Properties

Label 7728.2.a.e.1.1
Level $7728$
Weight $2$
Character 7728.1
Self dual yes
Analytic conductor $61.708$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7728 = 2^{4} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7728.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(61.7083906820\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 483)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7728.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -1.00000 q^{7} +1.00000 q^{9} -1.00000 q^{11} +2.00000 q^{13} +4.00000 q^{17} +3.00000 q^{19} +1.00000 q^{21} -1.00000 q^{23} -5.00000 q^{25} -1.00000 q^{27} -6.00000 q^{29} +2.00000 q^{31} +1.00000 q^{33} -2.00000 q^{37} -2.00000 q^{39} +1.00000 q^{41} +8.00000 q^{43} +5.00000 q^{47} +1.00000 q^{49} -4.00000 q^{51} +3.00000 q^{53} -3.00000 q^{57} -5.00000 q^{59} +13.0000 q^{61} -1.00000 q^{63} +1.00000 q^{69} -16.0000 q^{73} +5.00000 q^{75} +1.00000 q^{77} +2.00000 q^{79} +1.00000 q^{81} -6.00000 q^{83} +6.00000 q^{87} +6.00000 q^{89} -2.00000 q^{91} -2.00000 q^{93} +10.0000 q^{97} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.00000 0.729325 0.364662 0.931140i \(-0.381184\pi\)
0.364662 + 0.931140i \(0.381184\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3.00000 −0.397360
\(58\) 0 0
\(59\) −5.00000 −0.650945 −0.325472 0.945552i \(-0.605523\pi\)
−0.325472 + 0.945552i \(0.605523\pi\)
\(60\) 0 0
\(61\) 13.0000 1.66448 0.832240 0.554416i \(-0.187058\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 5.00000 0.577350
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) −2.00000 −0.207390
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) −11.0000 −1.08386 −0.541931 0.840423i \(-0.682307\pi\)
−0.541931 + 0.840423i \(0.682307\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) −1.00000 −0.0901670
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0 0
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.0000 1.62328 0.811640 0.584158i \(-0.198575\pi\)
0.811640 + 0.584158i \(0.198575\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) −5.00000 −0.421076
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) 17.0000 1.39269 0.696347 0.717705i \(-0.254807\pi\)
0.696347 + 0.717705i \(0.254807\pi\)
\(150\) 0 0
\(151\) −13.0000 −1.05792 −0.528962 0.848645i \(-0.677419\pi\)
−0.528962 + 0.848645i \(0.677419\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) 0 0
\(159\) −3.00000 −0.237915
\(160\) 0 0
\(161\) 1.00000 0.0788110
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.00000 0.0773823 0.0386912 0.999251i \(-0.487681\pi\)
0.0386912 + 0.999251i \(0.487681\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 3.00000 0.229416
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 5.00000 0.377964
\(176\) 0 0
\(177\) 5.00000 0.375823
\(178\) 0 0
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −13.0000 −0.960988
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) 13.0000 0.935760 0.467880 0.883792i \(-0.345018\pi\)
0.467880 + 0.883792i \(0.345018\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) 19.0000 1.30801 0.654007 0.756489i \(-0.273087\pi\)
0.654007 + 0.756489i \(0.273087\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 0 0
\(219\) 16.0000 1.08118
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) −5.00000 −0.333333
\(226\) 0 0
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.00000 −0.129914
\(238\) 0 0
\(239\) 4.00000 0.258738 0.129369 0.991596i \(-0.458705\pi\)
0.129369 + 0.991596i \(0.458705\pi\)
\(240\) 0 0
\(241\) 15.0000 0.966235 0.483117 0.875556i \(-0.339504\pi\)
0.483117 + 0.875556i \(0.339504\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000 0.381771
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) 1.00000 0.0628695
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.00000 −0.187135 −0.0935674 0.995613i \(-0.529827\pi\)
−0.0935674 + 0.995613i \(0.529827\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 19.0000 1.17159 0.585795 0.810459i \(-0.300782\pi\)
