Properties

Label 775.2.bl.a.51.1
Level $775$
Weight $2$
Character 775.51
Analytic conductor $6.188$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(51,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.bl (of order \(15\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,6,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 51.1
Root \(0.333129i\) of defining polynomial
Character \(\chi\) \(=\) 775.51
Dual form 775.2.bl.a.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.640321 - 1.97070i) q^{2} +(1.43153 + 1.58988i) q^{3} +(-1.85563 + 1.34820i) q^{4} +(2.21654 - 3.83916i) q^{6} +(-0.384094 - 3.65441i) q^{7} +(0.492333 + 0.357701i) q^{8} +(-0.164841 + 1.56836i) q^{9} +(-3.91056 - 1.74109i) q^{11} +(-4.79986 - 1.02024i) q^{12} +(-2.04159 + 0.433953i) q^{13} +(-6.95582 + 3.09693i) q^{14} +(-1.02791 + 3.16357i) q^{16} +(-1.94411 + 0.865573i) q^{17} +(3.19632 - 0.679399i) q^{18} +(0.606466 + 0.128908i) q^{19} +(5.26022 - 5.84207i) q^{21} +(-0.927168 + 8.82142i) q^{22} +(-2.71334 - 1.97136i) q^{23} +(0.136090 + 1.29481i) q^{24} +(2.16247 + 3.74550i) q^{26} +(2.46294 - 1.78943i) q^{27} +(5.63960 + 6.26341i) q^{28} +(-0.425645 - 1.31000i) q^{29} +(-1.44334 - 5.37743i) q^{31} +8.10976 q^{32} +(-2.82997 - 8.70975i) q^{33} +(2.95064 + 3.27702i) q^{34} +(-1.80857 - 3.13253i) q^{36} +(0.137239 - 0.237704i) q^{37} +(-0.134293 - 1.27771i) q^{38} +(-3.61253 - 2.62466i) q^{39} +(-2.86248 + 3.17911i) q^{41} +(-14.8812 - 6.62555i) q^{42} +(0.263799 + 0.0560722i) q^{43} +(9.60390 - 2.04137i) q^{44} +(-2.14756 + 6.60950i) q^{46} +(-1.66225 + 5.11589i) q^{47} +(-6.50117 + 2.89451i) q^{48} +(-6.36016 + 1.35189i) q^{49} +(-4.15921 - 1.85180i) q^{51} +(3.20338 - 3.55772i) q^{52} +(0.993928 - 9.45659i) q^{53} +(-5.10351 - 3.70792i) q^{54} +(1.11808 - 1.93658i) q^{56} +(0.663228 + 1.14874i) q^{57} +(-2.30908 + 1.67764i) q^{58} +(-3.89932 - 4.33063i) q^{59} +2.22719 q^{61} +(-9.67313 + 6.28768i) q^{62} +5.79474 q^{63} +(-3.13704 - 9.65481i) q^{64} +(-15.3522 + 11.1541i) q^{66} +(-6.80719 - 11.7904i) q^{67} +(2.44059 - 4.22722i) q^{68} +(-0.750018 - 7.13595i) q^{69} +(0.139642 - 1.32861i) q^{71} +(-0.642159 + 0.713189i) q^{72} +(12.9413 + 5.76184i) q^{73} +(-0.556321 - 0.118250i) q^{74} +(-1.29917 + 0.578429i) q^{76} +(-4.86065 + 14.9595i) q^{77} +(-2.85925 + 8.79986i) q^{78} +(7.92648 - 3.52910i) q^{79} +(10.9984 + 2.33777i) q^{81} +(8.09799 + 3.60546i) q^{82} +(3.46976 - 3.85356i) q^{83} +(-1.88479 + 17.9325i) q^{84} +(-0.0584142 - 0.555774i) q^{86} +(1.47342 - 2.55203i) q^{87} +(-1.30251 - 2.25601i) q^{88} +(-4.05526 + 2.94632i) q^{89} +(2.37001 + 7.29413i) q^{91} +7.69274 q^{92} +(6.48327 - 9.99270i) q^{93} +11.1463 q^{94} +(11.6094 + 12.8935i) q^{96} +(5.43173 - 3.94638i) q^{97} +(6.73673 + 11.6684i) q^{98} +(3.37528 - 5.84615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{2} + 12 q^{3} - 14 q^{4} + 11 q^{6} - 2 q^{7} - 17 q^{8} - 10 q^{9} - 7 q^{11} - 5 q^{12} + 7 q^{13} - 6 q^{14} - 2 q^{16} + 6 q^{17} + 3 q^{18} + 16 q^{19} + 9 q^{21} - 9 q^{22} - q^{23} - 20 q^{24}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.640321 1.97070i −0.452775 1.39350i −0.873727 0.486416i \(-0.838304\pi\)
0.420952 0.907083i \(-0.361696\pi\)
\(3\) 1.43153 + 1.58988i 0.826496 + 0.917916i 0.997732 0.0673137i \(-0.0214428\pi\)
−0.171236 + 0.985230i \(0.554776\pi\)
\(4\) −1.85563 + 1.34820i −0.927816 + 0.674098i
\(5\) 0 0
\(6\) 2.21654 3.83916i 0.904898 1.56733i
\(7\) −0.384094 3.65441i −0.145174 1.38124i −0.788212 0.615404i \(-0.788993\pi\)
0.643038 0.765834i \(-0.277674\pi\)
\(8\) 0.492333 + 0.357701i 0.174066 + 0.126466i
\(9\) −0.164841 + 1.56836i −0.0549470 + 0.522786i
\(10\) 0 0
\(11\) −3.91056 1.74109i −1.17908 0.524960i −0.278832 0.960340i \(-0.589947\pi\)
−0.900247 + 0.435380i \(0.856614\pi\)
\(12\) −4.79986 1.02024i −1.38560 0.294519i
\(13\) −2.04159 + 0.433953i −0.566235 + 0.120357i −0.482130 0.876100i \(-0.660137\pi\)
−0.0841053 + 0.996457i \(0.526803\pi\)
\(14\) −6.95582 + 3.09693i −1.85902 + 0.827690i
\(15\) 0 0
\(16\) −1.02791 + 3.16357i −0.256976 + 0.790892i
\(17\) −1.94411 + 0.865573i −0.471516 + 0.209932i −0.628717 0.777634i \(-0.716420\pi\)
0.157201 + 0.987567i \(0.449753\pi\)
\(18\) 3.19632 0.679399i 0.753380 0.160136i
\(19\) 0.606466 + 0.128908i 0.139133 + 0.0295736i 0.276952 0.960884i \(-0.410676\pi\)
−0.137819 + 0.990457i \(0.544009\pi\)
\(20\) 0 0
\(21\) 5.26022 5.84207i 1.14788 1.27484i
\(22\) −0.927168 + 8.82142i −0.197673 + 1.88073i
\(23\) −2.71334 1.97136i −0.565771 0.411057i 0.267796 0.963476i \(-0.413705\pi\)
−0.833567 + 0.552419i \(0.813705\pi\)
\(24\) 0.136090 + 1.29481i 0.0277792 + 0.264302i
\(25\) 0 0
\(26\) 2.16247 + 3.74550i 0.424094 + 0.734553i
\(27\) 2.46294 1.78943i 0.473993 0.344376i
\(28\) 5.63960 + 6.26341i 1.06578 + 1.18367i
\(29\) −0.425645 1.31000i −0.0790403 0.243261i 0.903727 0.428110i \(-0.140820\pi\)
−0.982767 + 0.184849i \(0.940820\pi\)
\(30\) 0 0
\(31\) −1.44334 5.37743i −0.259231 0.965815i
\(32\) 8.10976 1.43362
\(33\) −2.82997 8.70975i −0.492634 1.51617i
\(34\) 2.95064 + 3.27702i 0.506031 + 0.562004i
\(35\) 0 0
\(36\) −1.80857 3.13253i −0.301428 0.522089i
\(37\) 0.137239 0.237704i 0.0225619 0.0390783i −0.854524 0.519412i \(-0.826151\pi\)
0.877086 + 0.480334i \(0.159484\pi\)
\(38\) −0.134293 1.27771i −0.0217851 0.207272i
\(39\) −3.61253 2.62466i −0.578468 0.420282i
\(40\) 0 0
\(41\) −2.86248 + 3.17911i −0.447045 + 0.496494i −0.923978 0.382446i \(-0.875082\pi\)
0.476933 + 0.878940i \(0.341748\pi\)
\(42\) −14.8812 6.62555i −2.29622 1.02234i
\(43\) 0.263799 + 0.0560722i 0.0402290 + 0.00855093i 0.227982 0.973665i \(-0.426787\pi\)
−0.187753 + 0.982216i \(0.560121\pi\)
\(44\) 9.60390 2.04137i 1.44784 0.307748i
\(45\) 0 0
\(46\) −2.14756 + 6.60950i −0.316640 + 0.974517i
\(47\) −1.66225 + 5.11589i −0.242464 + 0.746229i 0.753579 + 0.657358i \(0.228326\pi\)
−0.996043 + 0.0888711i \(0.971674\pi\)
\(48\) −6.50117 + 2.89451i −0.938363 + 0.417786i
\(49\) −6.36016 + 1.35189i −0.908595 + 0.193128i
\(50\) 0 0
\(51\) −4.15921 1.85180i −0.582406 0.259304i
\(52\) 3.20338 3.55772i 0.444229 0.493367i
\(53\) 0.993928 9.45659i 0.136527 1.29896i −0.684895 0.728642i \(-0.740152\pi\)
0.821422 0.570321i \(-0.193181\pi\)
\(54\) −5.10351 3.70792i −0.694500 0.504584i
\(55\) 0 0
\(56\) 1.11808 1.93658i 0.149410 0.258786i
\(57\) 0.663228 + 1.14874i 0.0878467 + 0.152155i
\(58\) −2.30908 + 1.67764i −0.303196 + 0.220285i
\(59\) −3.89932 4.33063i −0.507648 0.563800i 0.433778 0.901020i \(-0.357180\pi\)
−0.941426 + 0.337220i \(0.890513\pi\)
\(60\) 0 0
\(61\) 2.22719 0.285162 0.142581 0.989783i \(-0.454460\pi\)
0.142581 + 0.989783i \(0.454460\pi\)
\(62\) −9.67313 + 6.28768i −1.22849 + 0.798536i
\(63\) 5.79474 0.730068
\(64\) −3.13704 9.65481i −0.392130 1.20685i
\(65\) 0 0
\(66\) −15.3522 + 11.1541i −1.88973 + 1.37297i
\(67\) −6.80719 11.7904i −0.831631 1.44043i −0.896744 0.442550i \(-0.854074\pi\)
0.0651129 0.997878i \(-0.479259\pi\)
\(68\) 2.44059 4.22722i 0.295965 0.512626i
\(69\) −0.750018 7.13595i −0.0902916 0.859067i
\(70\) 0 0
\(71\) 0.139642 1.32861i 0.0165725 0.157676i −0.983106 0.183038i \(-0.941407\pi\)
0.999678 + 0.0253613i \(0.00807361\pi\)
\(72\) −0.642159 + 0.713189i −0.0756791 + 0.0840502i
