Properties

Label 7728.2.a.b.1.1
Level $7728$
Weight $2$
Character 7728.1
Self dual yes
Analytic conductor $61.708$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7728 = 2^{4} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7728.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(61.7083906820\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 966)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7728.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -2.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} -4.00000 q^{11} +2.00000 q^{13} +2.00000 q^{15} +6.00000 q^{17} -1.00000 q^{21} -1.00000 q^{23} -1.00000 q^{25} -1.00000 q^{27} -2.00000 q^{29} -4.00000 q^{31} +4.00000 q^{33} -2.00000 q^{35} +6.00000 q^{37} -2.00000 q^{39} -6.00000 q^{41} -12.0000 q^{43} -2.00000 q^{45} +12.0000 q^{47} +1.00000 q^{49} -6.00000 q^{51} +6.00000 q^{53} +8.00000 q^{55} +4.00000 q^{59} -10.0000 q^{61} +1.00000 q^{63} -4.00000 q^{65} -4.00000 q^{67} +1.00000 q^{69} +16.0000 q^{71} +2.00000 q^{73} +1.00000 q^{75} -4.00000 q^{77} -8.00000 q^{79} +1.00000 q^{81} +16.0000 q^{83} -12.0000 q^{85} +2.00000 q^{87} +6.00000 q^{89} +2.00000 q^{91} +4.00000 q^{93} -2.00000 q^{97} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 2.00000 0.186501
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.00000 0.172133
\(136\) 0 0
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) −8.00000 −0.622799
\(166\) 0 0
\(167\) −20.0000 −1.54765 −0.773823 0.633402i \(-0.781658\pi\)
−0.773823 + 0.633402i \(0.781658\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) −24.0000 −1.75505
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) 0 0
\(195\) 4.00000 0.286446
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) −2.00000 −0.140372
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) 0 0
\(213\) −16.0000 −1.09630
\(214\) 0 0
\(215\) 24.0000 1.63679
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) −18.0000 −1.18947 −0.594737 0.803921i \(-0.702744\pi\)
−0.594737 + 0.803921i \(0.702744\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) −24.0000 −1.56559
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −16.0000 −1.01396
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 12.0000 0.751469
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 0 0
\(293\) −34.0000 −1.98630 −0.993151 0.116841i \(-0.962723\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) −12.0000 −0.691669
\(302\) 0 0
\(303\) 14.0000 0.804279
\(304\) 0 0
\(305\) 20.0000 1.14520
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) −2.00000 −0.112687
\(316\) 0 0
\(317\) −10.0000 −0.561656 −0.280828 0.959758i \(-0.590609\pi\)
−0.280828 + 0.959758i \(0.590609\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) 2.00000 0.110600
\(328\) 0 0
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −2.00000 −0.107676
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) −32.0000 −1.69838
\(356\) 0 0
\(357\) −6.00000 −0.317554
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 8.00000 0.407718
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) 38.0000 1.92668 0.963338 0.268290i \(-0.0864585\pi\)
0.963338 + 0.268290i \(0.0864585\pi\)
\(390\) 0 0
\(391\) −6.00000 −0.303433
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) 34.0000 1.70641 0.853206 0.521575i \(-0.174655\pi\)
0.853206 + 0.521575i \(0.174655\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 0 0
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) −10.0000 −0.493264
\(412\) 0 0
\(413\) 4.00000 0.196827
\(414\) 0 0
\(415\) −32.0000 −1.57082
\(416\) 0 0
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 0 0
\(423\) 12.0000 0.583460
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) −10.0000 −0.483934
\(428\) 0 0
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) −4.00000 −0.191785
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −20.0000 −0.950229 −0.475114 0.879924i \(-0.657593\pi\)
−0.475114 + 0.879924i \(0.657593\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) −6.00000 −0.280668 −0.140334 0.990104i \(-0.544818\pi\)
−0.140334 + 0.990104i \(0.544818\pi\)
\(458\) 0 0
\(459\) −6.00000 −0.280056
\(460\) 0 0
\(461\) −22.0000 −1.02464 −0.512321 0.858794i \(-0.671214\pi\)
−0.512321 + 0.858794i \(0.671214\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) −8.00000 −0.370991
\(466\) 0 0
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) 0 0
\(473\) 48.0000 2.20704
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) 1.00000 0.0455016
\(484\) 0 0
\(485\) 4.00000 0.181631
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 0 0
\(497\) 16.0000 0.717698
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 0 0
\(501\) 20.0000 0.893534
\(502\) 0 0
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) 0 0
\(505\) 28.0000 1.24598
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −48.0000 −2.11104
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −26.0000 −1.13908 −0.569540 0.821963i \(-0.692879\pi\)
−0.569540 + 0.821963i \(0.692879\pi\)
\(522\) 0 0
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 0 0
\(525\) 1.00000 0.0436436
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) −24.0000 −1.03761
\(536\) 0 0
\(537\) 4.00000 0.172613
\(538\) 0 0
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) 0 0
\(543\) 2.00000 0.0858282
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) 12.0000 0.509372
\(556\) 0 0
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 8.00000 0.334205
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 0 0
\(579\) −18.0000 −0.748054
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) −10.0000 −0.406558
\(606\) 0 0
\(607\) −20.0000 −0.811775 −0.405887 0.913923i \(-0.633038\pi\)
−0.405887 + 0.913923i \(0.633038\pi\)
\(608\) 0 0
\(609\) 2.00000 0.0810441
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) 0 0
\(615\) −12.0000 −0.483887