0.585795 + 0.810459i \(0.300782\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 22.0000 1.34136 0.670682 0.741745i \(-0.266002\pi\)
0.670682 + 0.741745i \(0.266002\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 2.00000 0.121046
\(274\) 0 0
\(275\) 5.00000 0.301511
\(276\) 0 0
\(277\) 31.0000 1.86261 0.931305 0.364241i \(-0.118672\pi\)
0.931305 + 0.364241i \(0.118672\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.00000 −0.0590281
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.00000 0.0580259
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) −9.00000 −0.517036
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) 11.0000 0.625768
\(310\) 0 0
\(311\) −21.0000 −1.19080 −0.595400 0.803429i \(-0.703007\pi\)
−0.595400 + 0.803429i \(0.703007\pi\)
\(312\) 0 0
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) 0 0
\(327\) 4.00000 0.221201
\(328\) 0 0
\(329\) −5.00000 −0.275659
\(330\) 0 0
\(331\) −5.00000 −0.274825 −0.137412 0.990514i \(-0.543879\pi\)
−0.137412 + 0.990514i \(0.543879\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0 0
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) −2.00000 −0.108306
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 −0.322097 −0.161048 0.986947i \(-0.551488\pi\)
−0.161048 + 0.986947i \(0.551488\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) −22.0000 −1.17094 −0.585471 0.810693i \(-0.699090\pi\)
−0.585471 + 0.810693i \(0.699090\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −29.0000 −1.51379 −0.756894 0.653538i \(-0.773284\pi\)
−0.756894 + 0.653538i \(0.773284\pi\)
\(368\) 0 0
\(369\) 1.00000 0.0520579
\(370\) 0 0
\(371\) −3.00000 −0.155752
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) 0 0
\(381\) −7.00000 −0.358621
\(382\) 0 0
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −4.00000 −0.202289
\(392\) 0 0
\(393\) 15.0000 0.756650
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) 0 0
\(399\) 3.00000 0.150188
\(400\) 0 0
\(401\) 25.0000 1.24844 0.624220 0.781248i \(-0.285417\pi\)
0.624220 + 0.781248i \(0.285417\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) −19.0000 −0.937201
\(412\) 0 0
\(413\) 5.00000 0.246034
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16.0000 −0.783523
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 0 0
\(423\) 5.00000 0.243108
\(424\) 0 0
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) −13.0000 −0.629114
\(428\) 0 0
\(429\) 2.00000 0.0965609
\(430\) 0 0
\(431\) 23.0000 1.10787 0.553936 0.832560i \(-0.313125\pi\)
0.553936 + 0.832560i \(0.313125\pi\)
\(432\) 0 0
\(433\) −37.0000 −1.77811 −0.889053 0.457804i \(-0.848636\pi\)
−0.889053 + 0.457804i \(0.848636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.00000 −0.143509
\(438\) 0 0
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −17.0000 −0.804072
\(448\) 0 0
\(449\) −34.0000 −1.60456 −0.802280 0.596948i \(-0.796380\pi\)
−0.802280 + 0.596948i \(0.796380\pi\)
\(450\) 0 0
\(451\) −1.00000 −0.0470882
\(452\) 0 0
\(453\) 13.0000 0.610793
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −14.0000 −0.654892 −0.327446 0.944870i \(-0.606188\pi\)
−0.327446 + 0.944870i \(0.606188\pi\)
\(458\) 0 0
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 11.0000 0.511213 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.0000 0.462745 0.231372 0.972865i \(-0.425678\pi\)
0.231372 + 0.972865i \(0.425678\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.00000 −0.0460776
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) −15.0000 −0.688247
\(476\) 0 0
\(477\) 3.00000 0.137361
\(478\) 0 0
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) −1.00000 −0.0455016
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) −11.0000 −0.497437
\(490\) 0 0
\(491\) 30.0000 1.35388 0.676941 0.736038i \(-0.263305\pi\)
0.676941 + 0.736038i \(0.263305\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 0 0
\(501\) −1.00000 −0.0446767
