Properties

Label 7744.2.a.y.1.1
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} +4.00000 q^{7} -2.00000 q^{9} -2.00000 q^{13} -1.00000 q^{15} +2.00000 q^{19} +4.00000 q^{21} -9.00000 q^{23} -4.00000 q^{25} -5.00000 q^{27} +4.00000 q^{29} -5.00000 q^{31} -4.00000 q^{35} +9.00000 q^{37} -2.00000 q^{39} -2.00000 q^{41} +6.00000 q^{43} +2.00000 q^{45} +4.00000 q^{47} +9.00000 q^{49} +6.00000 q^{53} +2.00000 q^{57} -5.00000 q^{59} -8.00000 q^{63} +2.00000 q^{65} -13.0000 q^{67} -9.00000 q^{69} +1.00000 q^{71} -14.0000 q^{73} -4.00000 q^{75} -10.0000 q^{79} +1.00000 q^{81} -14.0000 q^{83} +4.00000 q^{87} -13.0000 q^{89} -8.00000 q^{91} -5.00000 q^{93} -2.00000 q^{95} -19.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) −9.00000 −1.87663 −0.938315 0.345782i \(-0.887614\pi\)
−0.938315 + 0.345782i \(0.887614\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 9.00000 1.47959 0.739795 0.672832i \(-0.234922\pi\)
0.739795 + 0.672832i \(0.234922\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) −5.00000 −0.650945 −0.325472 0.945552i \(-0.605523\pi\)
−0.325472 + 0.945552i \(0.605523\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) −8.00000 −1.00791
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −13.0000 −1.58820 −0.794101 0.607785i \(-0.792058\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) 0 0
\(69\) −9.00000 −1.08347
\(70\) 0 0
\(71\) 1.00000 0.118678 0.0593391 0.998238i \(-0.481101\pi\)
0.0593391 + 0.998238i \(0.481101\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −14.0000 −1.53670 −0.768350 0.640030i \(-0.778922\pi\)
−0.768350 + 0.640030i \(0.778922\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.00000 0.428845
\(88\) 0 0
\(89\) −13.0000 −1.37800 −0.688999 0.724763i \(-0.741949\pi\)
−0.688999 + 0.724763i \(0.741949\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) −5.00000 −0.518476
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) −19.0000 −1.92916 −0.964579 0.263795i \(-0.915026\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 9.00000 0.854242
\(112\) 0 0
\(113\) −7.00000 −0.658505 −0.329252 0.944242i \(-0.606797\pi\)
−0.329252 + 0.944242i \(0.606797\pi\)
\(114\) 0 0
\(115\) 9.00000 0.839254
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) −16.0000 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 0 0
\(135\) 5.00000 0.430331
\(136\) 0 0
\(137\) 13.0000 1.11066 0.555332 0.831628i \(-0.312591\pi\)
0.555332 + 0.831628i \(0.312591\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 4.00000 0.336861
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) 9.00000 0.742307
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.00000 0.401610
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) −36.0000 −2.83720
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) −16.0000 −1.20949
\(176\) 0 0
\(177\) −5.00000 −0.375823
\(178\) 0 0
\(179\) 11.0000 0.822179 0.411089 0.911595i \(-0.365148\pi\)
0.411089 + 0.911595i \(0.365148\pi\)
\(180\) 0 0
\(181\) −11.0000 −0.817624 −0.408812 0.912619i \(-0.634057\pi\)
−0.408812 + 0.912619i \(0.634057\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.00000 −0.661693
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −20.0000 −1.45479
\(190\) 0 0
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 0 0
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 0 0
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −13.0000 −0.916949
\(202\) 0 0
\(203\) 16.0000 1.12298
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 18.0000 1.25109
