Defining parameters
Level: | \( N \) | \(=\) | \( 775 = 5^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 775.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(775))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 86 | 47 | 39 |
Cusp forms | 75 | 47 | 28 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(31\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(10\) |
\(+\) | \(-\) | \(-\) | \(13\) |
\(-\) | \(+\) | \(-\) | \(15\) |
\(-\) | \(-\) | \(+\) | \(9\) |
Plus space | \(+\) | \(19\) | |
Minus space | \(-\) | \(28\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(775))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(775))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(775)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(155))\)\(^{\oplus 2}\)