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) 33.0000 1.46270 0.731350 0.682003i \(-0.238891\pi\)
0.731350 + 0.682003i \(0.238891\pi\)
\(510\) 0 0
\(511\) 16.0000 0.707798
\(512\) 0 0
\(513\) −3.00000 −0.132453
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −5.00000 −0.219900
\(518\) 0 0
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) −38.0000 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(522\) 0 0
\(523\) 19.0000 0.830812 0.415406 0.909636i \(-0.363640\pi\)
0.415406 + 0.909636i \(0.363640\pi\)
\(524\) 0 0
\(525\) −5.00000 −0.218218
\(526\) 0 0
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −5.00000 −0.216982
\(532\) 0 0
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 16.0000 0.690451
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) 0 0
\(543\) 2.00000 0.0858282
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) 13.0000 0.554826
\(550\) 0 0
\(551\) −18.0000 −0.766826
\(552\) 0 0
\(553\) −2.00000 −0.0850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.0000 0.423714 0.211857 0.977301i \(-0.432049\pi\)
0.211857 + 0.977301i \(0.432049\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) 32.0000 1.34864 0.674320 0.738440i \(-0.264437\pi\)
0.674320 + 0.738440i \(0.264437\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −27.0000 −1.13190 −0.565949 0.824440i \(-0.691490\pi\)
−0.565949 + 0.824440i \(0.691490\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 3.00000 0.125327
\(574\) 0 0
\(575\) 5.00000 0.208514
\(576\) 0 0
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 0 0
\(579\) −13.0000 −0.540262
\(580\) 0 0
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) −3.00000 −0.124247
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −35.0000 −1.44460 −0.722302 0.691577i \(-0.756916\pi\)
−0.722302 + 0.691577i \(0.756916\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) −10.0000 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −11.0000 −0.450200
\(598\) 0 0
\(599\) 6.00000 0.245153 0.122577 0.992459i \(-0.460884\pi\)
0.122577 + 0.992459i \(0.460884\pi\)
\(600\) 0 0
\(601\) 24.0000 0.978980 0.489490 0.872009i \(-0.337183\pi\)
0.489490 + 0.872009i \(0.337183\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) 10.0000 0.404557
\(612\) 0 0
\(613\) 10.0000 0.403896 0.201948 0.979396i \(-0.435273\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 46.0000 1.85189 0.925945 0.377658i \(-0.123271\pi\)
0.925945 + 0.377658i \(0.123271\pi\)
\(618\) 0 0
\(619\) 12.0000 0.482321 0.241160 0.970485i \(-0.422472\pi\)
0.241160 + 0.970485i \(0.422472\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 3.00000 0.119808
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) 50.0000 1.99047 0.995234 0.0975126i \(-0.0310886\pi\)
0.995234 + 0.0975126i \(0.0310886\pi\)
\(632\) 0 0
\(633\) −19.0000 −0.755182
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 45.0000 1.77739 0.888697 0.458496i \(-0.151612\pi\)
0.888697 + 0.458496i \(0.151612\pi\)
\(642\) 0 0
\(643\) 9.00000 0.354925 0.177463 0.984128i \(-0.443211\pi\)
0.177463 + 0.984128i \(0.443211\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.00000 0.157256 0.0786281 0.996904i \(-0.474946\pi\)
0.0786281 + 0.996904i \(0.474946\pi\)
\(648\) 0 0
\(649\) 5.00000 0.196267
\(650\) 0 0
\(651\) 2.00000 0.0783862
\(652\) 0 0
\(653\) 36.0000 1.40879 0.704394 0.709809i \(-0.251219\pi\)
0.704394 + 0.709809i \(0.251219\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −16.0000 −0.624219
\(658\) 0 0
\(659\) −48.0000 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(660\) 0 0
\(661\) 13.0000 0.505641 0.252821 0.967513i \(-0.418642\pi\)
0.252821 + 0.967513i \(0.418642\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.00000 0.232321
\(668\) 0 0
\(669\) −2.00000 −0.0773245
\(670\) 0 0
\(671\) −13.0000 −0.501859
\(672\) 0 0
\(673\) −31.0000 −1.19496 −0.597481 0.801883i \(-0.703832\pi\)
