \(0.673934\pi\)
\(810\) 0 0
\(811\) 19.7693 + 34.2414i 0.694193 + 1.20238i 0.970452 + 0.241294i \(0.0775720\pi\)
−0.276259 + 0.961083i \(0.589095\pi\)
\(812\) 10.8050 + 6.23826i 0.379180 + 0.218920i
\(813\) −5.19282 11.6633i −0.182120 0.409049i
\(814\) 6.80214 4.94204i 0.238415 0.173219i
\(815\) 0 0
\(816\) 21.4833 4.56641i 0.752064 0.159856i
\(817\) −23.5561 2.47584i −0.824123 0.0866188i
\(818\) 3.21150 2.89165i 0.112288 0.101104i
\(819\) −8.75585 + 9.72436i −0.305954 + 0.339797i
\(820\) 0 0
\(821\) −4.52299 13.9203i −0.157854 0.485823i 0.840585 0.541679i \(-0.182211\pi\)
−0.998439 + 0.0558559i \(0.982211\pi\)
\(822\) 24.0193 7.80434i 0.837769 0.272208i
\(823\) −41.5578 + 4.36790i −1.44861 + 0.152255i −0.795936 0.605381i \(-0.793021\pi\)
−0.652677 + 0.757636i \(0.726354\pi\)
\(824\) 6.70488 7.44652i 0.233575 0.259412i
\(825\) 0 0
\(826\) 3.81095 36.2588i 0.132600 1.26160i
\(827\) 1.95564 + 9.20058i 0.0680044 + 0.319936i 0.998980 0.0451446i \(-0.0143749\pi\)
−0.930976 + 0.365080i \(0.881042\pi\)
\(828\) −0.232749 + 0.522764i −0.00808860 + 0.0181673i
\(829\) 32.6283 23.7058i 1.13323 0.823337i 0.147065 0.989127i \(-0.453017\pi\)
0.986161 + 0.165790i \(0.0530173\pi\)
\(830\) 0 0
\(831\) −22.8739 + 39.6188i −0.793487 + 1.37436i
\(832\) −20.2801 + 11.7087i −0.703086 + 0.405927i
\(833\) −16.5690 + 22.8053i −0.574083 + 0.790158i
\(834\) −38.7607 8.23884i −1.34217 0.285288i
\(835\) 0 0
\(836\) 11.0509 0.382203
\(837\) 19.3715 2.82388i 0.669578 0.0976077i
\(838\) 5.07693i 0.175380i
\(839\) −2.20936 + 6.79972i −0.0762757 + 0.234752i −0.981923 0.189278i \(-0.939385\pi\)
0.905648 + 0.424031i \(0.139385\pi\)
\(840\) 0 0
\(841\) −14.0420 10.2021i −0.484208 0.351798i
\(842\) 29.4532 17.0048i 1.01503 0.586025i
\(843\) −55.2995 31.9272i −1.90462 1.09963i
\(844\) 2.77458 1.23532i 0.0955050 0.0425216i
\(845\) 0 0
\(846\) −1.74751 0.778044i −0.0600808 0.0267497i
\(847\) 2.49042 + 11.7165i 0.0855720 + 0.402585i
\(848\) 6.53788 + 0.687159i 0.224512 + 0.0235971i
\(849\) 29.6364 + 32.9145i 1.01712 + 1.12962i
\(850\) 0 0
\(851\) 0.172526 + 1.64148i 0.00591413 + 0.0562692i
\(852\) −4.84683 + 1.57483i −0.166050 + 0.0539528i
\(853\) 1.07153 0.348160i 0.0366884 0.0119208i −0.290615 0.956840i \(-0.593860\pi\)
0.327304 + 0.944919i \(0.393860\pi\)
\(854\) 1.33424 + 12.6945i 0.0456569 + 0.434397i
\(855\) 0 0
\(856\) −6.45943 7.17392i −0.220779 0.245200i
\(857\) 23.7234 + 2.49343i 0.810374 + 0.0851738i 0.500647 0.865652i \(-0.333096\pi\)
0.309727 + 0.950825i \(0.399762\pi\)