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 1.00000 0.0685189
\(214\) 0 0
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) −20.0000 −1.35769
\(218\) 0 0
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −25.0000 −1.67412 −0.837062 0.547108i \(-0.815729\pi\)
−0.837062 + 0.547108i \(0.815729\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) 9.00000 0.594737 0.297368 0.954763i \(-0.403891\pi\)
0.297368 + 0.954763i \(0.403891\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) −4.00000 −0.260931
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) −9.00000 −0.574989
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) −14.0000 −0.887214
\(250\) 0 0
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 36.0000 2.23693
\(260\) 0 0
\(261\) −8.00000 −0.495188
\(262\) 0 0
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) −13.0000 −0.795587
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 10.0000 0.607457 0.303728 0.952759i \(-0.401768\pi\)
0.303728 + 0.952759i \(0.401768\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.0000 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(278\) 0 0
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) −8.00000 −0.475551 −0.237775 0.971320i \(-0.576418\pi\)
−0.237775 + 0.971320i \(0.576418\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −19.0000 −1.11380
\(292\) 0 0
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 0 0
\(295\) 5.00000 0.291111
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.0000 1.04097
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 34.0000 1.94048 0.970241 0.242140i \(-0.0778494\pi\)
0.970241 + 0.242140i \(0.0778494\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) 7.00000 0.395663 0.197832 0.980236i \(-0.436610\pi\)
0.197832 + 0.980236i \(0.436610\pi\)
\(314\) 0 0
\(315\) 8.00000 0.450749
\(316\) 0 0
\(317\) −9.00000 −0.505490 −0.252745 0.967533i \(-0.581333\pi\)
−0.252745 + 0.967533i \(0.581333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 13.0000 0.714545 0.357272 0.934000i \(-0.383707\pi\)
0.357272 + 0.934000i \(0.383707\pi\)
\(332\) 0 0
\(333\) −18.0000 −0.986394
\(334\) 0 0
\(335\) 13.0000 0.710266
\(336\) 0 0
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) 0 0
\(339\) −7.00000 −0.380188
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 9.00000 0.484544
\(346\) 0 0
\(347\) 10.0000 0.536828 0.268414 0.963304i \(-0.413500\pi\)
0.268414 + 0.963304i \(0.413500\pi\)
\(348\) 0 0
\(349\) 8.00000 0.428230 0.214115 0.976808i \(-0.431313\pi\)
0.214115 + 0.976808i \(0.431313\pi\)
\(350\) 0 0
\(351\) 10.0000 0.533761
\(352\) 0 0
\(353\) 3.00000 0.159674 0.0798369 0.996808i \(-0.474560\pi\)
0.0798369 + 0.996808i \(0.474560\pi\)
\(354\) 0 0
\(355\) −1.00000 −0.0530745
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.0000 −1.16112 −0.580558 0.814219i \(-0.697165\pi\)
−0.580558 + 0.814219i \(0.697165\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.0000 0.732793
\(366\) 0 0
\(367\) −13.0000 −0.678594 −0.339297 0.940679i \(-0.610189\pi\)
−0.339297 + 0.940679i \(0.610189\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) 0 0
\(373\) 32.0000 1.65690 0.828449 0.560065i \(-0.189224\pi\)
0.828449 + 0.560065i \(0.189224\pi\)
\(374\) 0 0
\(375\) 9.00000 0.464758
\(376\) 0 0
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) −7.00000 −0.359566 −0.179783 0.983706i \(-0.557540\pi\)
−0.179783 + 0.983706i \(0.557540\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 0 0
\(383\) −9.00000 −0.459879 −0.229939 0.973205i \(-0.573853\pi\)