\(73\) 12.9413 + 5.76184i 1.51466 + 0.674372i 0.984797 0.173708i \(-0.0555749\pi\)
0.529868 + 0.848080i \(0.322242\pi\)
\(74\) −0.556321 0.118250i −0.0646710 0.0137463i
\(75\) 0 0
\(76\) −1.29917 + 0.578429i −0.149025 + 0.0663503i
\(77\) −4.86065 + 14.9595i −0.553922 + 1.70480i
\(78\) −2.85925 + 8.79986i −0.323746 + 0.996388i
\(79\) 7.92648 3.52910i 0.891799 0.397054i 0.0909042 0.995860i \(-0.471024\pi\)
0.800895 + 0.598805i \(0.204358\pi\)
\(80\) 0 0
\(81\) 10.9984 + 2.33777i 1.22204 + 0.259753i
\(82\) 8.09799 + 3.60546i 0.894274 + 0.398156i
\(83\) 3.46976 3.85356i 0.380856 0.422983i −0.521987 0.852953i \(-0.674809\pi\)
0.902843 + 0.429970i \(0.141476\pi\)
\(84\) −1.88479 + 17.9325i −0.205647 + 1.95660i
\(85\) 0 0
\(86\) −0.0584142 0.555774i −0.00629897 0.0599307i
\(87\) 1.47342 2.55203i 0.157967 0.273607i
\(88\) −1.30251 2.25601i −0.138848 0.240491i
\(89\) −4.05526 + 2.94632i −0.429857 + 0.312309i −0.781592 0.623790i \(-0.785592\pi\)
0.351735 + 0.936100i \(0.385592\pi\)
\(90\) 0 0
\(91\) 2.37001 + 7.29413i 0.248444 + 0.764632i
\(92\) 7.69274 0.802024
\(93\) 6.48327 9.99270i 0.672284 1.03619i
\(94\) 11.1463 1.14965
\(95\) 0 0
\(96\) 11.6094 + 12.8935i 1.18488 + 1.31594i
\(97\) 5.43173 3.94638i 0.551508 0.400694i −0.276833 0.960918i \(-0.589285\pi\)
0.828341 + 0.560224i \(0.189285\pi\)
\(98\) 6.73673 + 11.6684i 0.680512 + 1.17868i
\(99\) 3.37528 5.84615i 0.339228 0.587560i
\(100\) 0 0
\(101\) 14.6130 + 10.6169i 1.45404 + 1.05642i 0.984866 + 0.173320i \(0.0554495\pi\)
0.469177 + 0.883104i \(0.344550\pi\)
\(102\) −0.986121 + 9.38232i −0.0976406 + 0.928988i
\(103\) −2.61986 + 2.90965i −0.258142 + 0.286696i −0.858260 0.513216i \(-0.828454\pi\)
0.600117 + 0.799912i \(0.295121\pi\)
\(104\) −1.16037 0.516628i −0.113783 0.0506596i
\(105\) 0 0
\(106\) −19.2726 + 4.09652i −1.87192 + 0.397889i
\(107\) −10.1546 + 4.52113i −0.981685 + 0.437074i −0.833882 0.551943i \(-0.813887\pi\)
−0.147803 + 0.989017i \(0.547220\pi\)
\(108\) −2.15781 + 6.64105i −0.207635 + 0.639036i
\(109\) 5.59116 17.2078i 0.535536 1.64821i −0.206951 0.978351i \(-0.566354\pi\)
0.742488 0.669860i \(-0.233646\pi\)
\(110\) 0 0
\(111\) 0.574382 0.122089i 0.0545179 0.0115881i
\(112\) 11.9558 + 2.54128i 1.12972 + 0.240129i
\(113\) −16.0224 7.13365i −1.50727 0.671078i −0.523745 0.851875i \(-0.675465\pi\)
−0.983520 + 0.180798i \(0.942132\pi\)
\(114\) 1.83916 2.04259i 0.172253 0.191306i
\(115\) 0 0
\(116\) 2.55598 + 1.85703i 0.237317 + 0.172421i
\(117\) −0.344056 3.27347i −0.0318080 0.302633i
\(118\) −6.03758 + 10.4574i −0.555804 + 0.962681i
\(119\) 3.90988 + 6.77211i 0.358418 + 0.620798i
\(120\) 0 0
\(121\) 4.90064 + 5.44271i 0.445513 + 0.494792i
\(122\) −1.42611 4.38913i −0.129114 0.397373i
\(123\) −9.15213 −0.825220
\(124\) 9.92814 + 8.03263i 0.891573 + 0.721352i
\(125\) 0 0
\(126\) −3.71049 11.4197i −0.330557 1.01735i
\(127\) 9.50050 + 10.5514i 0.843033 + 0.936283i 0.998671 0.0515308i \(-0.0164100\pi\)
−0.155638 + 0.987814i \(0.549743\pi\)
\(128\) −3.89620 + 2.83075i −0.344378 + 0.250205i
\(129\) 0.288489 + 0.499677i 0.0254000 + 0.0439941i
\(130\) 0 0
\(131\) −0.751404 7.14913i −0.0656505 0.624623i −0.977037 0.213071i \(-0.931654\pi\)
0.911386 0.411552i \(-0.135013\pi\)
\(132\) 16.9938 + 12.3467i 1.47912 + 1.07465i
\(133\) 0.238144 2.26579i 0.0206497 0.196469i
\(134\) −18.8766 + 20.9646i −1.63069 + 1.81107i
\(135\) 0 0
\(136\) −1.26676 0.269259i −0.108624 0.0230888i
\(137\) 7.41206 1.57548i 0.633255 0.134603i 0.119910 0.992785i \(-0.461739\pi\)
0.513345 + 0.858182i \(0.328406\pi\)
\(138\) −13.5826 + 6.04736i −1.15623 + 0.514785i
\(139\) −6.21069 + 19.1145i −0.526784 + 1.62127i 0.233977 + 0.972242i \(0.424826\pi\)
−0.760761 + 0.649032i \(0.775174\pi\)
\(140\) 0 0
\(141\) −10.5132 + 4.68078i −0.885371 + 0.394193i
\(142\) −2.70771 + 0.575541i −0.227226 + 0.0482983i
\(143\) 8.73931 + 1.85760i 0.730818 + 0.155340i
\(144\) −4.79216 2.13361i −0.399347 0.177801i
\(145\) 0 0
\(146\) 3.06830 29.1929i 0.253934 2.41602i
\(147\) −11.2541 8.17660i −0.928225 0.674395i
\(148\) 0.0658074 + 0.626116i 0.00540934 + 0.0514664i
\(149\) −6.15749 + 10.6651i −0.504441 + 0.873717i 0.495546 + 0.868582i \(0.334968\pi\)
−0.999987 + 0.00513554i \(0.998365\pi\)
\(150\) 0 0
\(151\) 16.0808 11.6834i 1.30864 0.950781i 0.308637 0.951180i \(-0.400127\pi\)
1.00000 0.000399262i \(0.000127089\pi\)
\(152\) 0.252473 + 0.280399i 0.0204782 + 0.0227434i
\(153\) −1.03706 3.19174i −0.0838412 0.258037i
\(154\) 32.5932 2.62644
\(155\) 0 0
\(156\) 10.2421 0.820023
\(157\) 1.79373 + 5.52052i 0.143155 + 0.440585i 0.996769 0.0803203i \(-0.0255943\pi\)
−0.853614 + 0.520906i \(0.825594\pi\)
\(158\) −12.0303 13.3610i −0.957079 1.06294i
\(159\) 16.4577 11.9572i 1.30518 0.948267i
\(160\) 0 0
\(161\) −6.16198 + 10.6729i −0.485632 + 0.841139i
\(162\) −2.43542 23.1714i −0.191344 1.82052i
\(163\) 14.3870 + 10.4528i 1.12688 + 0.818725i 0.985237 0.171194i \(-0.0547624\pi\)
0.141640 + 0.989918i \(0.454762\pi\)
\(164\) 1.02565 9.75845i 0.0800901 0.762007i
\(165\) 0 0
\(166\) −9.81599 4.37036i −0.761869 0.339206i
\(167\) 2.13435 + 0.453670i 0.165161 + 0.0351060i 0.289750 0.957102i \(-0.406428\pi\)
−0.124589 + 0.992208i \(0.539761\pi\)
\(168\) 4.67949 0.994657i 0.361031 0.0767394i
\(169\) −7.89632 + 3.51567i −0.607409 + 0.270436i
\(170\) 0 0
\(171\) −0.302145 + 0.929907i −0.0231056 + 0.0711117i
\(172\) −0.565110 + 0.251603i −0.0430892 + 0.0191846i
\(173\) −5.38757 + 1.14516i −0.409609 + 0.0870651i −0.408108 0.912934i \(-0.633811\pi\)
−0.00150131 + 0.999999i \(0.500478\pi\)
\(174\) −5.97276 1.26955i −0.452794 0.0962443i
\(175\) 0 0
\(176\) 9.52776 10.5816i 0.718182 0.797621i
\(177\) 1.30317 12.3989i 0.0979526 0.931956i
\(178\) 8.40300 + 6.10514i 0.629831 + 0.457599i
\(179\) −1.26834 12.0674i −0.0947999 0.901961i −0.933792 0.357817i \(-0.883521\pi\)
0.838992 0.544144i \(-0.183146\pi\)
\(180\) 0 0
\(181\) −4.82344 8.35444i −0.358523 0.620980i 0.629191 0.777251i \(-0.283386\pi\)
−0.987714 + 0.156270i \(0.950053\pi\)
\(182\) 12.8570 9.34116i 0.953025 0.692413i
\(183\) 3.18829 + 3.54096i 0.235685 + 0.261755i
\(184\) −0.630711 1.94113i −0.0464966 0.143102i
\(185\) 0 0
\(186\) −23.8440 6.37808i −1.74833 0.467663i
\(187\) 9.10960 0.666160
\(188\) −3.81269 11.7342i −0.278069 0.855808i
\(189\) −7.48532 8.31329i −0.544477 0.604703i
\(190\) 0 0
\(191\) −5.23270 9.06331i −0.378625 0.655798i 0.612237 0.790674i \(-0.290270\pi\)
−0.990862 + 0.134876i \(0.956936\pi\)
\(192\) 10.8592 18.8087i 0.783695 1.35740i
\(193\) −0.187174 1.78084i −0.0134731 0.128188i 0.985718 0.168405i \(-0.0538616\pi\)
−0.999191 + 0.0402173i \(0.987195\pi\)
\(194\) −11.2552 8.17738i −0.808076 0.587102i
\(195\) 0 0
\(196\) 9.97950 11.0834i 0.712822 0.791669i
\(197\) −5.84391 2.60188i −0.416361 0.185376i 0.187854 0.982197i \(-0.439847\pi\)
−0.604216 + 0.796821i \(0.706513\pi\)
\(198\) −13.6823 2.90826i −0.972359 0.206681i
\(199\) −0.906896 + 0.192767i −0.0642881 + 0.0136649i −0.239943 0.970787i \(-0.577129\pi\)
0.175655 + 0.984452i \(0.443796\pi\)
\(200\) 0 0
\(201\) 9.00059 27.7010i 0.634852 1.95387i
\(202\) 11.5659 35.5961i 0.813771 2.50453i
\(203\) −4.62379 + 2.05865i −0.324527 + 0.144489i
\(204\) 10.2146 2.17117i 0.715162 0.152012i
\(205\) 0 0
\(206\) 7.41161 + 3.29986i 0.516391 + 0.229912i