\(858\) 5.26888 + 24.7881i 0.179877 + 0.846252i
\(859\) −29.6589 13.2050i −1.01195 0.450548i −0.167320 0.985903i \(-0.553511\pi\)
−0.844628 + 0.535354i \(0.820178\pi\)
\(860\) 0 0
\(861\) −2.43093 + 1.08232i −0.0828458 + 0.0368853i
\(862\) 15.8719 + 9.16363i 0.540598 + 0.312114i
\(863\) 20.6476 11.9209i 0.702853 0.405793i −0.105556 0.994413i \(-0.533662\pi\)
0.808409 + 0.588621i \(0.200329\pi\)
\(864\) −7.56744 5.49807i −0.257450 0.187048i
\(865\) 0 0
\(866\) 3.52660 10.8538i 0.119839 0.368826i
\(867\) 5.71523i 0.194099i
\(868\) 8.62457 5.45094i 0.292737 0.185017i
\(869\) −36.6268 −1.24248
\(870\) 0 0
\(871\) −19.1280 4.06577i −0.648126 0.137763i
\(872\) −12.5032 + 17.2092i −0.423412 + 0.582777i
\(873\) −12.3398 + 7.12437i −0.417638 + 0.241123i
\(874\) 3.41837 5.92080i 0.115628 0.200274i
\(875\) 0 0
\(876\) 4.36037 3.16799i 0.147323 0.107036i
\(877\) −11.9071 + 26.7437i −0.402073 + 0.903071i 0.593118 + 0.805116i \(0.297897\pi\)
−0.995191 + 0.0979552i \(0.968770\pi\)
\(878\) 4.53910 + 21.3548i 0.153187 + 0.720689i
\(879\) −0.390198 + 3.71249i −0.0131611 + 0.125219i
\(880\) 0 0
\(881\) 6.04230 6.71066i 0.203570 0.226088i −0.632711 0.774388i \(-0.718058\pi\)
0.836282 + 0.548300i \(0.184725\pi\)
\(882\) 11.9483 1.25582i 0.402321 0.0422857i
\(883\) 20.3598 6.61531i 0.685162 0.222623i 0.0543083 0.998524i \(-0.482705\pi\)
0.630854 + 0.775901i \(0.282705\pi\)
\(884\) −1.48060 4.55682i −0.0497979 0.153262i
\(885\) 0 0
\(886\) −15.2119 + 16.8946i −0.511055 + 0.567584i
\(887\) −18.2777 + 16.4573i −0.613704 + 0.552581i −0.916277 0.400545i \(-0.868821\pi\)
0.302574 + 0.953126i \(0.402154\pi\)
\(888\) 11.4475 + 1.20318i 0.384152 + 0.0403760i
\(889\) 75.2550 15.9959i 2.52397 0.536487i
\(890\) 0 0
\(891\) −34.1202 + 24.7898i −1.14307 + 0.830489i
\(892\) −1.44787 3.25196i −0.0484781 0.108884i
\(893\) −6.28024 3.62590i −0.210160 0.121336i
\(894\) −19.4864 33.7514i −0.651723 1.12882i
\(895\) 0 0
\(896\) 20.9450 + 4.45199i 0.699722 + 0.148730i
\(897\) −4.73128 1.53729i −0.157973 0.0513285i
\(898\) 27.9829i 0.933801i
\(899\) −33.9864 + 16.7926i −1.13351 + 0.560064i
\(900\) 0 0
\(901\) −2.73404 + 8.41450i −0.0910839 + 0.280328i
\(902\) −0.324886 + 1.52847i −0.0108175 + 0.0508924i
\(903\) 18.0187 24.8006i 0.599624 0.825312i
\(904\) 23.3119 + 40.3774i 0.775343 + 1.34293i
\(905\) 0 0
\(906\) −0.611548 + 0.272279i −0.0203173 + 0.00904585i
\(907\) 11.6183 + 15.9913i 0.385781 + 0.530981i 0.957104 0.289743i \(-0.0935700\pi\)
−0.571324 + 0.820725i \(0.693570\pi\)
\(908\) −3.76996 + 8.46747i −0.125110 + 0.281003i