−0.229939 + 0.973205i \(0.573853\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) 19.0000 0.963338 0.481669 0.876353i \(-0.340031\pi\)
0.481669 + 0.876353i \(0.340031\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −16.0000 −0.807093
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 10.0000 0.498135
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −18.0000 −0.890043 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(410\) 0 0
\(411\) 13.0000 0.641243
\(412\) 0 0
\(413\) −20.0000 −0.984136
\(414\) 0 0
\(415\) 14.0000 0.687233
\(416\) 0 0
\(417\) 16.0000 0.783523
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) −8.00000 −0.388973
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) 0 0
\(435\) −4.00000 −0.191785
\(436\) 0 0
\(437\) −18.0000 −0.861057
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 0 0
\(441\) −18.0000 −0.857143
\(442\) 0 0
\(443\) 11.0000 0.522626 0.261313 0.965254i \(-0.415845\pi\)
0.261313 + 0.965254i \(0.415845\pi\)
\(444\) 0 0
\(445\) 13.0000 0.616259
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 14.0000 0.657777
\(454\) 0 0
\(455\) 8.00000 0.375046
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 5.00000 0.232370 0.116185 0.993228i \(-0.462933\pi\)
0.116185 + 0.993228i \(0.462933\pi\)
\(464\) 0 0
\(465\) 5.00000 0.231869
\(466\) 0 0
\(467\) 19.0000 0.879215 0.439608 0.898190i \(-0.355118\pi\)
0.439608 + 0.898190i \(0.355118\pi\)
\(468\) 0 0
\(469\) −52.0000 −2.40114
\(470\) 0 0
\(471\) −13.0000 −0.599008
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) 38.0000 1.73626 0.868132 0.496333i \(-0.165321\pi\)
0.868132 + 0.496333i \(0.165321\pi\)
\(480\) 0 0
\(481\) −18.0000 −0.820729
\(482\) 0 0
\(483\) −36.0000 −1.63806
\(484\) 0 0
\(485\) 19.0000 0.862746
\(486\) 0 0
\(487\) 31.0000 1.40474 0.702372 0.711810i \(-0.252124\pi\)
0.702372 + 0.711810i \(0.252124\pi\)
\(488\) 0 0
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 18.0000 0.804181
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) −23.0000 −1.01946 −0.509729 0.860335i \(-0.670254\pi\)
−0.509729 + 0.860335i \(0.670254\pi\)
\(510\) 0 0
\(511\) −56.0000 −2.47729
\(512\) 0 0
\(513\) −10.0000 −0.441511
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) 17.0000 0.744784 0.372392 0.928076i \(-0.378538\pi\)
0.372392 + 0.928076i \(0.378538\pi\)
\(522\) 0 0
\(523\) −42.0000 −1.83653 −0.918266 0.395964i \(-0.870410\pi\)
−0.918266 + 0.395964i \(0.870410\pi\)
\(524\) 0 0
\(525\) −16.0000 −0.698297
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 58.0000 2.52174
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) 4.00000 0.173259
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) 11.0000 0.474685
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 0 0
\(543\) −11.0000 −0.472055
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) −40.0000 −1.70097
\(554\) 0 0
\(555\) −9.00000 −0.382029
\(556\) 0 0
\(557\) −4.00000 −0.169485 −0.0847427 0.996403i \(-0.527007\pi\)
−0.0847427 + 0.996403i \(0.527007\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) 7.00000 0.294492
\(566\) 0 0
\(567\) 4.00000 0.167984
\(568\) 0 0
\(569\) −4.00000 −0.167689 −0.0838444 0.996479i \(-0.526720\pi\)
−0.0838444 + 0.996479i \(0.526720\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) −15.0000 −0.626634
\(574\) 0 0
\(575\) 36.0000 1.50130
\(576\) 0 0
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 0 0
\(579\) 12.0000 0.498703
\(580\) 0 0
\(581\) −56.0000 −2.32327
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 0 0