\(207\) 3.53906 3.93053i 0.245982 0.273191i
\(208\) 0.725720 6.90477i 0.0503197 0.478759i
\(209\) −2.14718 1.56002i −0.148524 0.107909i
\(210\) 0 0
\(211\) 3.09072 5.35328i 0.212774 0.368535i −0.739808 0.672818i \(-0.765084\pi\)
0.952582 + 0.304283i \(0.0984169\pi\)
\(212\) 10.9050 + 18.8880i 0.748957 + 1.29723i
\(213\) 2.31222 1.67993i 0.158431 0.115107i
\(214\) 15.4120 + 17.1168i 1.05354 + 1.17008i
\(215\) 0 0
\(216\) 1.85267 0.126058
\(217\) −19.0970 + 7.34000i −1.29639 + 0.498272i
\(218\) −37.4917 −2.53926
\(219\) 9.36527 + 28.8233i 0.632846 + 1.94770i
\(220\) 0 0
\(221\) 3.59345 2.61080i 0.241722 0.175621i
\(222\) −0.608389 1.05376i −0.0408324 0.0707238i
\(223\) 7.94891 13.7679i 0.532298 0.921968i −0.466991 0.884262i \(-0.654662\pi\)
0.999289 0.0377054i \(-0.0120048\pi\)
\(224\) −3.11491 29.6364i −0.208124 1.98017i
\(225\) 0 0
\(226\) −3.79882 + 36.1433i −0.252694 + 2.40422i
\(227\) 3.10808 3.45188i 0.206291 0.229109i −0.631117 0.775688i \(-0.717403\pi\)
0.837408 + 0.546578i \(0.184070\pi\)
\(228\) −2.77944 1.23749i −0.184073 0.0819545i
\(229\) 18.9940 + 4.03731i 1.25516 + 0.266793i 0.787057 0.616881i \(-0.211604\pi\)
0.468104 + 0.883673i \(0.344937\pi\)
\(230\) 0 0
\(231\) −30.7420 + 13.6872i −2.02268 + 0.900554i
\(232\) 0.259029 0.797210i 0.0170061 0.0523394i
\(233\) 4.40302 13.5511i 0.288452 0.887763i −0.696891 0.717177i \(-0.745434\pi\)
0.985343 0.170586i \(-0.0545660\pi\)
\(234\) −6.23074 + 2.77411i −0.407316 + 0.181349i
\(235\) 0 0
\(236\) 13.0742 + 2.77901i 0.851060 + 0.180898i
\(237\) 16.9578 + 7.55012i 1.10153 + 0.490433i
\(238\) 10.8423 12.0415i 0.702799 0.780537i
\(239\) 0.710952 6.76426i 0.0459877 0.437544i −0.947167 0.320740i \(-0.896068\pi\)
0.993155 0.116804i \(-0.0372648\pi\)
\(240\) 0 0
\(241\) 1.20261 + 11.4421i 0.0774671 + 0.737050i 0.962456 + 0.271438i \(0.0874992\pi\)
−0.884989 + 0.465612i \(0.845834\pi\)
\(242\) 7.58800 13.1428i 0.487775 0.844851i
\(243\) 7.46119 + 12.9232i 0.478636 + 0.829021i
\(244\) −4.13284 + 3.00269i −0.264578 + 0.192227i
\(245\) 0 0
\(246\) 5.86030 + 18.0362i 0.373639 + 1.14994i
\(247\) −1.29410 −0.0823413
\(248\) 1.21291 3.16377i 0.0770197 0.200899i
\(249\) 11.0938 0.703039
\(250\) 0 0
\(251\) −4.88091 5.42080i −0.308080 0.342158i 0.569145 0.822237i \(-0.307274\pi\)
−0.877225 + 0.480080i \(0.840608\pi\)
\(252\) −10.7529 + 7.81244i −0.677369 + 0.492137i
\(253\) 7.17837 + 12.4333i 0.451300 + 0.781675i
\(254\) 14.7103 25.4790i 0.923005 1.59869i
\(255\) 0 0
\(256\) −8.35235 6.06834i −0.522022 0.379271i
\(257\) −2.57722 + 24.5206i −0.160763 + 1.52955i 0.555378 + 0.831598i \(0.312574\pi\)
−0.716140 + 0.697956i \(0.754093\pi\)
\(258\) 0.799991 0.888480i 0.0498053 0.0553143i
\(259\) −0.921381 0.410225i −0.0572518 0.0254902i
\(260\) 0 0
\(261\) 2.12471 0.451622i 0.131516 0.0279547i
\(262\) −13.6077 + 6.05853i −0.840686 + 0.374297i
\(263\) 8.12313 25.0004i 0.500894 1.54159i −0.306672 0.951815i \(-0.599215\pi\)
0.807566 0.589777i \(-0.200785\pi\)
\(264\) 1.72220 5.30037i 0.105994 0.326215i
\(265\) 0 0
\(266\) −4.61769 + 0.981521i −0.283129 + 0.0601809i
\(267\) −10.4895 2.22962i −0.641949 0.136450i
\(268\) 28.5274 + 12.7012i 1.74259 + 0.775851i
\(269\) −13.9713 + 15.5167i −0.851846 + 0.946071i −0.999074 0.0430321i \(-0.986298\pi\)
0.147228 + 0.989103i \(0.452965\pi\)
\(270\) 0 0
\(271\) 16.9981 + 12.3499i 1.03256 + 0.750201i 0.968820 0.247765i \(-0.0796962\pi\)
0.0637431 + 0.997966i \(0.479696\pi\)
\(272\) −0.739939 7.04005i −0.0448654 0.426866i
\(273\) −8.20403 + 14.2098i −0.496530 + 0.860016i
\(274\) −7.85091 13.5982i −0.474291 0.821496i
\(275\) 0 0
\(276\) 11.0124 + 12.2305i 0.662869 + 0.736191i
\(277\) 1.47070 + 4.52635i 0.0883657 + 0.271962i 0.985468 0.169861i \(-0.0543319\pi\)
−0.897102 + 0.441823i \(0.854332\pi\)
\(278\) 41.6459 2.49776
\(279\) 8.67165 1.37725i 0.519158 0.0824539i
\(280\) 0 0
\(281\) −2.05645 6.32910i −0.122678 0.377563i 0.870793 0.491649i \(-0.163606\pi\)
−0.993471 + 0.114087i \(0.963606\pi\)
\(282\) 15.9563 + 17.7212i 0.950181 + 1.05528i
\(283\) −5.86234 + 4.25924i −0.348480 + 0.253185i −0.748231 0.663438i \(-0.769096\pi\)
0.399751 + 0.916624i \(0.369096\pi\)
\(284\) 1.53210 + 2.65367i 0.0909132 + 0.157466i
\(285\) 0 0
\(286\) −1.93519 18.4121i −0.114430 1.08873i
\(287\) 12.7172 + 9.23961i 0.750675 + 0.545397i
\(288\) −1.33682 + 12.7190i −0.0787729 + 0.749474i
\(289\) −8.34488 + 9.26793i −0.490875 + 0.545172i
\(290\) 0 0
\(291\) 14.0500 + 2.98641i 0.823623 + 0.175066i
\(292\) −31.7824 + 6.75555i −1.85992 + 0.395339i
\(293\) −12.3434 + 5.49563i −0.721108 + 0.321058i −0.734272 0.678855i \(-0.762476\pi\)
0.0131637 + 0.999913i \(0.495810\pi\)
\(294\) −8.90741 + 27.4142i −0.519491 + 1.59883i
\(295\) 0 0
\(296\) 0.152594 0.0679392i 0.00886934 0.00394888i
\(297\) −12.7471 + 2.70947i −0.739659 + 0.157219i
\(298\) 24.9605 + 5.30552i 1.44592 + 0.307340i
\(299\) 6.39501 + 2.84724i 0.369833 + 0.164660i
\(300\) 0 0
\(301\) 0.103587 0.985567i 0.00597067 0.0568071i
\(302\) −33.3214 24.2094i −1.91743 1.39309i
\(303\) 4.03929 + 38.4313i 0.232051 + 2.20782i
\(304\) −1.03120 + 1.78609i −0.0591434 + 0.102439i
\(305\) 0 0
\(306\) −5.62592 + 4.08747i −0.321613 + 0.233665i
\(307\) 15.2065 + 16.8886i 0.867883 + 0.963882i 0.999624 0.0274020i \(-0.00872341\pi\)
−0.131741 + 0.991284i \(0.542057\pi\)
\(308\) −11.1488 34.3125i −0.635263 1.95514i
\(309\) −8.37640 −0.476517
\(310\) 0 0
\(311\) 9.49330 0.538315 0.269158 0.963096i \(-0.413255\pi\)
0.269158 + 0.963096i \(0.413255\pi\)
\(312\) −0.839726 2.58441i −0.0475401 0.146313i
\(313\) −18.8006 20.8802i −1.06267 1.18022i −0.983040 0.183393i \(-0.941292\pi\)
−0.0796330 0.996824i \(-0.525375\pi\)
\(314\) 9.73075 7.06981i 0.549138 0.398972i
\(315\) 0 0
\(316\) −9.95072 + 17.2352i −0.559772 + 0.969553i
\(317\) −1.65331 15.7302i −0.0928591 0.883495i −0.937459 0.348096i \(-0.886828\pi\)
0.844600 0.535398i \(-0.179839\pi\)
\(318\) −34.1023 24.7768i −1.91236 1.38941i
\(319\) −0.616323 + 5.86393i −0.0345075 + 0.328317i
\(320\) 0 0
\(321\) −21.7247 9.67247i −1.21256 0.539865i
\(322\) 24.9787 + 5.30938i 1.39201 + 0.295880i
\(323\) −1.29062 + 0.274329i −0.0718118 + 0.0152641i
\(324\) −23.5607 + 10.4899i −1.30893 + 0.582772i
\(325\) 0 0
\(326\) 11.3870 35.0457i 0.630669 1.94100i
\(327\) 35.3623 15.7443i 1.95554 0.870662i
\(328\) −2.54646 + 0.541267i −0.140605 + 0.0298865i
\(329\) 19.3340 + 4.10957i 1.06592 + 0.226568i
\(330\) 0 0
\(331\) 8.66131 9.61936i 0.476069 0.528728i −0.456499 0.889724i \(-0.650897\pi\)
0.932567 + 0.360996i \(0.117563\pi\)
\(332\) −1.24325 + 11.8287i −0.0682321 + 0.649185i
\(333\) 0.350182 + 0.254422i 0.0191899 + 0.0139423i
\(334\) −0.472618 4.49666i −0.0258605 0.246046i
\(335\) 0 0
\(336\) 13.0748 + 22.6462i 0.713287 + 1.23545i
\(337\) −22.5443 + 16.3794i −1.22807 + 0.892243i −0.996744 0.0806338i \(-0.974306\pi\)
−0.231323 + 0.972877i \(0.574306\pi\)
\(338\) 11.9845 + 13.3102i 0.651872 + 0.723977i
\(339\) −11.5950 35.6858i −0.629755 1.93819i
\(340\) 0 0
\(341\) −3.71834 + 23.5418i −0.201360 + 1.27486i
\(342\) 2.02604 0.109556
\(343\) −0.565190 1.73948i −0.0305174 0.0939229i
\(344\) 0.109820 + 0.121967i 0.00592108 + 0.00657603i
\(345\) 0 0
\(346\) 5.70655 + 9.88403i 0.306786 + 0.531369i
\(347\) 2.66175 4.61029i 0.142890 0.247493i −0.785693 0.618616i \(-0.787694\pi\)