−0.597481 + 0.801883i \(0.703832\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) 4.00000 0.153732 0.0768662 0.997041i \(-0.475509\pi\)
0.0768662 + 0.997041i \(0.475509\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) −2.00000 −0.0766402
\(682\) 0 0
\(683\) 16.0000 0.612223 0.306111 0.951996i \(-0.400972\pi\)
0.306111 + 0.951996i \(0.400972\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −13.0000 −0.495981
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) 1.00000 0.0379869
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 0 0
\(699\) −24.0000 −0.907763
\(700\) 0 0
\(701\) −45.0000 −1.69963 −0.849813 0.527084i \(-0.823285\pi\)
−0.849813 + 0.527084i \(0.823285\pi\)
\(702\) 0 0
\(703\) −6.00000 −0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) 18.0000 0.676004 0.338002 0.941145i \(-0.390249\pi\)
0.338002 + 0.941145i \(0.390249\pi\)
\(710\) 0 0
\(711\) 2.00000 0.0750059
\(712\) 0 0
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −4.00000 −0.149383
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 11.0000 0.409661
\(722\) 0 0
\(723\) −15.0000 −0.557856
\(724\) 0 0
\(725\) 30.0000 1.11417
\(726\) 0 0
\(727\) −23.0000 −0.853023 −0.426511 0.904482i \(-0.640258\pi\)
−0.426511 + 0.904482i \(0.640258\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 32.0000 1.18356
\(732\) 0 0
\(733\) 30.0000 1.10808 0.554038 0.832492i \(-0.313086\pi\)
0.554038 + 0.832492i \(0.313086\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) 3.00000 0.110059 0.0550297 0.998485i \(-0.482475\pi\)
0.0550297 + 0.998485i \(0.482475\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6.00000 −0.219529
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 0 0
\(753\) −14.0000 −0.510188
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −12.0000 −0.436147 −0.218074 0.975932i \(-0.569977\pi\)
−0.218074 + 0.975932i \(0.569977\pi\)
\(758\) 0 0
\(759\) −1.00000 −0.0362977
\(760\) 0 0
\(761\) 39.0000 1.41375 0.706874 0.707339i \(-0.250105\pi\)
0.706874 + 0.707339i \(0.250105\pi\)
\(762\) 0 0
\(763\) 4.00000 0.144810
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.0000 −0.361079
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) 0 0
\(773\) −36.0000 −1.29483 −0.647415 0.762138i \(-0.724150\pi\)
−0.647415 + 0.762138i \(0.724150\pi\)
\(774\) 0 0
\(775\) −10.0000 −0.359211
\(776\) 0 0
\(777\) −2.00000 −0.0717496
\(778\) 0 0
\(779\) 3.00000 0.107486
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −39.0000 −1.39020 −0.695100 0.718913i \(-0.744640\pi\)
−0.695100 + 0.718913i \(0.744640\pi\)
\(788\) 0 0
\(789\) −19.0000 −0.676418
\(790\) 0 0
\(791\) 14.0000 0.497783
\(792\) 0 0
\(793\) 26.0000 0.923287
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.0000 0.779280 0.389640 0.920967i \(-0.372599\pi\)
0.389640 + 0.920967i \(0.372599\pi\)
\(798\) 0 0
\(799\) 20.0000 0.707549
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 16.0000 0.564628
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −22.0000 −0.774437
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 6.00000 0.210688 0.105344 0.994436i \(-0.466406\pi\)
0.105344 + 0.994436i \(0.466406\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) −12.0000 −0.418803 −0.209401 0.977830i \(-0.567152\pi\)
−0.209401 + 0.977830i \(0.567152\pi\)
\(822\) 0 0
\(823\) 5.00000 0.174289 0.0871445 0.996196i \(-0.472226\pi\)
0.0871445 + 0.996196i \(0.472226\pi\)
\(824\) 0 0
\(825\) −5.00000 −0.174078
\(826\) 0 0
\(827\) 15.0000 0.521601 0.260801 0.965393i \(-0.416014\pi\)
0.260801 + 0.965393i \(0.416014\pi\)
\(828\) 0 0
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) 0 0
\(831\) −31.0000 −1.07538
\(832\) 0 0
\(833\) 4.00000 0.138592
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.00000 −0.0691301
\(838\) 0 0
\(839\) −50.0000 −1.72619 −0.863096 0.505040i \(-0.831478\pi\)
−0.863096 + 0.505040i \(0.831478\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −6.00000 −0.206651
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 0 0
