Newspace parameters
Level: | \( N \) | \(=\) | \( 775 = 5^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 775.w (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.386775384791\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{10})\) |
Defining polynomial: |
\( x^{4} - x^{3} + x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{5}\) |
Projective field: | Galois closure of 5.1.375390625.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).
\(n\) | \(251\) | \(652\) |
\(\chi(n)\) | \(-1\) | \(-\zeta_{10}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61.1 |
|
1.30902 | − | 0.951057i | 0 | 0.500000 | − | 1.53884i | −0.809017 | − | 0.587785i | 0 | 0.618034 | −0.309017 | − | 0.951057i | −0.809017 | − | 0.587785i | −1.61803 | ||||||||||||||||||||
216.1 | 1.30902 | + | 0.951057i | 0 | 0.500000 | + | 1.53884i | −0.809017 | + | 0.587785i | 0 | 0.618034 | −0.309017 | + | 0.951057i | −0.809017 | + | 0.587785i | −1.61803 | |||||||||||||||||||||
371.1 | 0.190983 | − | 0.587785i | 0 | 0.500000 | + | 0.363271i | 0.309017 | + | 0.951057i | 0 | −1.61803 | 0.809017 | − | 0.587785i | 0.309017 | + | 0.951057i | 0.618034 | |||||||||||||||||||||
681.1 | 0.190983 | + | 0.587785i | 0 | 0.500000 | − | 0.363271i | 0.309017 | − | 0.951057i | 0 | −1.61803 | 0.809017 | + | 0.587785i | 0.309017 | − | 0.951057i | 0.618034 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-31}) \) |
25.d | even | 5 | 1 | inner |
775.w | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 775.1.w.a | ✓ | 4 |
5.b | even | 2 | 1 | 3875.1.w.a | 4 | ||
5.c | odd | 4 | 2 | 3875.1.z.c | 8 | ||
25.d | even | 5 | 1 | inner | 775.1.w.a | ✓ | 4 |
25.e | even | 10 | 1 | 3875.1.w.a | 4 | ||
25.f | odd | 20 | 2 | 3875.1.z.c | 8 | ||
31.b | odd | 2 | 1 | CM | 775.1.w.a | ✓ | 4 |
155.c | odd | 2 | 1 | 3875.1.w.a | 4 | ||
155.f | even | 4 | 2 | 3875.1.z.c | 8 | ||
775.w | odd | 10 | 1 | inner | 775.1.w.a | ✓ | 4 |
775.z | odd | 10 | 1 | 3875.1.w.a | 4 | ||
775.ca | even | 20 | 2 | 3875.1.z.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
775.1.w.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
775.1.w.a | ✓ | 4 | 25.d | even | 5 | 1 | inner |
775.1.w.a | ✓ | 4 | 31.b | odd | 2 | 1 | CM |
775.1.w.a | ✓ | 4 | 775.w | odd | 10 | 1 | inner |
3875.1.w.a | 4 | 5.b | even | 2 | 1 | ||
3875.1.w.a | 4 | 25.e | even | 10 | 1 | ||
3875.1.w.a | 4 | 155.c | odd | 2 | 1 | ||
3875.1.w.a | 4 | 775.z | odd | 10 | 1 | ||
3875.1.z.c | 8 | 5.c | odd | 4 | 2 | ||
3875.1.z.c | 8 | 25.f | odd | 20 | 2 | ||
3875.1.z.c | 8 | 155.f | even | 4 | 2 | ||
3875.1.z.c | 8 | 775.ca | even | 20 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 3T_{2}^{3} + 4T_{2}^{2} - 2T_{2} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(775, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \)
$3$
\( T^{4} \)
$5$
\( T^{4} + T^{3} + T^{2} + T + 1 \)
$7$
\( (T^{2} + T - 1)^{2} \)
$11$
\( T^{4} \)
$13$
\( T^{4} \)
$17$
\( T^{4} \)
$19$
\( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \)
$23$
\( T^{4} \)
$29$
\( T^{4} \)
$31$
\( T^{4} + T^{3} + T^{2} + T + 1 \)
$37$
\( T^{4} \)
$41$
\( T^{4} + 2 T^{3} + 4 T^{2} + 3 T + 1 \)
$43$
\( T^{4} \)
$47$
\( T^{4} + 2 T^{3} + 4 T^{2} + 3 T + 1 \)
$53$
\( T^{4} \)
$59$
\( T^{4} + 2 T^{3} + 4 T^{2} + 3 T + 1 \)
$61$
\( T^{4} \)
$67$
\( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \)
$71$
\( T^{4} + 2 T^{3} + 4 T^{2} + 8 T + 16 \)
$73$
\( T^{4} \)
$79$
\( T^{4} \)
$83$
\( T^{4} \)
$89$
\( T^{4} \)
$97$
\( T^{4} + 2 T^{3} + 4 T^{2} + 3 T + 1 \)
show more
show less