0.928584 + 0.371123i \(0.121027\pi\)
\(348\) 0.706520 + 6.72209i 0.0378734 + 0.360342i
\(349\) 3.31528 + 2.40869i 0.177463 + 0.128934i 0.672971 0.739669i \(-0.265018\pi\)
−0.495508 + 0.868603i \(0.665018\pi\)
\(350\) 0 0
\(351\) −4.25178 + 4.72208i −0.226943 + 0.252046i
\(352\) −31.7137 14.1199i −1.69035 0.752591i
\(353\) 21.3132 + 4.53026i 1.13439 + 0.241122i 0.736582 0.676348i \(-0.236438\pi\)
0.397806 + 0.917470i \(0.369772\pi\)
\(354\) −25.2690 + 5.37109i −1.34303 + 0.285470i
\(355\) 0 0
\(356\) 3.55286 10.9346i 0.188301 0.579531i
\(357\) −5.16971 + 15.9107i −0.273610 + 0.842085i
\(358\) −22.9692 + 10.2265i −1.21396 + 0.540489i
\(359\) 6.92668 1.47231i 0.365576 0.0777057i −0.0214610 0.999770i \(-0.506832\pi\)
0.387037 + 0.922064i \(0.373498\pi\)
\(360\) 0 0
\(361\) −17.0062 7.57164i −0.895062 0.398507i
\(362\) −13.3756 + 14.8551i −0.703005 + 0.780766i
\(363\) −1.63782 + 15.5828i −0.0859634 + 0.817887i
\(364\) −14.2318 10.3400i −0.745947 0.541963i
\(365\) 0 0
\(366\) 4.93665 8.55053i 0.258043 0.446943i
\(367\) −8.05884 13.9583i −0.420668 0.728619i 0.575337 0.817917i \(-0.304871\pi\)
−0.996005 + 0.0892980i \(0.971538\pi\)
\(368\) 9.02559 6.55747i 0.470491 0.341832i
\(369\) −4.51412 5.01344i −0.234996 0.260989i
\(370\) 0 0
\(371\) −34.9401 −1.81400
\(372\) 1.44155 + 27.2835i 0.0747409 + 1.41458i
\(373\) 9.81895 0.508406 0.254203 0.967151i \(-0.418187\pi\)
0.254203 + 0.967151i \(0.418187\pi\)
\(374\) −5.83306 17.9523i −0.301621 0.928293i
\(375\) 0 0
\(376\) −2.64834 + 1.92413i −0.136578 + 0.0992294i
\(377\) 1.43747 + 2.48977i 0.0740335 + 0.128230i
\(378\) −11.5900 + 20.0745i −0.596127 + 1.03252i
\(379\) 1.44413 + 13.7399i 0.0741798 + 0.705773i 0.966899 + 0.255160i \(0.0821281\pi\)
−0.892719 + 0.450614i \(0.851205\pi\)
\(380\) 0 0
\(381\) −3.17512 + 30.2093i −0.162666 + 1.54767i
\(382\) −14.5105 + 16.1155i −0.742421 + 0.824542i
\(383\) −9.41502 4.19184i −0.481085 0.214193i 0.151841 0.988405i \(-0.451480\pi\)
−0.632926 + 0.774212i \(0.718146\pi\)
\(384\) −10.0781 2.14216i −0.514295 0.109317i
\(385\) 0 0
\(386\) −3.38966 + 1.50917i −0.172529 + 0.0768149i
\(387\) −0.131426 + 0.404488i −0.00668076 + 0.0205613i
\(388\) −4.75879 + 14.6461i −0.241591 + 0.743541i
\(389\) −23.1725 + 10.3170i −1.17489 + 0.523095i −0.898938 0.438077i \(-0.855660\pi\)
−0.275952 + 0.961171i \(0.588993\pi\)
\(390\) 0 0
\(391\) 6.98139 + 1.48394i 0.353064 + 0.0750460i
\(392\) −3.61489 1.60945i −0.182579 0.0812896i
\(393\) 10.2906 11.4289i 0.519091 0.576509i
\(394\) −1.38555 + 13.1827i −0.0698032 + 0.664133i
\(395\) 0 0
\(396\) 1.61848 + 15.3988i 0.0813319 + 0.773821i
\(397\) 8.37941 14.5136i 0.420550 0.728415i −0.575443 0.817842i \(-0.695170\pi\)
0.995993 + 0.0894272i \(0.0285036\pi\)
\(398\) 0.960590 + 1.66379i 0.0481500 + 0.0833983i
\(399\) 3.94324 2.86493i 0.197409 0.143426i
\(400\) 0 0
\(401\) −8.53615 26.2716i −0.426275 1.31194i −0.901768 0.432220i \(-0.857730\pi\)
0.475493 0.879720i \(-0.342270\pi\)
\(402\) −60.3537 −3.01017
\(403\) 5.28026 + 10.3522i 0.263028 + 0.515678i
\(404\) −41.4300 −2.06122
\(405\) 0 0
\(406\) 7.01769 + 7.79394i 0.348282 + 0.386807i
\(407\) −0.950545 + 0.690611i −0.0471168 + 0.0342323i
\(408\) −1.38532 2.39945i −0.0685838 0.118791i
\(409\) 11.3053 19.5814i 0.559013 0.968239i −0.438566 0.898699i \(-0.644514\pi\)
0.997579 0.0695399i \(-0.0221531\pi\)
\(410\) 0 0
\(411\) 13.1154 + 9.52892i 0.646936 + 0.470027i
\(412\) 0.938720 8.93132i 0.0462474 0.440015i
\(413\) −14.3282 + 15.9131i −0.705045 + 0.783031i
\(414\) −10.0120 4.45765i −0.492065 0.219082i
\(415\) 0 0
\(416\) −16.5568 + 3.51926i −0.811764 + 0.172546i
\(417\) −39.2806 + 17.4888i −1.92358 + 0.856432i
\(418\) −1.69945 + 5.23038i −0.0831229 + 0.255826i
\(419\) −1.91312 + 5.88796i −0.0934618 + 0.287646i −0.986850 0.161640i \(-0.948322\pi\)
0.893388 + 0.449286i \(0.148322\pi\)
\(420\) 0 0
\(421\) −6.41600 + 1.36376i −0.312697 + 0.0664657i −0.361587 0.932338i \(-0.617765\pi\)
0.0488901 + 0.998804i \(0.484432\pi\)
\(422\) −12.5288 2.66308i −0.609892 0.129637i
\(423\) −7.74953 3.45031i −0.376795 0.167760i
\(424\) 3.87197 4.30026i 0.188040 0.208839i
\(425\) 0 0
\(426\) −4.79121 3.48102i −0.232135 0.168656i
\(427\) −0.855450 8.13906i −0.0413981 0.393877i
\(428\) 12.7479 22.0800i 0.616192 1.06728i
\(429\) 9.55725 + 16.5536i 0.461428 + 0.799217i
\(430\) 0 0
\(431\) 15.7030 + 17.4399i 0.756385 + 0.840051i 0.991253 0.131977i \(-0.0421324\pi\)
−0.234868 + 0.972027i \(0.575466\pi\)
\(432\) 3.12932 + 9.63105i 0.150559 + 0.463374i
\(433\) −24.3130 −1.16841 −0.584203 0.811607i \(-0.698593\pi\)
−0.584203 + 0.811607i \(0.698593\pi\)
\(434\) 26.6932 + 32.9345i 1.28131 + 1.58091i
\(435\) 0 0
\(436\) 12.8244 + 39.4694i 0.614176 + 1.89024i
\(437\) −1.39143 1.54534i −0.0665610 0.0739234i
\(438\) 50.8055 36.9124i 2.42758 1.76374i
\(439\) −7.25318 12.5629i −0.346175 0.599593i 0.639391 0.768881i \(-0.279186\pi\)
−0.985567 + 0.169288i \(0.945853\pi\)
\(440\) 0 0
\(441\) −1.07184 10.1979i −0.0510399 0.485612i
\(442\) −7.44607 5.40989i −0.354173 0.257322i
\(443\) −1.73162 + 16.4752i −0.0822716 + 0.782762i 0.873137 + 0.487475i \(0.162082\pi\)
−0.955409 + 0.295287i \(0.904585\pi\)
\(444\) −0.901242 + 1.00093i −0.0427711 + 0.0475021i
\(445\) 0 0
\(446\) −32.2223 6.84907i −1.52577 0.324313i
\(447\) −25.7708 + 5.47775i −1.21892 + 0.259089i
\(448\) −34.0777 + 15.1724i −1.61002 + 0.716828i
\(449\) 2.10667 6.48365i 0.0994197 0.305982i −0.888961 0.457984i \(-0.848572\pi\)
0.988380 + 0.152001i \(0.0485718\pi\)
\(450\) 0 0
\(451\) 16.7290 7.44825i 0.787740 0.350724i
\(452\) 39.3493 8.36396i 1.85084 0.393408i
\(453\) 41.5953 + 8.84136i 1.95432 + 0.415403i
\(454\) −8.79280 3.91481i −0.412667 0.183731i
\(455\) 0 0
\(456\) −0.0843778 + 0.802801i −0.00395135 + 0.0375946i
\(457\) 17.3354 + 12.5949i 0.810916 + 0.589165i 0.914096 0.405497i \(-0.132902\pi\)
−0.103180 + 0.994663i \(0.532902\pi\)
\(458\) −4.20594 40.0168i −0.196530 1.86986i
\(459\) −3.23934 + 5.61070i −0.151200 + 0.261885i
\(460\) 0 0
\(461\) 7.01782 5.09875i 0.326853 0.237472i −0.412241 0.911075i \(-0.635254\pi\)
0.739094 + 0.673602i \(0.235254\pi\)
\(462\) 46.6582 + 51.8192i 2.17074 + 2.41085i
\(463\) −1.12787 3.47124i −0.0524167 0.161322i 0.921421 0.388565i \(-0.127029\pi\)
−0.973838 + 0.227243i \(0.927029\pi\)
\(464\) 4.58180 0.212705
\(465\) 0 0
\(466\) −29.5246 −1.36770
\(467\) 0.952115 + 2.93031i 0.0440586 + 0.135599i 0.970666 0.240431i \(-0.0772889\pi\)
−0.926607 + 0.376030i \(0.877289\pi\)
\(468\) 5.05172 + 5.61051i 0.233516 + 0.259346i
\(469\) −40.4724 + 29.4049i −1.86884 + 1.35779i
\(470\) 0 0
\(471\) −6.20917 + 10.7546i −0.286104 + 0.495546i
\(472\) −0.370692 3.52690i −0.0170625 0.162339i
\(473\) −0.933975 0.678572i −0.0429442 0.0312008i
\(474\) 4.02060 38.2534i 0.184672 1.75704i
\(475\) 0 0
\(476\) −16.3854 7.29526i −0.751025 0.334378i
\(477\) 14.6675 + 3.11767i 0.671578 + 0.142748i
\(478\) −13.7856 + 2.93022i −0.630538 + 0.134025i
\(479\) −15.9050 + 7.08138i −0.726720 + 0.323556i −0.736539 0.676395i \(-0.763541\pi\)
0.00981912 + 0.999952i \(0.496874\pi\)
\(480\) 0 0
\(481\) −0.177032 + 0.544849i −0.00807197 + 0.0248430i
\(482\) 21.7789 9.69661i 0.992003 0.441668i
\(483\) −25.7896 + 5.48175i −1.17347 + 0.249428i