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) 28.0000 0.958702 0.479351 0.877623i \(-0.340872\pi\)
0.479351 + 0.877623i \(0.340872\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.0000 −0.649028 −0.324514 0.945881i \(-0.605201\pi\)
−0.324514 + 0.945881i \(0.605201\pi\)
\(858\) 0 0
\(859\) −56.0000 −1.91070 −0.955348 0.295484i \(-0.904519\pi\)
−0.955348 + 0.295484i \(0.904519\pi\)
\(860\) 0 0
\(861\) 1.00000 0.0340799
\(862\) 0 0
\(863\) −54.0000 −1.83818 −0.919091 0.394046i \(-0.871075\pi\)
−0.919091 + 0.394046i \(0.871075\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) −2.00000 −0.0678454
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 55.0000 1.85722 0.928609 0.371060i \(-0.121005\pi\)
0.928609 + 0.371060i \(0.121005\pi\)
\(878\) 0 0
\(879\) 16.0000 0.539667
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) −48.0000 −1.61533 −0.807664 0.589643i \(-0.799269\pi\)
−0.807664 + 0.589643i \(0.799269\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.0000 0.537227 0.268614 0.963248i \(-0.413434\pi\)
0.268614 + 0.963248i \(0.413434\pi\)
\(888\) 0 0
\(889\) −7.00000 −0.234772
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 15.0000 0.501956
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.00000 0.0667781
\(898\) 0 0
\(899\) −12.0000 −0.400222
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 48.0000 1.59381 0.796907 0.604102i \(-0.206468\pi\)
0.796907 + 0.604102i \(0.206468\pi\)
\(908\) 0 0
\(909\) 9.00000 0.298511
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) 6.00000 0.198571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.0000 0.495344
\(918\) 0 0
\(919\) −2.00000 −0.0659739 −0.0329870 0.999456i \(-0.510502\pi\)
−0.0329870 + 0.999456i \(0.510502\pi\)
\(920\) 0 0
\(921\) 16.0000 0.527218
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 0 0
\(927\) −11.0000 −0.361287
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 3.00000 0.0983210
\(932\) 0 0
\(933\) 21.0000 0.687509
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 19.0000 0.620703 0.310351 0.950622i \(-0.399553\pi\)
0.310351 + 0.950622i \(0.399553\pi\)
\(938\) 0 0
\(939\) −1.00000 −0.0326338
\(940\) 0 0
\(941\) −48.0000 −1.56476 −0.782378 0.622804i \(-0.785993\pi\)
−0.782378 + 0.622804i \(0.785993\pi\)
\(942\) 0 0
\(943\) −1.00000 −0.0325645
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) −32.0000 −1.03876
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) 0 0
\(953\) −53.0000 −1.71684 −0.858419 0.512949i \(-0.828553\pi\)
−0.858419 + 0.512949i \(0.828553\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −6.00000 −0.193952
\(958\) 0 0
\(959\) −19.0000 −0.613542
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 20.0000 0.643157 0.321578 0.946883i \(-0.395787\pi\)
0.321578 + 0.946883i \(0.395787\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) 22.0000 0.706014 0.353007 0.935621i \(-0.385159\pi\)
0.353007 + 0.935621i \(0.385159\pi\)
\(972\) 0 0
\(973\) −16.0000 −0.512936
\(974\) 0 0
\(975\) 10.0000 0.320256
\(976\) 0 0
\(977\) −9.00000 −0.287936 −0.143968 0.989582i \(-0.545986\pi\)
−0.143968 + 0.989582i \(0.545986\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) −10.0000 −0.318950 −0.159475 0.987202i \(-0.550980\pi\)
−0.159475 + 0.987202i \(0.550980\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 5.00000 0.159152
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) −13.0000 −0.412959 −0.206479 0.978451i \(-0.566201\pi\)
−0.206479 + 0.978451i \(0.566201\pi\)
\(992\) 0 0
\(993\) 5.00000 0.158670
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 24.0000 0.760088 0.380044 0.924968i \(-0.375909\pi\)
0.380044 + 0.924968i \(0.375909\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7728.2.a.e.1.1 1
4.3 odd 2 483.2.a.a.1.1 1
12.11 even 2 1449.2.a.c.1.1 1
28.27 even 2 3381.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.a.1.1 1 4.3 odd 2
1449.2.a.c.1.1 1 12.11 even 2
3381.2.a.m.1.1 1 28.27 even 2
7728.2.a.e.1.1 1 1.1 even 1 trivial