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) 22.0000 0.904959
\(592\) 0 0
\(593\) 12.0000 0.492781 0.246390 0.969171i \(-0.420755\pi\)
0.246390 + 0.969171i \(0.420755\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 40.0000 1.63163 0.815817 0.578310i \(-0.196288\pi\)
0.815817 + 0.578310i \(0.196288\pi\)
\(602\) 0 0
\(603\) 26.0000 1.05880
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.00000 0.0811775 0.0405887 0.999176i \(-0.487077\pi\)
0.0405887 + 0.999176i \(0.487077\pi\)
\(608\) 0 0
\(609\) 16.0000 0.648353
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 32.0000 1.29247 0.646234 0.763139i \(-0.276343\pi\)
0.646234 + 0.763139i \(0.276343\pi\)
\(614\) 0 0
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) −26.0000 −1.04672 −0.523360 0.852111i \(-0.675322\pi\)
−0.523360 + 0.852111i \(0.675322\pi\)
\(618\) 0 0
\(619\) 37.0000 1.48716 0.743578 0.668649i \(-0.233127\pi\)
0.743578 + 0.668649i \(0.233127\pi\)
\(620\) 0 0
\(621\) 45.0000 1.80579
\(622\) 0 0
\(623\) −52.0000 −2.08334
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 19.0000 0.756378 0.378189 0.925728i \(-0.376547\pi\)
0.378189 + 0.925728i \(0.376547\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) −2.00000 −0.0793676
\(636\) 0 0
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) −2.00000 −0.0791188
\(640\) 0 0
\(641\) −5.00000 −0.197488 −0.0987441 0.995113i \(-0.531483\pi\)
−0.0987441 + 0.995113i \(0.531483\pi\)
\(642\) 0 0
\(643\) −41.0000 −1.61688 −0.808441 0.588577i \(-0.799688\pi\)
−0.808441 + 0.588577i \(0.799688\pi\)
\(644\) 0 0
\(645\) −6.00000 −0.236250
\(646\) 0 0
\(647\) −7.00000 −0.275198 −0.137599 0.990488i \(-0.543939\pi\)
−0.137599 + 0.990488i \(0.543939\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 0 0
\(653\) −39.0000 −1.52619 −0.763094 0.646288i \(-0.776321\pi\)
−0.763094 + 0.646288i \(0.776321\pi\)
\(654\) 0 0
\(655\) 16.0000 0.625172
\(656\) 0 0
\(657\) 28.0000 1.09238
\(658\) 0 0
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) −17.0000 −0.661223 −0.330612 0.943767i \(-0.607255\pi\)
−0.330612 + 0.943767i \(0.607255\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) −36.0000 −1.39393
\(668\) 0 0
\(669\) −25.0000 −0.966556
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 0 0
\(675\) 20.0000 0.769800
\(676\) 0 0
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) 0 0
\(679\) −76.0000 −2.91661
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) −13.0000 −0.496704
\(686\) 0 0
\(687\) 9.00000 0.343371
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −5.00000 −0.190209 −0.0951045 0.995467i \(-0.530319\pi\)
−0.0951045 + 0.995467i \(0.530319\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.0000 −0.606915
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 12.0000 0.453882
\(700\) 0 0
\(701\) −20.0000 −0.755390 −0.377695 0.925930i \(-0.623283\pi\)
−0.377695 + 0.925930i \(0.623283\pi\)
\(702\) 0 0
\(703\) 18.0000 0.678883
\(704\) 0 0
\(705\) −4.00000 −0.150649
\(706\) 0 0
\(707\) −48.0000 −1.80523
\(708\) 0 0
\(709\) −7.00000 −0.262891 −0.131445 0.991323i \(-0.541962\pi\)
−0.131445 + 0.991323i \(0.541962\pi\)
\(710\) 0 0
\(711\) 20.0000 0.750059
\(712\) 0 0
\(713\) 45.0000 1.68526
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −18.0000 −0.672222
\(718\) 0 0
\(719\) 39.0000 1.45445 0.727227 0.686397i \(-0.240809\pi\)
0.727227 + 0.686397i \(0.240809\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 0 0
\(723\) 4.00000 0.148762
\(724\) 0 0
\(725\) −16.0000 −0.594225
\(726\) 0 0