\(484\) −16.4316 3.49265i −0.746892 0.158757i
\(485\) 0 0
\(486\) 20.6902 22.9788i 0.938526 1.04234i
\(487\) 3.00766 28.6160i 0.136290 1.29671i −0.685981 0.727619i \(-0.740627\pi\)
0.822272 0.569095i \(-0.192706\pi\)
\(488\) 1.09652 + 0.796666i 0.0496370 + 0.0360634i
\(489\) 3.97684 + 37.8371i 0.179839 + 1.71105i
\(490\) 0 0
\(491\) 4.91284 + 8.50929i 0.221713 + 0.384019i 0.955328 0.295546i \(-0.0955017\pi\)
−0.733615 + 0.679565i \(0.762168\pi\)
\(492\) 16.9830 12.3389i 0.765652 0.556279i
\(493\) 1.96140 + 2.17836i 0.0883371 + 0.0981083i
\(494\) 0.828636 + 2.55028i 0.0372821 + 0.114743i
\(495\) 0 0
\(496\) 18.4955 + 0.961388i 0.830472 + 0.0431676i
\(497\) −4.90891 −0.220195
\(498\) −7.10357 21.8625i −0.318319 0.979684i
\(499\) −7.25874 8.06164i −0.324946 0.360889i 0.558432 0.829550i \(-0.311403\pi\)
−0.883378 + 0.468661i \(0.844736\pi\)
\(500\) 0 0
\(501\) 2.33411 + 4.04280i 0.104280 + 0.180619i
\(502\) −7.55745 + 13.0899i −0.337305 + 0.584230i
\(503\) 0.894863 + 8.51405i 0.0399000 + 0.379623i 0.996190 + 0.0872044i \(0.0277933\pi\)
−0.956290 + 0.292418i \(0.905540\pi\)
\(504\) 2.85294 + 2.07278i 0.127080 + 0.0923290i
\(505\) 0 0
\(506\) 19.9059 22.1077i 0.884925 0.982809i
\(507\) −16.8933 7.52139i −0.750259 0.334037i
\(508\) −31.8548 6.77094i −1.41333 0.300412i
\(509\) 38.7174 8.22963i 1.71612 0.364772i 0.758245 0.651969i \(-0.226057\pi\)
0.957871 + 0.287197i \(0.0927236\pi\)
\(510\) 0 0
\(511\) 16.0855 49.5059i 0.711579 2.19001i
\(512\) −9.58715 + 29.5062i −0.423696 + 1.30400i
\(513\) 1.72436 0.767736i 0.0761325 0.0338964i
\(514\) 49.9732 10.6221i 2.20422 0.468522i
\(515\) 0 0
\(516\) −1.20899 0.538278i −0.0532229 0.0236964i
\(517\) 15.4076 17.1119i 0.677625 0.752578i
\(518\) −0.218453 + 2.07845i −0.00959830 + 0.0913217i
\(519\) −9.53314 6.92623i −0.418458 0.304028i
\(520\) 0 0
\(521\) 0.674660 1.16855i 0.0295574 0.0511949i −0.850868 0.525379i \(-0.823924\pi\)
0.880426 + 0.474184i \(0.157257\pi\)
\(522\) −2.25051 3.89800i −0.0985022 0.170611i
\(523\) 23.0351 16.7360i 1.00725 0.731812i 0.0436219 0.999048i \(-0.486110\pi\)
0.963631 + 0.267236i \(0.0861103\pi\)
\(524\) 11.0328 + 12.2531i 0.481968 + 0.535280i
\(525\) 0 0
\(526\) −54.4699 −2.37500
\(527\) 7.46057 + 9.20499i 0.324987 + 0.400976i
\(528\) 30.4628 1.32572
\(529\) −3.63142 11.1764i −0.157888 0.485929i
\(530\) 0 0
\(531\) 7.43474 5.40166i 0.322640 0.234412i
\(532\) 2.61282 + 4.52554i 0.113280 + 0.196207i
\(533\) 4.46443 7.73262i 0.193376 0.334937i
\(534\) 2.32274 + 22.0994i 0.100515 + 0.956336i
\(535\) 0 0
\(536\) 0.866031 8.23974i 0.0374069 0.355902i
\(537\) 17.3701 19.2914i 0.749573 0.832485i
\(538\) 39.5250 + 17.5977i 1.70404 + 0.758689i
\(539\) 27.2256 + 5.78697i 1.17269 + 0.249263i
\(540\) 0 0
\(541\) −13.0725 + 5.82024i −0.562029 + 0.250232i −0.668030 0.744134i \(-0.732862\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(542\) 13.4537 41.4062i 0.577885 1.77855i
\(543\) 6.37763 19.6283i 0.273690 0.842332i
\(544\) −15.7663 + 7.01959i −0.675973 + 0.300962i
\(545\) 0 0
\(546\) 33.2565 + 7.06889i 1.42325 + 0.302521i
\(547\) −38.7041 17.2322i −1.65487 0.736795i −0.655044 0.755590i \(-0.727350\pi\)
−0.999823 + 0.0187957i \(0.994017\pi\)
\(548\) −11.6300 + 12.9164i −0.496809 + 0.551762i
\(549\) −0.367132 + 3.49303i −0.0156688 + 0.149079i
\(550\) 0 0
\(551\) −0.0892693 0.849341i −0.00380300 0.0361831i
\(552\) 2.18327 3.78154i 0.0929263 0.160953i
\(553\) −15.9413 27.6111i −0.677893 1.17414i
\(554\) 7.97837 5.79663i 0.338969 0.246275i
\(555\) 0 0
\(556\) −14.2454 43.8428i −0.604139 1.85935i
\(557\) −27.3019 −1.15682 −0.578409 0.815747i \(-0.696326\pi\)
−0.578409 + 0.815747i \(0.696326\pi\)
\(558\) −8.26679 16.2074i −0.349961 0.686113i
\(559\) −0.562902 −0.0238082
\(560\) 0 0
\(561\) 13.0407 + 14.4831i 0.550578 + 0.611479i
\(562\) −11.1560 + 8.10531i −0.470588 + 0.341902i
\(563\) 2.59399 + 4.49293i 0.109324 + 0.189354i 0.915497 0.402326i \(-0.131798\pi\)
−0.806173 + 0.591680i \(0.798465\pi\)
\(564\) 13.1980 22.8597i 0.555737 0.962565i
\(565\) 0 0
\(566\) 12.1475 + 8.82566i 0.510596 + 0.370970i
\(567\) 4.31878 41.0905i 0.181372 1.72564i
\(568\) 0.543993 0.604166i 0.0228255 0.0253502i
\(569\) 2.16312 + 0.963083i 0.0906827 + 0.0403746i 0.451577 0.892232i \(-0.350862\pi\)
−0.360894 + 0.932607i \(0.617528\pi\)
\(570\) 0 0
\(571\) −19.9170 + 4.23348i −0.833500 + 0.177166i −0.604846 0.796342i \(-0.706765\pi\)
−0.228653 + 0.973508i \(0.573432\pi\)
\(572\) −18.7214 + 8.33528i −0.782779 + 0.348516i
\(573\) 6.91877 21.2938i 0.289036 0.889560i
\(574\) 10.0654 30.9782i 0.420123 1.29301i
\(575\) 0 0
\(576\) 15.6593 3.32849i 0.652471 0.138687i
\(577\) 25.0227 + 5.31874i 1.04171 + 0.221422i 0.696839 0.717228i \(-0.254589\pi\)
0.344871 + 0.938650i \(0.387923\pi\)
\(578\) 23.6077 + 10.5108i 0.981953 + 0.437194i
\(579\) 2.56337 2.84691i 0.106530 0.118314i
\(580\) 0 0
\(581\) −15.4152 11.1998i −0.639531 0.464646i
\(582\) −3.11115 29.6006i −0.128961 1.22698i
\(583\) −20.3516 + 35.2501i −0.842879 + 1.45991i
\(584\) 4.31041 + 7.46585i 0.178366 + 0.308939i
\(585\) 0 0
\(586\) 18.7340 + 20.8062i 0.773894 + 0.859497i
\(587\) −12.3489 38.0060i −0.509694 1.56868i −0.792733 0.609568i \(-0.791343\pi\)
0.283040 0.959108i \(-0.408657\pi\)
\(588\) 31.9072 1.31583
\(589\) −0.182141 3.44729i −0.00750499 0.142043i
\(590\) 0 0
\(591\) −4.22908 13.0158i −0.173961 0.535397i
\(592\) 0.610925 + 0.678501i 0.0251089 + 0.0278862i
\(593\) −16.9709 + 12.3301i −0.696911 + 0.506335i −0.878925 0.476961i \(-0.841738\pi\)
0.182014 + 0.983296i \(0.441738\pi\)
\(594\) 13.5018 + 23.3857i 0.553984 + 0.959529i
\(595\) 0 0
\(596\) −2.95258 28.0920i −0.120943 1.15069i
\(597\) −1.60473 1.16590i −0.0656771 0.0477172i
\(598\) 1.51621 14.4258i 0.0620026 0.589915i
\(599\) 14.0125 15.5625i 0.572535 0.635865i −0.385434 0.922735i \(-0.625948\pi\)
0.957969 + 0.286870i \(0.0926149\pi\)
\(600\) 0 0
\(601\) 16.2555 + 3.45522i 0.663076 + 0.140941i 0.527143 0.849777i \(-0.323263\pi\)
0.135933 + 0.990718i \(0.456597\pi\)
\(602\) −2.00859 + 0.426939i −0.0818640 + 0.0174007i
\(603\) 19.6137 8.73257i 0.798730 0.355618i
\(604\) −14.0886 + 43.3601i −0.573256 + 1.76430i
\(605\) 0 0
\(606\) 73.1503 32.5686i 2.97153 1.32301i
\(607\) 28.9056 6.14407i 1.17324 0.249380i 0.420249 0.907409i \(-0.361943\pi\)
0.752993 + 0.658029i \(0.228610\pi\)
\(608\) 4.91830 + 1.04542i 0.199463 + 0.0423972i
\(609\) −9.89211 4.40425i −0.400848 0.178469i
\(610\) 0 0
\(611\) 1.17358 11.1659i 0.0474780 0.451723i
\(612\) 6.22749 + 4.52453i 0.251731 + 0.182893i
\(613\) 3.87799 + 36.8966i 0.156631 + 1.49024i 0.737003 + 0.675889i \(0.236240\pi\)
−0.580373 + 0.814351i \(0.697093\pi\)
\(614\) 23.5453 40.7817i 0.950212 1.64582i
\(615\) 0 0
\(616\) −7.74409 + 5.62641i −0.312018 + 0.226695i
\(617\) 17.6270 + 19.5768i 0.709636 + 0.788131i 0.984879 0.173244i \(-0.0554249\pi\)
−0.275243 + 0.961375i \(0.588758\pi\)
\(618\) 5.36358 + 16.5074i 0.215755 + 0.664026i
\(619\) −26.3796 −1.06029 −0.530144 0.847908i \(-0.677862\pi\)
−0.530144 + 0.847908i \(0.677862\pi\)
\(620\) 0 0
\(621\) −10.2104 −0.409730
\(622\) −6.07875 18.7085i −0.243736 0.750142i
\(623\) 12.3247 + 13.6879i 0.493778 + 0.548396i
\(624\) 12.0166 8.73059i 0.481050 0.349503i
\(625\) 0 0
\(626\) −29.1103 + 50.4204i −1.16348 + 2.01521i
