Properties

Label 7728.2.a.bx
Level $7728$
Weight $2$
Character orbit 7728.a
Self dual yes
Analytic conductor $61.708$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7728 = 2^{4} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7728.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(61.7083906820\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
Defining polynomial: \(x^{3} - 6 x - 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3864)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + \beta_{1} q^{5} - q^{7} + q^{9} +O(q^{10})\) \( q + q^{3} + \beta_{1} q^{5} - q^{7} + q^{9} + ( -2 + \beta_{1} - \beta_{2} ) q^{11} + ( -2 \beta_{1} + \beta_{2} ) q^{13} + \beta_{1} q^{15} + ( -\beta_{1} - \beta_{2} ) q^{17} + ( -2 - \beta_{1} + \beta_{2} ) q^{19} - q^{21} + q^{23} + ( -1 + \beta_{2} ) q^{25} + q^{27} + 5 q^{29} + ( -4 + \beta_{1} - \beta_{2} ) q^{31} + ( -2 + \beta_{1} - \beta_{2} ) q^{33} -\beta_{1} q^{35} + ( -3 + 2 \beta_{1} ) q^{37} + ( -2 \beta_{1} + \beta_{2} ) q^{39} + ( 3 + 2 \beta_{2} ) q^{41} + ( 2 - 4 \beta_{1} + \beta_{2} ) q^{43} + \beta_{1} q^{45} + ( -1 - \beta_{1} - \beta_{2} ) q^{47} + q^{49} + ( -\beta_{1} - \beta_{2} ) q^{51} + ( -1 - 2 \beta_{1} - \beta_{2} ) q^{53} + ( 3 - 4 \beta_{1} + \beta_{2} ) q^{55} + ( -2 - \beta_{1} + \beta_{2} ) q^{57} + ( -7 - 3 \beta_{2} ) q^{59} + ( 1 + \beta_{1} - 2 \beta_{2} ) q^{61} - q^{63} + ( -7 + 2 \beta_{1} - 2 \beta_{2} ) q^{65} + ( -1 + 2 \beta_{1} + 3 \beta_{2} ) q^{67} + q^{69} + ( -1 - \beta_{1} + 2 \beta_{2} ) q^{71} + ( 3 \beta_{1} + 3 \beta_{2} ) q^{73} + ( -1 + \beta_{2} ) q^{75} + ( 2 - \beta_{1} + \beta_{2} ) q^{77} + ( -6 - 3 \beta_{1} - \beta_{2} ) q^{79} + q^{81} + ( -2 + 5 \beta_{1} + 3 \beta_{2} ) q^{83} + ( -5 - 2 \beta_{1} - \beta_{2} ) q^{85} + 5 q^{87} + ( 1 + \beta_{1} - 2 \beta_{2} ) q^{89} + ( 2 \beta_{1} - \beta_{2} ) q^{91} + ( -4 + \beta_{1} - \beta_{2} ) q^{93} + ( -3 - \beta_{2} ) q^{95} + ( -7 - 4 \beta_{1} + 2 \beta_{2} ) q^{97} + ( -2 + \beta_{1} - \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{3} - 3q^{7} + 3q^{9} + O(q^{10}) \) \( 3q + 3q^{3} - 3q^{7} + 3q^{9} - 6q^{11} - 6q^{19} - 3q^{21} + 3q^{23} - 3q^{25} + 3q^{27} + 15q^{29} - 12q^{31} - 6q^{33} - 9q^{37} + 9q^{41} + 6q^{43} - 3q^{47} + 3q^{49} - 3q^{53} + 9q^{55} - 6q^{57} - 21q^{59} + 3q^{61} - 3q^{63} - 21q^{65} - 3q^{67} + 3q^{69} - 3q^{71} - 3q^{75} + 6q^{77} - 18q^{79} + 3q^{81} - 6q^{83} - 15q^{85} + 15q^{87} + 3q^{89} - 12q^{93} - 9q^{95} - 21q^{97} - 6q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - 6 x - 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 4 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 4\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.36147
−0.167449
2.52892
0 1.00000 0 −2.36147 0 −1.00000 0 1.00000 0
1.2 0 1.00000 0 −0.167449 0 −1.00000 0 1.00000 0
1.3 0 1.00000 0 2.52892 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7728.2.a.bx 3
4.b odd 2 1 3864.2.a.m 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3864.2.a.m 3 4.b odd 2 1
7728.2.a.bx 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7728))\):

\( T_{5}^{3} - 6 T_{5} - 1 \)
\( T_{11}^{3} + 6 T_{11}^{2} - 3 T_{11} - 20 \)
\( T_{13}^{3} - 30 T_{13} - 61 \)
\( T_{17}^{3} - 21 T_{17} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( ( -1 + T )^{3} \)
$5$ \( -1 - 6 T + T^{3} \)
$7$ \( ( 1 + T )^{3} \)
$11$ \( -20 - 3 T + 6 T^{2} + T^{3} \)
$13$ \( -61 - 30 T + T^{3} \)
$17$ \( 16 - 21 T + T^{3} \)
$19$ \( -24 - 3 T + 6 T^{2} + T^{3} \)
$23$ \( ( -1 + T )^{3} \)
$29$ \( ( -5 + T )^{3} \)
$31$ \( 6 + 33 T + 12 T^{2} + T^{3} \)
$37$ \( -53 + 3 T + 9 T^{2} + T^{3} \)
$41$ \( 237 - 21 T - 9 T^{2} + T^{3} \)
$43$ \( -97 - 84 T - 6 T^{2} + T^{3} \)
$47$ \( -4 - 18 T + 3 T^{2} + T^{3} \)
$53$ \( 60 - 39 T + 3 T^{2} + T^{3} \)
$59$ \( -818 + 39 T + 21 T^{2} + T^{3} \)
$61$ \( -50 - 45 T - 3 T^{2} + T^{3} \)
$67$ \( -148 - 147 T + 3 T^{2} + T^{3} \)
$71$ \( 50 - 45 T + 3 T^{2} + T^{3} \)
$73$ \( -432 - 189 T + T^{3} \)
$79$ \( 12 + 33 T + 18 T^{2} + T^{3} \)
$83$ \( -2388 - 291 T + 6 T^{2} + T^{3} \)
$89$ \( -50 - 45 T - 3 T^{2} + T^{3} \)
$97$ \( -985 + 27 T + 21 T^{2} + T^{3} \)
show more
show less