\(727\) −1.00000 −0.0370879 −0.0185440 0.999828i \(-0.505903\pi\)
−0.0185440 + 0.999828i \(0.505903\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −24.0000 −0.886460 −0.443230 0.896408i \(-0.646168\pi\)
−0.443230 + 0.896408i \(0.646168\pi\)
\(734\) 0 0
\(735\) −9.00000 −0.331970
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 2.00000 0.0735712 0.0367856 0.999323i \(-0.488288\pi\)
0.0367856 + 0.999323i \(0.488288\pi\)
\(740\) 0 0
\(741\) −4.00000 −0.146944
\(742\) 0 0
\(743\) −44.0000 −1.61420 −0.807102 0.590412i \(-0.798965\pi\)
−0.807102 + 0.590412i \(0.798965\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 0 0
\(747\) 28.0000 1.02447
\(748\) 0 0
\(749\) −32.0000 −1.16925
\(750\) 0 0
\(751\) 1.00000 0.0364905 0.0182453 0.999834i \(-0.494192\pi\)
0.0182453 + 0.999834i \(0.494192\pi\)
\(752\) 0 0
\(753\) −17.0000 −0.619514
\(754\) 0 0
\(755\) −14.0000 −0.509512
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 40.0000 1.44810
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.0000 0.361079
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) 0 0
\(775\) 20.0000 0.718421
\(776\) 0 0
\(777\) 36.0000 1.29149
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −20.0000 −0.714742
\(784\) 0 0
\(785\) 13.0000 0.463990
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) −4.00000 −0.142404
\(790\) 0 0
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) 23.0000 0.814702 0.407351 0.913272i \(-0.366453\pi\)
0.407351 + 0.913272i \(0.366453\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 26.0000 0.918665
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 36.0000 1.26883
\(806\) 0 0
\(807\) −14.0000 −0.492823
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 46.0000 1.61528 0.807639 0.589677i \(-0.200745\pi\)
0.807639 + 0.589677i \(0.200745\pi\)
\(812\) 0 0
\(813\) 10.0000 0.350715
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) 16.0000 0.559085
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) 27.0000 0.941161 0.470580 0.882357i \(-0.344045\pi\)
0.470580 + 0.882357i \(0.344045\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.0000 1.18230 0.591148 0.806563i \(-0.298675\pi\)
0.591148 + 0.806563i \(0.298675\pi\)
\(828\) 0 0
\(829\) 11.0000 0.382046 0.191023 0.981586i \(-0.438820\pi\)
0.191023 + 0.981586i \(0.438820\pi\)
\(830\) 0 0
\(831\) −14.0000 −0.485655
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.0000 −0.622916
\(836\) 0 0
\(837\) 25.0000 0.864126
\(838\) 0 0
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) −18.0000 −0.619953
\(844\) 0 0
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −8.00000 −0.274559
\(850\) 0 0
\(851\) −81.0000 −2.77664
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) −16.0000 −0.546550 −0.273275 0.961936i \(-0.588107\pi\)
−0.273275 + 0.961936i \(0.588107\pi\)
\(858\) 0 0
\(859\) 23.0000 0.784750 0.392375 0.919805i \(-0.371654\pi\)
0.392375 + 0.919805i \(0.371654\pi\)
\(860\) 0 0
\(861\) −8.00000 −0.272639
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 0 0
\(867\) −17.0000 −0.577350
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 26.0000 0.880976
\(872\) 0 0
\(873\) 38.0000 1.28611
\(874\) 0 0
\(875\) 36.0000 1.21702
\(876\) 0 0
\(877\) 42.0000 1.41824 0.709120 0.705088i \(-0.249093\pi\)
0.709120 + 0.705088i \(0.249093\pi\)
\(878\) 0 0
\(879\) −10.0000 −0.337292
\(880\) 0 0
\(881\) 21.0000 0.707508 0.353754 0.935339i \(-0.384905\pi\)
0.353754 + 0.935339i \(0.384905\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 0 0
\(885\) 5.00000 0.168073
\(886\) 0 0