\(627\) −0.593521 5.64698i −0.0237029 0.225518i
\(628\) −10.7712 7.82576i −0.429819 0.312282i
\(629\) −0.0610564 + 0.580913i −0.00243448 + 0.0231625i
\(630\) 0 0
\(631\) 18.2446 + 8.12304i 0.726308 + 0.323373i 0.736372 0.676576i \(-0.236537\pi\)
−0.0100649 + 0.999949i \(0.503204\pi\)
\(632\) 5.16483 + 1.09782i 0.205446 + 0.0436688i
\(633\) 12.9355 2.74953i 0.514141 0.109284i
\(634\) −29.9409 + 13.3305i −1.18910 + 0.529423i
\(635\) 0 0
\(636\) −14.4187 + 44.3763i −0.571740 + 1.75964i
\(637\) 12.3982 5.52002i 0.491234 0.218711i
\(638\) 11.9507 2.54020i 0.473133 0.100568i
\(639\) 2.06071 + 0.438017i 0.0815204 + 0.0173277i
\(640\) 0 0
\(641\) 15.5874 17.3115i 0.615664 0.683764i −0.352002 0.935999i \(-0.614499\pi\)
0.967666 + 0.252235i \(0.0811657\pi\)
\(642\) −5.15079 + 49.0065i −0.203285 + 1.93413i
\(643\) −31.4658 22.8612i −1.24089 0.901559i −0.243232 0.969968i \(-0.578208\pi\)
−0.997657 + 0.0684089i \(0.978208\pi\)
\(644\) −2.95474 28.1124i −0.116433 1.10779i
\(645\) 0 0
\(646\) 1.36703 + 2.36777i 0.0537851 + 0.0931585i
\(647\) −1.80444 + 1.31100i −0.0709399 + 0.0515408i −0.622690 0.782469i \(-0.713960\pi\)
0.551750 + 0.834009i \(0.313960\pi\)
\(648\) 4.57863 + 5.08508i 0.179866 + 0.199761i
\(649\) 7.70848 + 23.7243i 0.302584 + 0.931259i
\(650\) 0 0
\(651\) −39.0076 19.8544i −1.52883 0.778155i
\(652\) −40.7894 −1.59744
\(653\) 8.82960 + 27.1747i 0.345529 + 1.06343i 0.961300 + 0.275504i \(0.0888446\pi\)
−0.615771 + 0.787925i \(0.711155\pi\)
\(654\) −53.6706 59.6072i −2.09869 2.33083i
\(655\) 0 0
\(656\) −7.11497 12.3235i −0.277793 0.481151i
\(657\) −11.1699 + 19.3468i −0.435778 + 0.754790i
\(658\) −4.28122 40.7331i −0.166899 1.58794i
\(659\) −4.15656 3.01991i −0.161916 0.117639i 0.503877 0.863776i \(-0.331907\pi\)
−0.665793 + 0.746136i \(0.731907\pi\)
\(660\) 0 0
\(661\) −3.94482 + 4.38117i −0.153436 + 0.170408i −0.814962 0.579514i \(-0.803242\pi\)
0.661526 + 0.749922i \(0.269909\pi\)
\(662\) −24.5029 10.9094i −0.952333 0.424006i
\(663\) 9.29499 + 1.97571i 0.360987 + 0.0767302i
\(664\) 3.08670 0.656098i 0.119787 0.0254615i
\(665\) 0 0
\(666\) 0.277162 0.853018i 0.0107398 0.0330538i
\(667\) −1.42756 + 4.39358i −0.0552754 + 0.170120i
\(668\) −4.57220 + 2.03567i −0.176904 + 0.0787626i
\(669\) 33.2684 7.07142i 1.28623 0.273397i
\(670\) 0 0
\(671\) −8.70955 3.87774i −0.336229 0.149699i
\(672\) 42.6592 47.3778i 1.64561 1.82764i
\(673\) 2.84979 27.1140i 0.109851 1.04517i −0.791231 0.611518i \(-0.790559\pi\)
0.901082 0.433649i \(-0.142774\pi\)
\(674\) 46.7146 + 33.9401i 1.79938 + 1.30732i
\(675\) 0 0
\(676\) 9.91286 17.1696i 0.381264 0.660368i
\(677\) −1.31511 2.27784i −0.0505438 0.0875444i 0.839647 0.543133i \(-0.182762\pi\)
−0.890190 + 0.455589i \(0.849429\pi\)
\(678\) −62.9016 + 45.7007i −2.41572 + 1.75512i
\(679\) −16.5080 18.3340i −0.633519 0.703594i
\(680\) 0 0
\(681\) 9.93738 0.380801
\(682\) 48.7748 7.74652i 1.86768 0.296630i
\(683\) −29.5859 −1.13207 −0.566037 0.824380i \(-0.691524\pi\)
−0.566037 + 0.824380i \(0.691524\pi\)
\(684\) −0.693026 2.13292i −0.0264985 0.0815540i
\(685\) 0 0
\(686\) −3.06609 + 2.22765i −0.117064 + 0.0850519i
\(687\) 20.7717 + 35.9777i 0.792492 + 1.37264i
\(688\) −0.448549 + 0.776909i −0.0171008 + 0.0296194i
\(689\) 2.07453 + 19.7378i 0.0790331 + 0.751950i
\(690\) 0 0
\(691\) −1.76087 + 16.7535i −0.0669866 + 0.637334i 0.908592 + 0.417684i \(0.137158\pi\)
−0.975579 + 0.219650i \(0.929508\pi\)
\(692\) 8.45344 9.38849i 0.321351 0.356897i
\(693\) −22.6607 10.0892i −0.860808 0.383256i
\(694\) −10.7899 2.29346i −0.409579 0.0870587i
\(695\) 0 0
\(696\) 1.63827 0.729407i 0.0620986 0.0276481i
\(697\) 2.81323 8.65822i 0.106559 0.327954i
\(698\) 2.62397 8.07576i 0.0993189 0.305672i
\(699\) 27.8477 12.3986i 1.05330 0.468957i
\(700\) 0 0
\(701\) −20.7605 4.41279i −0.784114 0.166669i −0.201577 0.979473i \(-0.564607\pi\)
−0.582537 + 0.812804i \(0.697940\pi\)
\(702\) 12.0283 + 5.35536i 0.453980 + 0.202125i
\(703\) 0.113873 0.126468i 0.00429479 0.00476985i
\(704\) −4.54235 + 43.2176i −0.171196 + 1.62882i
\(705\) 0 0
\(706\) −4.71948 44.9029i −0.177620 1.68994i
\(707\) 33.1859 57.4796i 1.24808 2.16174i
\(708\) 14.2979 + 24.7647i 0.537348 + 0.930714i
\(709\) −41.5383 + 30.1794i −1.56001 + 1.13341i −0.624000 + 0.781424i \(0.714494\pi\)
−0.936005 + 0.351986i \(0.885506\pi\)
\(710\) 0 0
\(711\) 4.22828 + 13.0133i 0.158573 + 0.488037i
\(712\) −3.05044 −0.114320
\(713\) −6.68457 + 17.4362i −0.250339 + 0.652989i
\(714\) 34.6656 1.29733
\(715\) 0 0
\(716\) 18.6228 + 20.6827i 0.695967 + 0.772950i
\(717\) 11.7721 8.55293i 0.439637 0.319415i
\(718\) −7.33679 12.7077i −0.273807 0.474247i
\(719\) 20.0999 34.8141i 0.749601 1.29835i −0.198413 0.980119i \(-0.563579\pi\)
0.948014 0.318229i \(-0.103088\pi\)
\(720\) 0 0
\(721\) 11.6393 + 8.45647i 0.433471 + 0.314935i
\(722\) −4.03205 + 38.3624i −0.150058 + 1.42770i
\(723\) −16.4700 + 18.2917i −0.612524 + 0.680277i
\(724\) 20.2139 + 8.99983i 0.751245 + 0.334476i
\(725\) 0 0
\(726\) 31.7579 6.75035i 1.17865 0.250529i
\(727\) 19.6265 8.73827i 0.727906 0.324084i −0.00911160 0.999958i \(-0.502900\pi\)
0.737017 + 0.675874i \(0.236234\pi\)
\(728\) −1.44228 + 4.43889i −0.0534545 + 0.164516i
\(729\) 0.558517 1.71894i 0.0206858 0.0636644i
\(730\) 0 0
\(731\) −0.561388 + 0.119327i −0.0207637 + 0.00441346i
\(732\) −10.6902 2.27227i −0.395121 0.0839856i
\(733\) −20.5286 9.13991i −0.758241 0.337590i −0.00906234 0.999959i \(-0.502885\pi\)
−0.749178 + 0.662368i \(0.769551\pi\)
\(734\) −22.3475 + 24.8194i −0.824861 + 0.916101i
\(735\) 0 0
\(736\) −22.0046 15.9872i −0.811099 0.589298i
\(737\) 6.09174 + 57.9591i 0.224392 + 2.13495i
\(738\) −6.98953 + 12.1062i −0.257288 + 0.445636i
\(739\) −26.2750 45.5097i −0.966542 1.67410i −0.705413 0.708797i \(-0.749238\pi\)
−0.261129 0.965304i \(-0.584095\pi\)
\(740\) 0 0
\(741\) −1.85254 2.05745i −0.0680547 0.0755824i
\(742\) 22.3728 + 68.8565i 0.821333 + 2.52780i
\(743\) 17.4032 0.638460 0.319230 0.947677i \(-0.396576\pi\)
0.319230 + 0.947677i \(0.396576\pi\)
\(744\) 6.76632 2.60066i 0.248065 0.0953449i
\(745\) 0 0
\(746\) −6.28728 19.3503i −0.230194 0.708463i
\(747\) 5.47180 + 6.07705i 0.200203 + 0.222348i
\(748\) −16.9041 + 12.2815i −0.618074 + 0.449057i
\(749\) 20.4224 + 35.3727i 0.746219 + 1.29249i
\(750\) 0 0
\(751\) 2.34603 + 22.3210i 0.0856080 + 0.814505i 0.950118 + 0.311890i \(0.100962\pi\)
−0.864510 + 0.502615i \(0.832371\pi\)
\(752\) −14.4758 10.5173i −0.527879 0.383526i
\(753\) 1.63123 15.5201i 0.0594453 0.565584i
\(754\) 3.98616 4.42708i 0.145168 0.161225i
\(755\) 0 0
\(756\) 25.0979 + 5.33473i 0.912804 + 0.194022i
\(757\) −14.4696 + 3.07560i −0.525906 + 0.111785i −0.463211 0.886248i \(-0.653303\pi\)
−0.0626946 + 0.998033i \(0.519969\pi\)
\(758\) 26.1527 11.6439i 0.949907 0.422926i
\(759\) −9.49136 + 29.2114i −0.344515 + 1.06031i
\(760\) 0 0
\(761\) −18.1807 + 8.09457i −0.659050 + 0.293428i −0.708879 0.705330i \(-0.750799\pi\)
0.0498293 + 0.998758i \(0.484132\pi\)
\(762\) 61.5667 13.0864i 2.23032 0.474070i
\(763\) −65.0320 13.8230i −2.35432 0.500426i
\(764\) 21.9291 + 9.76346i 0.793366 + 0.353229i
\(765\) 0 0
\(766\) −2.23224 + 21.2383i −0.0806541 + 0.767373i
\(767\) 9.84009 + 7.14925i 0.355305 + 0.258144i
\(768\) −2.30874 21.9662i −0.0833096 0.792638i