\(909\) −0.509171 + 0.108228i −0.0168881 + 0.00358969i
\(910\) 0 0
\(911\) −23.8355 26.4720i −0.789705 0.877056i 0.205112 0.978739i \(-0.434244\pi\)
−0.994817 + 0.101682i \(0.967578\pi\)
\(912\) −26.3717 23.7452i −0.873254 0.786281i
\(913\) −31.4056 + 3.30086i −1.03937 + 0.109242i
\(914\) 6.15383 + 18.9395i 0.203550 + 0.626464i
\(915\) 0 0
\(916\) −0.306527 2.91641i −0.0101279 0.0963608i
\(917\) −35.7619 32.2002i −1.18096 1.06334i
\(918\) −12.1516 + 10.9414i −0.401064 + 0.361120i
\(919\) −1.79332 + 17.0623i −0.0591563 + 0.562835i 0.924297 + 0.381674i \(0.124652\pi\)
−0.983453 + 0.181161i \(0.942014\pi\)
\(920\) 0 0
\(921\) 50.7436 + 22.5925i 1.67206 + 0.744449i
\(922\) −15.5995 21.4709i −0.513742 0.707105i
\(923\) −5.46411 12.2726i −0.179853 0.403957i
\(924\) −7.15126 + 12.3863i −0.235259 + 0.407481i
\(925\) 0 0
\(926\) 17.4546 + 12.6815i 0.573594 + 0.416741i
\(927\) 0.889432 4.18445i 0.0292128 0.137435i
\(928\) 17.2268 + 5.59734i 0.565499 + 0.183742i
\(929\) −45.5222 −1.49353 −0.746767 0.665086i \(-0.768395\pi\)
−0.746767 + 0.665086i \(0.768395\pi\)
\(930\) 0 0
\(931\) 45.5457 1.49270
\(932\) −8.03088 2.60939i −0.263060 0.0854734i
\(933\) −1.80379 + 8.48617i −0.0590534 + 0.277825i
\(934\) −11.7694 8.55098i −0.385107 0.279797i
\(935\) 0 0
\(936\) −5.25986 + 9.11035i −0.171924 + 0.297781i
\(937\) 10.4196 + 23.4027i 0.340392 + 0.764534i 0.999917 + 0.0128513i \(0.00409081\pi\)
−0.659525 + 0.751683i \(0.729243\pi\)
\(938\) 20.4445 + 28.1394i 0.667536 + 0.918784i
\(939\) 21.5013 + 9.57299i 0.701668 + 0.312403i
\(940\) 0 0
\(941\) −1.26729 + 12.0574i −0.0413123 + 0.393061i 0.954254 + 0.298998i \(0.0966522\pi\)
−0.995566 + 0.0940632i \(0.970014\pi\)
\(942\) −30.2607 + 27.2469i −0.985947 + 0.887750i
\(943\) −0.227960 0.205256i −0.00742339 0.00668405i
\(944\) −2.28029 21.6955i −0.0742172 0.706130i
\(945\) 0 0
\(946\) −5.56284 17.1207i −0.180863 0.556640i
\(947\) −27.0521 + 2.84329i −0.879074 + 0.0923944i −0.533303 0.845925i \(-0.679049\pi\)
−0.345771 + 0.938319i \(0.612383\pi\)
\(948\) −7.23344 6.51302i −0.234931 0.211533i
\(949\) 9.50673 + 10.5583i 0.308602 + 0.342737i
\(950\) 0 0
\(951\) −52.5296 + 11.1655i −1.70339 + 0.362066i
\(952\) −17.8565 + 40.1064i −0.578733 + 1.29986i
\(953\) 14.6316 + 20.1386i 0.473962 + 0.652353i 0.977331 0.211719i \(-0.0679061\pi\)
−0.503368 + 0.864072i \(0.667906\pi\)
\(954\) 3.44482 1.53373i 0.111530 0.0496564i
\(955\) 0 0
\(956\) −6.72333 11.6452i −0.217448 0.376631i
\(957\) 31.2358 42.9924i 1.00971 1.38975i