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 28.0000 1.11290
\(634\) 0 0
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) 16.0000 0.632950
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) −24.0000 −0.946468 −0.473234 0.880937i \(-0.656913\pi\)
−0.473234 + 0.880937i \(0.656913\pi\)
\(644\) 0 0
\(645\) −24.0000 −0.944999
\(646\) 0 0
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) −34.0000 −1.33052 −0.665261 0.746611i \(-0.731680\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(654\) 0 0
\(655\) 8.00000 0.312586
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 0 0
\(663\) −12.0000 −0.466041
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.00000 0.0774403
\(668\) 0 0
\(669\) −4.00000 −0.154649
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −34.0000 −1.30673 −0.653363 0.757045i \(-0.726642\pi\)
−0.653363 + 0.757045i \(0.726642\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 18.0000 0.686743
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) −4.00000 −0.151947
\(694\) 0 0
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 0 0
\(699\) −10.0000 −0.378235
\(700\) 0 0
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 24.0000 0.903892
\(706\) 0 0
\(707\) −14.0000 −0.526524
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) 0 0
\(717\) 8.00000 0.298765
\(718\) 0 0
\(719\) −28.0000 −1.04422 −0.522112 0.852877i \(-0.674856\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 10.0000 0.371904
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −72.0000 −2.66302
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 2.00000 0.0737711
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 0 0
\(747\) 16.0000 0.585409
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 24.0000 0.874609
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) −4.00000 −0.145191
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) 0 0
\(765\) −12.0000 −0.433861
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) −26.0000 −0.935155 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) −6.00000 −0.215249
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −64.0000 −2.29010
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) 40.0000 1.42585 0.712923 0.701242i \(-0.247371\pi\)
0.712923 + 0.701242i \(0.247371\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) 0 0
\(795\) 12.0000 0.425596
\(796\) 0 0
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 0 0
\(799\) 72.0000 2.54718
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 20.0000 0.701431
\(814\) 0 0
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) −20.0000 −0.695468 −0.347734 0.937593i \(-0.613049\pi\)
−0.347734 + 0.937593i \(0.613049\pi\)
\(828\) 0 0
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 40.0000 1.38426
\(836\) 0 0
\(837\) 4.00000 0.138260
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 22.0000 0.757720
\(844\) 0 0
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) 5.00000 0.171802
\(848\) 0 0
\(849\) 24.0000 0.823678
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) 12.0000 0.409435 0.204717 0.978821i \(-0.434372\pi\)
0.204717 + 0.978821i \(0.434372\pi\)
\(860\) 0 0
\(861\) 6.00000 0.204479
\(862\) 0 0
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) −26.0000 −0.877958 −0.438979 0.898497i \(-0.644660\pi\)
−0.438979 + 0.898497i \(0.644660\pi\)
\(878\) 0 0
\(879\) 34.0000 1.14679
\(880\) 0 0
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) 8.00000 0.268917
\(886\) 0 0
\(887\) 44.0000 1.47738 0.738688 0.674048i \(-0.235446\pi\)
0.738688 + 0.674048i \(0.235446\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 8.00000 0.267411
\(896\) 0 0
\(897\) 2.00000 0.0667781
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 12.0000 0.399335
\(904\) 0 0
\(905\) 4.00000 0.132964
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) −14.0000 −0.464351
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) −64.0000 −2.11809
\(914\) 0 0
\(915\) −20.0000 −0.661180
\(916\) 0 0
\(917\) −4.00000 −0.132092
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −46.0000 −1.50921 −0.754606 0.656179i \(-0.772172\pi\)
−0.754606 + 0.656179i \(0.772172\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 12.0000 0.392862
\(934\) 0 0
\(935\) 48.0000 1.56977
\(936\) 0 0
\(937\) 30.0000 0.980057 0.490029 0.871706i \(-0.336986\pi\)
0.490029 + 0.871706i \(0.336986\pi\)
\(938\) 0 0
\(939\) −14.0000 −0.456873
\(940\) 0 0
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) 0 0
\(943\) 6.00000 0.195387
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 10.0000 0.324272
\(952\) 0 0
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 0 0
\(955\) 16.0000 0.517748
\(956\) 0 0
\(957\) −8.00000 −0.258603
\(958\) 0 0
\(959\) 10.0000 0.322917
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) −36.0000 −1.15888
\(966\) 0 0
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 24.0000 0.770197 0.385098 0.922876i \(-0.374168\pi\)
0.385098 + 0.922876i \(0.374168\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 0 0
\(975\) 2.00000 0.0640513
\(976\) 0 0
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) 36.0000 1.14706
\(986\) 0 0
\(987\) −12.0000 −0.381964
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 56.0000 1.77890 0.889449 0.457034i \(-0.151088\pi\)
0.889449 + 0.457034i \(0.151088\pi\)
\(992\) 0 0
\(993\) 28.0000 0.888553
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.00000 −0.190022 −0.0950110 0.995476i \(-0.530289\pi\)
−0.0950110 + 0.995476i \(0.530289\pi\)
\(998\) 0 0
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7728.2.a.b.1.1 1
4.3 odd 2 966.2.a.j.1.1 1
12.11 even 2 2898.2.a.f.1.1 1
28.27 even 2 6762.2.a.bc.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
966.2.a.j.1.1 1 4.3 odd 2
2898.2.a.f.1.1 1 12.11 even 2
6762.2.a.bc.1.1 1 28.27 even 2
7728.2.a.b.1.1 1 1.1 even 1 trivial