\(769\) −2.09853 + 3.63477i −0.0756751 + 0.131073i −0.901380 0.433030i \(-0.857445\pi\)
0.825705 + 0.564103i \(0.190778\pi\)
\(770\) 0 0
\(771\) −42.6742 + 31.0046i −1.53687 + 1.11660i
\(772\) 2.74825 + 3.05224i 0.0989116 + 0.109852i
\(773\) −3.67070 11.2973i −0.132026 0.406334i 0.863090 0.505051i \(-0.168526\pi\)
−0.995116 + 0.0987167i \(0.968526\pi\)
\(774\) 0.881281 0.0316770
\(775\) 0 0
\(776\) 4.08584 0.146673
\(777\) −0.666779 2.05213i −0.0239206 0.0736199i
\(778\) 35.1696 + 39.0598i 1.26089 + 1.40036i
\(779\) −2.14581 + 1.55903i −0.0768818 + 0.0558579i
\(780\) 0 0
\(781\) −2.85931 + 4.95246i −0.102314 + 0.177213i
\(782\) −1.54592 14.7084i −0.0552820 0.525973i
\(783\) −3.39250 2.46479i −0.121238 0.0880845i
\(784\) 2.26084 21.5104i 0.0807442 0.768230i
\(785\) 0 0
\(786\) −29.1122 12.9616i −1.03840 0.462324i
\(787\) 1.94067 + 0.412503i 0.0691776 + 0.0147042i 0.242370 0.970184i \(-0.422075\pi\)
−0.173193 + 0.984888i \(0.555408\pi\)
\(788\) 14.3520 3.05061i 0.511269 0.108673i
\(789\) 51.3762 22.8741i 1.82904 0.814341i
\(790\) 0 0
\(791\) −19.9152 + 61.2926i −0.708102 + 2.17931i
\(792\) 3.75293 1.67091i 0.133355 0.0593733i
\(793\) −4.54700 + 0.966495i −0.161469 + 0.0343212i
\(794\) −33.9675 7.22001i −1.20546 0.256228i
\(795\) 0 0
\(796\) 1.42298 1.58038i 0.0504361 0.0560150i
\(797\) −5.26681 + 50.1103i −0.186560 + 1.77500i 0.355517 + 0.934670i \(0.384305\pi\)
−0.542077 + 0.840329i \(0.682362\pi\)
\(798\) −8.17088 5.93649i −0.289246 0.210149i
\(799\) −1.19657 11.3846i −0.0423317 0.402760i
\(800\) 0 0
\(801\) −3.95241 6.84577i −0.139652 0.241884i
\(802\) −46.3076 + 33.6445i −1.63518 + 1.18803i
\(803\) −40.5758 45.0640i −1.43189 1.59028i
\(804\) 20.6445 + 63.5373i 0.728077 + 2.24079i
\(805\) 0 0
\(806\) 17.0200 17.0345i 0.599504 0.600016i
\(807\) −44.6701 −1.57246
\(808\) 3.39675 + 10.4541i 0.119497 + 0.367775i
\(809\) −10.4200 11.5726i −0.366347 0.406870i 0.531584 0.847005i \(-0.321597\pi\)
−0.897931 + 0.440136i \(0.854930\pi\)
\(810\) 0 0
\(811\) −10.3694 17.9604i −0.364119 0.630673i 0.624515 0.781013i \(-0.285297\pi\)
−0.988634 + 0.150340i \(0.951963\pi\)
\(812\) 5.80460 10.0539i 0.203702 0.352822i
\(813\) 4.69860 + 44.7042i 0.164787 + 1.56784i
\(814\) 1.96964 + 1.43103i 0.0690360 + 0.0501576i
\(815\) 0 0
\(816\) 10.1336 11.2545i 0.354746 0.393985i
\(817\) 0.152757 + 0.0680118i 0.00534429 + 0.00237943i
\(818\) −45.8282 9.74109i −1.60235 0.340589i
\(819\) −11.8305 + 2.51464i −0.413390 + 0.0878688i
\(820\) 0 0
\(821\) 6.05511 18.6357i 0.211325 0.650391i −0.788069 0.615587i \(-0.788919\pi\)
0.999394 0.0348044i \(-0.0110808\pi\)
\(822\) 10.3806 31.9482i 0.362065 1.11432i
\(823\) −1.91901 + 0.854399i −0.0668925 + 0.0297825i −0.439910 0.898042i \(-0.644990\pi\)
0.373018 + 0.927824i \(0.378323\pi\)
\(824\) −2.33063 + 0.495390i −0.0811912 + 0.0172577i
\(825\) 0 0
\(826\) 40.5346 + 18.0472i 1.41038 + 0.627942i
\(827\) 2.34540 2.60483i 0.0815575 0.0905787i −0.700985 0.713176i \(-0.747256\pi\)
0.782542 + 0.622597i \(0.213923\pi\)
\(828\) −1.26808 + 12.0650i −0.0440688 + 0.419287i
\(829\) 1.68971 + 1.22765i 0.0586860 + 0.0426379i 0.616742 0.787166i \(-0.288452\pi\)
−0.558056 + 0.829804i \(0.688452\pi\)
\(830\) 0 0
\(831\) −5.09098 + 8.81784i −0.176604 + 0.305888i
\(832\) 10.5943 + 18.3498i 0.367290 + 0.636166i
\(833\) 11.1947 8.13341i 0.387873 0.281806i
\(834\) 59.6175 + 66.2120i 2.06439 + 2.29273i
\(835\) 0 0
\(836\) 6.08759 0.210544
\(837\) −13.1774 10.6615i −0.455478 0.368517i
\(838\) 12.8284 0.443151
\(839\) −3.32915 10.2461i −0.114935 0.353734i 0.876998 0.480493i \(-0.159542\pi\)
−0.991933 + 0.126759i \(0.959542\pi\)
\(840\) 0 0
\(841\) 21.9266 15.9306i 0.756088 0.549330i
\(842\) 6.79587 + 11.7708i 0.234201 + 0.405648i
\(843\) 7.11863 12.3298i 0.245178 0.424662i
\(844\) 1.48203 + 14.1006i 0.0510137 + 0.485363i
\(845\) 0 0
\(846\) −1.83736 + 17.4813i −0.0631698 + 0.601021i
\(847\) 18.0076 19.9995i 0.618749 0.687190i
\(848\) 28.8949 + 12.8648i 0.992256 + 0.441781i
\(849\) −15.1638 3.22316i −0.520420 0.110619i
\(850\) 0 0
\(851\) −0.840975 + 0.374426i −0.0288283 + 0.0128352i
\(852\) −2.02576 + 6.23466i −0.0694015 + 0.213596i
\(853\) −10.0895 + 31.0524i −0.345459 + 1.06321i 0.615879 + 0.787841i \(0.288801\pi\)
−0.961338 + 0.275372i \(0.911199\pi\)
\(854\) −15.4919 + 6.89745i −0.530123 + 0.236026i
\(855\) 0 0
\(856\) −6.61667 1.40642i −0.226153 0.0480703i
\(857\) 39.9528 + 17.7881i 1.36476 + 0.607631i 0.952808 0.303573i \(-0.0981798\pi\)
0.411954 + 0.911205i \(0.364846\pi\)
\(858\) 26.5026 29.4342i 0.904785 1.00487i
\(859\) 2.54697 24.2328i 0.0869016 0.826813i −0.861076 0.508476i \(-0.830209\pi\)
0.947978 0.318337i \(-0.103124\pi\)
\(860\) 0 0
\(861\) 3.51528 + 33.4457i 0.119800 + 1.13983i
\(862\) 24.3140 42.1130i 0.828137 1.43438i
\(863\) −21.7570 37.6842i −0.740616 1.28279i −0.952215 0.305429i \(-0.901200\pi\)
0.211599 0.977357i \(-0.432133\pi\)
\(864\) 19.9739 14.5119i 0.679525 0.493704i
\(865\) 0 0
\(866\) 15.5681 + 47.9137i 0.529025 + 1.62817i
\(867\) −26.6808 −0.906129
\(868\) 25.5412 39.3668i 0.866925 1.33620i
\(869\) −37.1415 −1.25994
\(870\) 0 0
\(871\) 19.0140 + 21.1172i 0.644264 + 0.715528i
\(872\) 8.90796 6.47201i 0.301662 0.219170i
\(873\) 5.29396 + 9.16941i 0.179173 + 0.310338i
\(874\) −2.15444 + 3.73160i −0.0728751 + 0.126223i
\(875\) 0 0
\(876\) −56.2380 40.8593i −1.90011 1.38051i
\(877\) −3.99757 + 38.0343i −0.134988 + 1.28433i 0.691913 + 0.721981i \(0.256768\pi\)
−0.826901 + 0.562347i \(0.809899\pi\)
\(878\) −20.1133 + 22.3381i −0.678793 + 0.753876i
\(879\) −26.4073 11.7573i −0.890697 0.396564i
\(880\) 0 0
\(881\) −39.8511 + 8.47062i −1.34262 + 0.285382i −0.822526 0.568728i \(-0.807436\pi\)
−0.520092 + 0.854110i \(0.674102\pi\)
\(882\) −19.4106 + 8.64217i −0.653590 + 0.290997i
\(883\) −10.2334 + 31.4952i −0.344382 + 1.05990i 0.617532 + 0.786546i \(0.288133\pi\)
−0.961914 + 0.273353i \(0.911867\pi\)
\(884\) −3.14826 + 9.68935i −0.105888 + 0.325888i
\(885\) 0 0
\(886\) 33.5766 7.13693i 1.12803 0.239770i
\(887\) 12.1951 + 2.59214i 0.409470 + 0.0870356i 0.408042 0.912963i \(-0.366212\pi\)
0.00142883 + 0.999999i \(0.499545\pi\)
\(888\) 0.326458 + 0.145349i 0.0109552 + 0.00487758i
\(889\) 34.9100 38.7715i 1.17084 1.30035i
\(890\) 0 0
\(891\) −38.9395 28.2912i −1.30452 0.947790i
\(892\) 3.81159 + 36.2649i 0.127622 + 1.21424i
\(893\) −1.66758 + 2.88834i −0.0558035 + 0.0966545i
\(894\) 27.2966 + 47.2791i 0.912936 + 1.58125i
\(895\) 0 0
\(896\) 11.8412 + 13.1510i 0.395588 + 0.439345i
\(897\) 4.62789 + 14.2432i 0.154521 + 0.475566i
\(898\) −14.1263 −0.471401
\(899\) −6.43009 + 4.17965i −0.214455 + 0.139399i
\(900\) 0 0
\(901\) 6.25307 + 19.2450i 0.208320 + 0.641143i
\(902\) −25.3903 28.1987i −0.845403 0.938915i
\(903\) 1.71522 1.24618i 0.0570789 0.0414703i
\(904\) −5.33666 9.24337i −0.177495 0.307430i
\(905\) 0 0
\(906\) −9.21065 87.6335i −0.306003 2.91143i
\(907\) 13.6734 + 9.93431i 0.454018 + 0.329863i 0.791180 0.611583i \(-0.209467\pi\)
−0.337162 + 0.941447i \(0.609467\pi\)
\(908\) −1.11365 + 10.5957i −0.0369579 + 0.351631i
\(909\) −19.0599 + 21.1682i −0.632179 + 0.702105i
\(910\) 0 0
\(911\) 53.2794 + 11.3249i 1.76522 + 0.375210i 0.972231 0.234022i \(-0.0751887\pi\)
0.792992 + 0.609232i \(0.208522\pi\)
\(912\) −4.31587 + 0.917366i −0.142913 + 0.0303770i