\(958\) 4.04993 19.0534i 0.130847 0.615587i
\(959\) −11.6109 + 35.7346i −0.374935 + 1.15393i
\(960\) 0 0
\(961\) −0.764031 + 30.9906i −0.0246462 + 0.999696i
\(962\) 5.89000i 0.189901i
\(963\) −3.91961 1.27356i −0.126308 0.0410399i
\(964\) −10.7202 2.27865i −0.345275 0.0733905i
\(965\) 0 0
\(966\) 4.42421 + 7.66295i 0.142347 + 0.246551i
\(967\) −45.2064 26.0999i −1.45374 0.839316i −0.455048 0.890467i \(-0.650378\pi\)
−0.998691 + 0.0511507i \(0.983711\pi\)
\(968\) 3.91674 + 8.79714i 0.125889 + 0.282751i
\(969\) 38.6386 28.0726i 1.24125 0.901821i
\(970\) 0 0
\(971\) 19.5246 4.15009i 0.626576 0.133183i 0.116329 0.993211i \(-0.462887\pi\)
0.510247 + 0.860028i \(0.329554\pi\)
\(972\) −6.09286 0.640386i −0.195429 0.0205404i
\(973\) 43.8116 39.4482i 1.40454 1.26465i
\(974\) −10.5465 + 11.7131i −0.337932 + 0.375311i
\(975\) 0 0
\(976\) 2.36016 + 7.26382i 0.0755468 + 0.232509i
\(977\) 57.3017 18.6185i 1.83324 0.595657i 0.834224 0.551426i \(-0.185916\pi\)
0.999021 0.0442310i \(-0.0140838\pi\)
\(978\) 0.338628 0.0355912i 0.0108281 0.00113808i
\(979\) 12.8254 14.2440i 0.409901 0.455241i
\(980\) 0 0
\(981\) −0.949273 + 9.03173i −0.0303080 + 0.288361i
\(982\) 4.74661 + 22.3310i 0.151470 + 0.712612i
\(983\) −4.69322 + 10.5411i −0.149691 + 0.336210i −0.972791 0.231686i \(-0.925576\pi\)
0.823100 + 0.567896i \(0.192243\pi\)
\(984\) −1.73068 + 1.25741i −0.0551720 + 0.0400848i
\(985\) 0 0
\(986\) 15.8321 27.4221i 0.504198 0.873297i
\(987\) 8.12816 4.69279i 0.258722 0.149373i
\(988\) −4.55033 + 6.26299i −0.144765 + 0.199252i
\(989\) 3.45662 + 0.734727i 0.109914 + 0.0233630i
\(990\) 0 0
\(991\) 37.3423 1.18622 0.593109 0.805122i \(-0.297900\pi\)
0.593109 + 0.805122i \(0.297900\pi\)
\(992\) 10.6022 10.3440i 0.336620 0.328423i
\(993\) 1.58899i 0.0504251i
\(994\) −7.38383 + 22.7251i −0.234201 + 0.720796i
\(995\) 0 0
\(996\) −6.78925 4.93268i −0.215126 0.156298i
\(997\) 18.0154 10.4012i 0.570555 0.329410i −0.186816 0.982395i \(-0.559817\pi\)
0.757371 + 0.652985i \(0.226484\pi\)
\(998\) 43.6305 + 25.1901i 1.38110 + 0.797378i
\(999\) −5.82682 + 2.59427i −0.184353 + 0.0820790i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.a.474.3 32
5.2 odd 4 775.2.bl.a.226.1 16
5.3 odd 4 31.2.g.a.9.2 yes 16
5.4 even 2 inner 775.2.ck.a.474.2 32
15.8 even 4 279.2.y.c.226.1 16
20.3 even 4 496.2.bg.c.257.2 16
31.7 even 15 inner 775.2.ck.a.224.2 32
155.3 even 60 961.2.g.n.732.1 16
155.7 odd 60 775.2.bl.a.751.1 16
155.8 odd 20 961.2.g.t.235.1 16
155.13 even 60 961.2.d.q.374.2 16
