gp: [N,k,chi] = [7744,2,Mod(1,7744)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7744.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [3,0,0,0,3,0,-4,0,7,0,0,0,7]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
11 11 1 1
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 7744 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(7744)) S 2 n e w ( Γ 0 ( 7 7 4 4 ) ) :
T 3 3 − 8 T 3 − 4 T_{3}^{3} - 8T_{3} - 4 T 3 3 − 8 T 3 − 4
T3^3 - 8*T3 - 4
T 5 3 − 3 T 5 2 − 5 T 5 + 3 T_{5}^{3} - 3T_{5}^{2} - 5T_{5} + 3 T 5 3 − 3 T 5 2 − 5 T 5 + 3
T5^3 - 3*T5^2 - 5*T5 + 3
T 7 3 + 4 T 7 2 − 12 T 7 − 36 T_{7}^{3} + 4T_{7}^{2} - 12T_{7} - 36 T 7 3 + 4 T 7 2 − 1 2 T 7 − 3 6
T7^3 + 4*T7^2 - 12*T7 - 36
T 13 3 − 7 T 13 2 − T 13 + 43 T_{13}^{3} - 7T_{13}^{2} - T_{13} + 43 T 1 3 3 − 7 T 1 3 2 − T 1 3 + 4 3
T13^3 - 7*T13^2 - T13 + 43
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 T^{3} T 3
T^3
3 3 3
T 3 − 8 T − 4 T^{3} - 8T - 4 T 3 − 8 T − 4
T^3 - 8*T - 4
5 5 5
T 3 − 3 T 2 + ⋯ + 3 T^{3} - 3 T^{2} + \cdots + 3 T 3 − 3 T 2 + ⋯ + 3
T^3 - 3*T^2 - 5*T + 3
7 7 7
T 3 + 4 T 2 + ⋯ − 36 T^{3} + 4 T^{2} + \cdots - 36 T 3 + 4 T 2 + ⋯ − 3 6
T^3 + 4*T^2 - 12*T - 36
11 11 1 1
T 3 T^{3} T 3
T^3
13 13 1 3
T 3 − 7 T 2 − T + 43 T^{3} - 7T^{2} - T + 43 T 3 − 7 T 2 − T + 4 3
T^3 - 7*T^2 - T + 43
17 17 1 7
T 3 − T 2 + ⋯ − 43 T^{3} - T^{2} + \cdots - 43 T 3 − T 2 + ⋯ − 4 3
T^3 - T^2 - 29*T - 43
19 19 1 9
T 3 − 12 T 2 + ⋯ − 36 T^{3} - 12 T^{2} + \cdots - 36 T 3 − 1 2 T 2 + ⋯ − 3 6
T^3 - 12*T^2 + 40*T - 36
23 23 2 3
T 3 + 4 T 2 + ⋯ − 36 T^{3} + 4 T^{2} + \cdots - 36 T 3 + 4 T 2 + ⋯ − 3 6
T^3 + 4*T^2 - 12*T - 36
29 29 2 9
T 3 + T 2 + ⋯ + 43 T^{3} + T^{2} + \cdots + 43 T 3 + T 2 + ⋯ + 4 3
T^3 + T^2 - 41*T + 43
31 31 3 1
T 3 + 8 T 2 + ⋯ − 148 T^{3} + 8 T^{2} + \cdots - 148 T 3 + 8 T 2 + ⋯ − 1 4 8
T^3 + 8*T^2 - 20*T - 148
37 37 3 7
T 3 + T 2 + ⋯ − 21 T^{3} + T^{2} + \cdots - 21 T 3 + T 2 + ⋯ − 2 1
T^3 + T^2 - 17*T - 21
41 41 4 1
T 3 + 3 T 2 + ⋯ − 63 T^{3} + 3 T^{2} + \cdots - 63 T 3 + 3 T 2 + ⋯ − 6 3
T^3 + 3*T^2 - 29*T - 63
43 43 4 3
T 3 − 12 T 2 + ⋯ + 96 T^{3} - 12 T^{2} + \cdots + 96 T 3 − 1 2 T 2 + ⋯ + 9 6
T^3 - 12*T^2 + 16*T + 96
47 47 4 7
T 3 − 8 T 2 + ⋯ + 12 T^{3} - 8 T^{2} + \cdots + 12 T 3 − 8 T 2 + ⋯ + 1 2
T^3 - 8*T^2 + 4*T + 12
53 53 5 3
T 3 − 15 T 2 + ⋯ − 81 T^{3} - 15 T^{2} + \cdots - 81 T 3 − 1 5 T 2 + ⋯ − 8 1
T^3 - 15*T^2 + 67*T - 81
59 59 5 9
T 3 + 16 T 2 + ⋯ − 96 T^{3} + 16 T^{2} + \cdots - 96 T 3 + 1 6 T 2 + ⋯ − 9 6
T^3 + 16*T^2 + 16*T - 96
61 61 6 1
( T + 6 ) 3 (T + 6)^{3} ( T + 6 ) 3
(T + 6)^3
67 67 6 7
T 3 + 8 T 2 + ⋯ − 252 T^{3} + 8 T^{2} + \cdots - 252 T 3 + 8 T 2 + ⋯ − 2 5 2
T^3 + 8*T^2 - 96*T - 252
71 71 7 1
( T + 8 ) 3 (T + 8)^{3} ( T + 8 ) 3
(T + 8)^3
73 73 7 3
T 3 − 14 T 2 + ⋯ + 648 T^{3} - 14 T^{2} + \cdots + 648 T 3 − 1 4 T 2 + ⋯ + 6 4 8
T^3 - 14*T^2 - 36*T + 648
79 79 7 9
T 3 + 8 T 2 + ⋯ − 796 T^{3} + 8 T^{2} + \cdots - 796 T 3 + 8 T 2 + ⋯ − 7 9 6
T^3 + 8*T^2 - 140*T - 796
83 83 8 3
T 3 − 4 T 2 + ⋯ + 1036 T^{3} - 4 T^{2} + \cdots + 1036 T 3 − 4 T 2 + ⋯ + 1 0 3 6
T^3 - 4*T^2 - 160*T + 1036
89 89 8 9
T 3 − 25 T 2 + ⋯ − 379 T^{3} - 25 T^{2} + \cdots - 379 T 3 − 2 5 T 2 + ⋯ − 3 7 9
T^3 - 25*T^2 + 187*T - 379
97 97 9 7
T 3 − 9 T 2 + ⋯ + 2189 T^{3} - 9 T^{2} + \cdots + 2189 T 3 − 9 T 2 + ⋯ + 2 1 8 9
T^3 - 9*T^2 - 237*T + 2189
show more
show less