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.00000 0.267710
\(894\) 0 0
\(895\) −11.0000 −0.367689
\(896\) 0 0
\(897\) 18.0000 0.601003
\(898\) 0 0
\(899\) −20.0000 −0.667037
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 24.0000 0.798670
\(904\) 0 0
\(905\) 11.0000 0.365652
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 24.0000 0.796030
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −64.0000 −2.11347
\(918\) 0 0
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) 34.0000 1.12034
\(922\) 0 0
\(923\) −2.00000 −0.0658308
\(924\) 0 0
\(925\) −36.0000 −1.18367
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) −46.0000 −1.50921 −0.754606 0.656179i \(-0.772172\pi\)
−0.754606 + 0.656179i \(0.772172\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 0 0
\(933\) −16.0000 −0.523816
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −50.0000 −1.63343 −0.816714 0.577042i \(-0.804207\pi\)
−0.816714 + 0.577042i \(0.804207\pi\)
\(938\) 0 0
\(939\) 7.00000 0.228436
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 18.0000 0.586161
\(944\) 0 0
\(945\) 20.0000 0.650600
\(946\) 0 0
\(947\) 27.0000 0.877382 0.438691 0.898638i \(-0.355442\pi\)
0.438691 + 0.898638i \(0.355442\pi\)
\(948\) 0 0
\(949\) 28.0000 0.908918
\(950\) 0 0
\(951\) −9.00000 −0.291845
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 15.0000 0.485389
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 52.0000 1.67917
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 16.0000 0.515593
\(964\) 0 0
\(965\) −12.0000 −0.386294
\(966\) 0 0
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.0000 0.417190 0.208595 0.978002i \(-0.433111\pi\)
0.208595 + 0.978002i \(0.433111\pi\)
\(972\) 0 0
\(973\) 64.0000 2.05175
\(974\) 0 0
\(975\) 8.00000 0.256205
\(976\) 0 0
\(977\) 17.0000 0.543878 0.271939 0.962314i \(-0.412335\pi\)
0.271939 + 0.962314i \(0.412335\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −20.0000 −0.638551
\(982\) 0 0
\(983\) −49.0000 −1.56286 −0.781429 0.623995i \(-0.785509\pi\)
−0.781429 + 0.623995i \(0.785509\pi\)
\(984\) 0 0
\(985\) −22.0000 −0.700978
\(986\) 0 0
\(987\) 16.0000 0.509286
\(988\) 0 0
\(989\) −54.0000 −1.71710
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 13.0000 0.412543
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 0 0
\(999\) −45.0000 −1.42374
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.y.1.1 1
4.3 odd 2 7744.2.a.i.1.1 1
8.3 odd 2 3872.2.a.j.1.1 1
8.5 even 2 3872.2.a.e.1.1 1
11.10 odd 2 704.2.a.g.1.1 1
33.32 even 2 6336.2.a.bq.1.1 1
44.43 even 2 704.2.a.d.1.1 1
88.21 odd 2 352.2.a.c.1.1 1
88.43 even 2 352.2.a.e.1.1 yes 1
132.131 odd 2 6336.2.a.bv.1.1 1
176.21 odd 4 2816.2.c.m.1409.1 2
176.43 even 4 2816.2.c.a.1409.2 2
176.109 odd 4 2816.2.c.m.1409.2 2
176.131 even 4 2816.2.c.a.1409.1 2
264.131 odd 2 3168.2.a.j.1.1 1
264.197 even 2 3168.2.a.g.1.1 1
440.109 odd 2 8800.2.a.t.1.1 1
440.219 even 2 8800.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.a.c.1.1 1 88.21 odd 2
352.2.a.e.1.1 yes 1 88.43 even 2
704.2.a.d.1.1 1 44.43 even 2
704.2.a.g.1.1 1 11.10 odd 2
2816.2.c.a.1409.1 2 176.131 even 4
2816.2.c.a.1409.2 2 176.43 even 4
2816.2.c.m.1409.1 2 176.21 odd 4
2816.2.c.m.1409.2 2 176.109 odd 4
3168.2.a.g.1.1 1 264.197 even 2
3168.2.a.j.1.1 1 264.131 odd 2
3872.2.a.e.1.1 1 8.5 even 2
3872.2.a.j.1.1 1 8.3 odd 2
6336.2.a.bq.1.1 1 33.32 even 2
6336.2.a.bv.1.1 1 132.131 odd 2
7744.2.a.i.1.1 1 4.3 odd 2
7744.2.a.y.1.1 1 1.1 even 1 trivial
8800.2.a.i.1.1 1 440.219 even 2
8800.2.a.t.1.1 1 440.109 odd 2