155.18 odd 60 961.2.d.p.374.2 16
155.23 even 20 961.2.g.n.235.1 16
155.28 odd 60 961.2.g.t.732.1 16
155.33 odd 20 961.2.c.j.439.5 16
155.38 odd 60 31.2.g.a.7.2 16
155.43 even 60 961.2.c.i.521.5 16
155.48 even 60 961.2.g.m.338.1 16
155.53 even 60 961.2.d.q.388.2 16
155.58 even 20 961.2.g.j.547.2 16
155.68 even 12 961.2.g.j.448.2 16
155.69 even 30 inner 775.2.ck.a.224.3 32
155.73 even 60 961.2.d.n.531.3 16
155.78 odd 20 961.2.g.s.816.1 16
155.83 even 60 961.2.a.j.1.5 8
155.88 even 12 961.2.d.n.628.3 16
155.98 odd 12 961.2.d.o.628.3 16
155.103 odd 60 961.2.a.i.1.5 8
155.108 even 20 961.2.g.m.816.1 16
155.113 odd 60 961.2.d.o.531.3 16
155.118 odd 12 961.2.g.k.448.2 16
155.123 even 4 961.2.g.l.846.2 16
155.128 odd 20 961.2.g.k.547.2 16
155.133 odd 60 961.2.d.p.388.2 16
155.138 odd 60 961.2.g.s.338.1 16
155.143 odd 60 961.2.c.j.521.5 16
155.148 even 60 961.2.g.l.844.2 16
155.153 even 20 961.2.c.i.439.5 16
465.38 even 60 279.2.y.c.100.1 16
465.83 odd 60 8649.2.a.be.1.4 8
465.413 even 60 8649.2.a.bf.1.4 8
620.503 even 60 496.2.bg.c.193.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.2 16 155.38 odd 60
31.2.g.a.9.2 yes 16 5.3 odd 4
279.2.y.c.100.1 16 465.38 even 60
279.2.y.c.226.1 16 15.8 even 4
496.2.bg.c.193.2 16 620.503 even 60
496.2.bg.c.257.2 16 20.3 even 4
775.2.bl.a.226.1 16 5.2 odd 4
775.2.bl.a.751.1 16 155.7 odd 60
775.2.ck.a.224.2 32 31.7 even 15 inner
775.2.ck.a.224.3 32 155.69 even 30 inner
775.2.ck.a.474.2 32 5.4 even 2 inner
775.2.ck.a.474.3 32 1.1 even 1 trivial
961.2.a.i.1.5 8 155.103 odd 60
961.2.a.j.1.5 8 155.83 even 60
961.2.c.i.439.5 16 155.153 even 20
961.2.c.i.521.5 16 155.43 even 60
961.2.c.j.439.5 16 155.33 odd 20
961.2.c.j.521.5 16 155.143 odd 60
961.2.d.n.531.3 16 155.73 even 60
961.2.d.n.628.3 16 155.88 even 12
961.2.d.o.531.3 16 155.113 odd 60
961.2.d.o.628.3 16 155.98 odd 12
961.2.d.p.374.2 16 155.18 odd 60
961.2.d.p.388.2 16 155.133 odd 60
961.2.d.q.374.2 16 155.13 even 60
961.2.d.q.388.2 16 155.53 even 60
961.2.g.j.448.2 16 155.68 even 12
961.2.g.j.547.2 16 155.58 even 20
961.2.g.k.448.2 16 155.118 odd 12
961.2.g.k.547.2 16 155.128 odd 20
961.2.g.l.844.2 16 155.148 even 60
961.2.g.l.846.2 16 155.123 even 4
961.2.g.m.338.1 16 155.48 even 60
961.2.g.m.816.1 16 155.108 even 20
961.2.g.n.235.1 16 155.23 even 20
961.2.g.n.732.1 16 155.3 even 60
961.2.g.s.338.1 16 155.138 odd 60
961.2.g.s.816.1 16 155.78 odd 20
961.2.g.t.235.1 16 155.8 odd 20
961.2.g.t.732.1 16 155.28 odd 60
8649.2.a.be.1.4 8 465.83 odd 60
8649.2.a.bf.1.4 8 465.413 even 60