\(913\) −20.2781 + 9.02841i −0.671108 + 0.298797i
\(914\) 13.7206 42.2278i 0.453838 1.39677i
\(915\) 0 0
\(916\) −40.6890 + 18.1159i −1.34440 + 0.598567i
\(917\) −25.8373 + 5.49188i −0.853222 + 0.181358i
\(918\) 13.1313 + 2.79114i 0.433396 + 0.0921212i
\(919\) −8.00934 3.56599i −0.264204 0.117631i 0.270360 0.962759i \(-0.412857\pi\)
−0.534564 + 0.845128i \(0.679524\pi\)
\(920\) 0 0
\(921\) −5.08212 + 48.3531i −0.167461 + 1.59329i
\(922\) −14.5418 10.5652i −0.478908 0.347947i
\(923\) 0.291461 + 2.77306i 0.00959355 + 0.0912765i
\(924\) 38.5928 66.8447i 1.26961 2.19903i
\(925\) 0 0
\(926\) −6.11858 + 4.44541i −0.201069 + 0.146085i
\(927\) −4.13151 4.58851i −0.135697 0.150706i
\(928\) −3.45188 10.6238i −0.113313 0.348743i
\(929\) −44.2868 −1.45300 −0.726501 0.687165i \(-0.758855\pi\)
−0.726501 + 0.687165i \(0.758855\pi\)
\(930\) 0 0
\(931\) −4.03150 −0.132127
\(932\) 10.0992 + 31.0820i 0.330809 + 1.01813i
\(933\) 13.5900 + 15.0932i 0.444915 + 0.494129i
\(934\) 5.16512 3.75268i 0.169008 0.122791i
\(935\) 0 0
\(936\) 1.00153 1.73471i 0.0327361 0.0567006i
\(937\) −5.38495 51.2343i −0.175919 1.67375i −0.625278 0.780402i \(-0.715014\pi\)
0.449359 0.893351i \(-0.351652\pi\)
\(938\) 83.8637 + 60.9306i 2.73825 + 1.98945i
\(939\) 6.28327 59.7813i 0.205047 1.95089i
\(940\) 0 0
\(941\) 35.8083 + 15.9429i 1.16732 + 0.519722i 0.896559 0.442925i \(-0.146059\pi\)
0.270757 + 0.962648i \(0.412726\pi\)
\(942\) 25.1700 + 5.35005i 0.820083 + 0.174314i
\(943\) 14.0341 2.98303i 0.457012 0.0971409i
\(944\) 17.7084 7.88428i 0.576358 0.256611i
\(945\) 0 0
\(946\) −0.739222 + 2.27509i −0.0240342 + 0.0739696i
\(947\) −51.9956 + 23.1500i −1.68963 + 0.752272i −0.690038 + 0.723773i \(0.742406\pi\)
−0.999594 + 0.0284989i \(0.990927\pi\)
\(948\) −41.6466 + 8.85225i −1.35262 + 0.287508i
\(949\) −28.9212 6.14739i −0.938821 0.199553i
\(950\) 0 0
\(951\) 22.6423 25.1468i 0.734227 0.815441i
\(952\) −0.497427 + 4.73270i −0.0161217 + 0.153388i
\(953\) −12.3568 8.97773i −0.400275 0.290817i 0.369378 0.929279i \(-0.379571\pi\)
−0.769653 + 0.638462i \(0.779571\pi\)
\(954\) −3.24789 30.9016i −0.105154 1.00048i
\(955\) 0 0
\(956\) 7.80028 + 13.5105i 0.252279 + 0.436960i
\(957\) −10.2052 + 7.41452i −0.329888 + 0.239677i
\(958\) 24.1396 + 26.8098i 0.779916 + 0.866184i
\(959\) −8.60439 26.4816i −0.277850 0.855135i
\(960\) 0 0
\(961\) −26.8335 + 15.5229i −0.865598 + 0.500739i
\(962\) 1.18709 0.0382735
\(963\) −5.41685 16.6713i −0.174556 0.537227i
\(964\) −17.6578 19.6110i −0.568719 0.631627i
\(965\) 0 0
\(966\) 27.3165 + 47.3136i 0.878895 + 1.52229i
\(967\) 5.64979 9.78573i 0.181685 0.314688i −0.760769 0.649022i \(-0.775178\pi\)
0.942455 + 0.334334i \(0.108511\pi\)
\(968\) 0.465884 + 4.43259i 0.0149741 + 0.142469i
\(969\) −2.28371 1.65921i −0.0733633 0.0533015i
\(970\) 0 0
\(971\) −10.6179 + 11.7924i −0.340745 + 0.378436i −0.889025 0.457859i \(-0.848616\pi\)
0.548280 + 0.836295i \(0.315283\pi\)
\(972\) −31.2682 13.9215i −1.00293 0.446532i
\(973\) 72.2379 + 15.3546i 2.31584 + 0.492247i
\(974\) −58.3195 + 12.3962i −1.86868 + 0.397200i
\(975\) 0 0
\(976\) −2.28934 + 7.04586i −0.0732800 + 0.225533i
\(977\) 5.11731 15.7495i 0.163717 0.503870i −0.835222 0.549913i \(-0.814661\pi\)
0.998939 + 0.0460426i \(0.0146610\pi\)
\(978\) 72.0193 32.0650i 2.30292 1.02533i
\(979\) 20.9882 4.46117i 0.670785 0.142580i
\(980\) 0 0
\(981\) 26.0664 + 11.6055i 0.832235 + 0.370535i
\(982\) 13.6235 15.1304i 0.434743 0.482832i
\(983\) 2.26302 21.5312i 0.0721792 0.686739i −0.897276 0.441470i \(-0.854457\pi\)
0.969455 0.245269i \(-0.0788763\pi\)
\(984\) −4.50589 3.27372i −0.143643 0.104362i
\(985\) 0 0
\(986\) 3.03697 5.26019i 0.0967169 0.167519i
\(987\) 21.1436 + 36.6217i 0.673007 + 1.16568i
\(988\) 2.40137 1.74469i 0.0763976 0.0555061i
\(989\) −0.605238 0.672185i −0.0192455 0.0213743i
\(990\) 0 0
\(991\) 32.3028 1.02613 0.513066 0.858349i \(-0.328510\pi\)
0.513066 + 0.858349i \(0.328510\pi\)
\(992\) −11.7051 43.6097i −0.371639 1.38461i
\(993\) 27.6925 0.878796
\(994\) 3.14328 + 9.67401i 0.0996987 + 0.306841i
\(995\) 0 0
\(996\) −20.5860 + 14.9566i −0.652291 + 0.473917i
\(997\) −5.74360 9.94821i −0.181902 0.315063i 0.760626 0.649190i \(-0.224892\pi\)
−0.942528 + 0.334127i \(0.891559\pi\)
\(998\) −11.2392 + 19.4669i −0.355771 + 0.616213i
\(999\) −0.0873448 0.831030i −0.00276347 0.0262926i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.bl.a.51.1 16
5.2 odd 4 775.2.ck.a.299.3 32
5.3 odd 4 775.2.ck.a.299.2 32
5.4 even 2 31.2.g.a.20.2 yes 16
15.14 odd 2 279.2.y.c.82.1 16
20.19 odd 2 496.2.bg.c.113.2 16
31.14 even 15 inner 775.2.bl.a.76.1 16
155.4 even 10 961.2.g.t.816.1 16
155.9 even 30 961.2.d.o.628.4 16
155.14 even 30 31.2.g.a.14.2 16
155.19 even 30 961.2.g.t.338.1 16
155.24 odd 30 961.2.g.m.732.1 16
155.29 odd 10 961.2.g.m.235.1 16
155.34 odd 30 961.2.c.i.521.7 16
155.39 even 10 961.2.g.k.846.2 16
155.44 odd 30 961.2.a.j.1.7 8
155.49 even 30 961.2.a.i.1.7 8
155.54 odd 10 961.2.g.j.846.2 16
155.59 even 30 961.2.c.j.521.7 16
155.64 even 10 961.2.g.s.235.1 16
155.69 even 30 961.2.g.s.732.1 16
155.74 odd 30 961.2.g.n.338.1 16
155.79 odd 30 961.2.g.l.448.2 16
155.84 odd 30 961.2.d.n.628.4 16
155.89 odd 10 961.2.g.n.816.1 16
155.99 odd 6 961.2.g.j.844.2 16
155.104 odd 30 961.2.d.q.374.1 16
155.107 odd 60 775.2.ck.a.324.2 32
155.109 even 10 961.2.c.j.439.7 16
155.114 odd 30 961.2.d.q.388.1 16
155.119 odd 6 961.2.d.n.531.4 16
155.129 even 6 961.2.d.o.531.4 16
155.134 even 30 961.2.d.p.388.1 16
155.138 odd 60 775.2.ck.a.324.3 32
155.139 odd 10 961.2.c.i.439.7 16
155.144 even 30 961.2.d.p.374.1 16
155.149 even 6 961.2.g.k.844.2 16
155.154 odd 2 961.2.g.l.547.2 16
465.14 odd 30 279.2.y.c.262.1 16
465.44 even 30 8649.2.a.be.1.2 8
465.359 odd 30 8649.2.a.bf.1.2 8
620.479 odd 30 496.2.bg.c.417.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.2 16 155.14 even 30
31.2.g.a.20.2 yes 16 5.4 even 2
279.2.y.c.82.1 16 15.14 odd 2
279.2.y.c.262.1 16 465.14 odd 30
496.2.bg.c.113.2 16 20.19 odd 2
496.2.bg.c.417.2 16 620.479 odd 30
775.2.bl.a.51.1 16 1.1 even 1 trivial
775.2.bl.a.76.1 16 31.14 even 15 inner
775.2.ck.a.299.2 32 5.3 odd 4
775.2.ck.a.299.3 32 5.2 odd 4
775.2.ck.a.324.2 32 155.107 odd 60
775.2.ck.a.324.3 32 155.138 odd 60
961.2.a.i.1.7 8 155.49 even 30
961.2.a.j.1.7 8 155.44 odd 30
961.2.c.i.439.7 16 155.139 odd 10
961.2.c.i.521.7 16 155.34 odd 30
961.2.c.j.439.7 16 155.109 even 10
961.2.c.j.521.7 16 155.59 even 30
961.2.d.n.531.4 16 155.119 odd 6
961.2.d.n.628.4 16 155.84 odd 30
961.2.d.o.531.4 16 155.129 even 6
961.2.d.o.628.4 16 155.9 even 30
961.2.d.p.374.1 16 155.144 even 30
961.2.d.p.388.1 16 155.134 even 30
961.2.d.q.374.1 16 155.104 odd 30
961.2.d.q.388.1 16 155.114 odd 30
961.2.g.j.844.2 16 155.99 odd 6
961.2.g.j.846.2 16 155.54 odd 10
961.2.g.k.844.2 16 155.149 even 6
961.2.g.k.846.2 16 155.39 even 10
961.2.g.l.448.2 16 155.79 odd 30
961.2.g.l.547.2 16 155.154 odd 2
961.2.g.m.235.1 16 155.29 odd 10
961.2.g.m.732.1 16 155.24 odd 30
961.2.g.n.338.1 16 155.74 odd 30
961.2.g.n.816.1 16 155.89 odd 10
961.2.g.s.235.1 16 155.64 even 10
961.2.g.s.732.1 16 155.69 even 30
961.2.g.t.338.1 16 155.19 even 30
961.2.g.t.816.1 16 155.4 even 10
8649.2.a.be.1.2 8 465.44 even 30
8649.2.a.bf.1.2 8 465.359 odd 30