Properties

Label 7728.2.a.a.1.1
Level $7728$
Weight $2$
Character 7728.1
Self dual yes
Analytic conductor $61.708$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7728 = 2^{4} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7728.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(61.7083906820\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 966)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7728.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -3.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -3.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +5.00000 q^{13} +3.00000 q^{15} -8.00000 q^{19} +1.00000 q^{21} +1.00000 q^{23} +4.00000 q^{25} -1.00000 q^{27} +3.00000 q^{29} -2.00000 q^{31} +3.00000 q^{35} -7.00000 q^{37} -5.00000 q^{39} +9.00000 q^{41} +1.00000 q^{43} -3.00000 q^{45} +3.00000 q^{47} +1.00000 q^{49} -12.0000 q^{53} +8.00000 q^{57} +6.00000 q^{59} +14.0000 q^{61} -1.00000 q^{63} -15.0000 q^{65} +4.00000 q^{67} -1.00000 q^{69} -6.00000 q^{71} -4.00000 q^{73} -4.00000 q^{75} +16.0000 q^{79} +1.00000 q^{81} +12.0000 q^{83} -3.00000 q^{87} +6.00000 q^{89} -5.00000 q^{91} +2.00000 q^{93} +24.0000 q^{95} -1.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 3.00000 0.774597
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) −5.00000 −0.800641
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 0 0
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −15.0000 −1.86052
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.00000 −0.321634
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −5.00000 −0.524142
\(92\) 0 0
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) 24.0000 2.46235
\(96\) 0 0
\(97\) −1.00000 −0.101535 −0.0507673 0.998711i \(-0.516167\pi\)
−0.0507673 + 0.998711i \(0.516167\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) −3.00000 −0.292770
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −19.0000 −1.81987 −0.909935 0.414751i \(-0.863869\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) 0 0
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) 0 0
\(117\) 5.00000 0.462250
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −9.00000 −0.811503
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 0 0
\(135\) 3.00000 0.258199
\(136\) 0 0
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −9.00000 −0.747409
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −11.0000 −0.895167 −0.447584 0.894242i \(-0.647715\pi\)
−0.447584 + 0.894242i \(0.647715\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −8.00000 −0.611775
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) 0 0
\(179\) −15.0000 −1.12115 −0.560576 0.828103i \(-0.689420\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) −14.0000 −1.03491
\(184\) 0 0
\(185\) 21.0000 1.54395
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) −1.00000 −0.0719816 −0.0359908 0.999352i \(-0.511459\pi\)
−0.0359908 + 0.999352i \(0.511459\pi\)
\(194\) 0 0
\(195\) 15.0000 1.07417
\(196\) 0 0
\(197\) 9.00000 0.641223 0.320612 0.947211i \(-0.396112\pi\)
0.320612 + 0.947211i \(0.396112\pi\)
\(198\) 0 0
\(199\) −17.0000 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) −3.00000 −0.210559
\(204\) 0 0
\(205\) −27.0000 −1.88576
\(206\) 0 0
\(207\) 1.00000 0.0695048
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) −3.00000 −0.204598
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) 15.0000 0.995585 0.497792 0.867296i \(-0.334144\pi\)
0.497792 + 0.867296i \(0.334144\pi\)
\(228\) 0 0
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) 0 0
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −19.0000 −1.22390 −0.611949 0.790897i \(-0.709614\pi\)
−0.611949 + 0.790897i \(0.709614\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −40.0000 −2.54514
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 15.0000 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 7.00000 0.434959
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 0 0
\(263\) 9.00000 0.554964 0.277482 0.960731i \(-0.410500\pi\)
0.277482 + 0.960731i \(0.410500\pi\)
\(264\) 0 0
\(265\) 36.0000 2.21146
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 28.0000 1.70088 0.850439 0.526073i \(-0.176336\pi\)
0.850439 + 0.526073i \(0.176336\pi\)
\(272\) 0 0
\(273\) 5.00000 0.302614
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4.00000 −0.240337 −0.120168 0.992754i \(-0.538343\pi\)
−0.120168 + 0.992754i \(0.538343\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −15.0000 −0.894825 −0.447412 0.894328i \(-0.647654\pi\)
−0.447412 + 0.894328i \(0.647654\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) 0 0
\(285\) −24.0000 −1.42164
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 1.00000 0.0586210
\(292\) 0 0
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) −18.0000 −1.04800
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.00000 0.289157
\(300\) 0 0
\(301\) −1.00000 −0.0576390
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) −42.0000 −2.40491
\(306\) 0 0
\(307\) −11.0000 −0.627803 −0.313902 0.949456i \(-0.601636\pi\)
−0.313902 + 0.949456i \(0.601636\pi\)
\(308\) 0 0
\(309\) −1.00000 −0.0568880
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) −27.0000 −1.51647 −0.758236 0.651981i \(-0.773938\pi\)
−0.758236 + 0.651981i \(0.773938\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) 0 0
\(327\) 19.0000 1.05070
\(328\) 0 0
\(329\) −3.00000 −0.165395
\(330\) 0 0
\(331\) 16.0000 0.879440 0.439720 0.898135i \(-0.355078\pi\)
0.439720 + 0.898135i \(0.355078\pi\)
\(332\) 0 0
\(333\) −7.00000 −0.383598
\(334\) 0 0
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) −4.00000 −0.217894 −0.108947 0.994048i \(-0.534748\pi\)
−0.108947 + 0.994048i \(0.534748\pi\)
\(338\) 0 0
\(339\) −15.0000 −0.814688
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 3.00000 0.161515
\(346\) 0 0
\(347\) −3.00000 −0.161048 −0.0805242 0.996753i \(-0.525659\pi\)
−0.0805242 + 0.996753i \(0.525659\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 27.0000 1.43706 0.718532 0.695493i \(-0.244814\pi\)
0.718532 + 0.695493i \(0.244814\pi\)
\(354\) 0 0
\(355\) 18.0000 0.955341
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.0000 −1.10834 −0.554169 0.832404i \(-0.686964\pi\)
−0.554169 + 0.832404i \(0.686964\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) −29.0000 −1.51379 −0.756894 0.653538i \(-0.773284\pi\)
−0.756894 + 0.653538i \(0.773284\pi\)
\(368\) 0 0
\(369\) 9.00000 0.468521
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) −3.00000 −0.154919
\(376\) 0 0
\(377\) 15.0000 0.772539
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) −13.0000 −0.666010
\(382\) 0 0
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.00000 0.0508329
\(388\) 0 0
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −18.0000 −0.907980
\(394\) 0 0
\(395\) −48.0000 −2.41514
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) −10.0000 −0.498135
\(404\) 0 0
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 32.0000 1.58230 0.791149 0.611623i \(-0.209483\pi\)
0.791149 + 0.611623i \(0.209483\pi\)
\(410\) 0 0
\(411\) 9.00000 0.443937
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −36.0000 −1.76717
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 3.00000 0.145865
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −14.0000 −0.677507
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.0000 −0.722525 −0.361262 0.932464i \(-0.617654\pi\)
−0.361262 + 0.932464i \(0.617654\pi\)
\(432\) 0 0
\(433\) 17.0000 0.816968 0.408484 0.912766i \(-0.366058\pi\)
0.408484 + 0.912766i \(0.366058\pi\)
\(434\) 0 0
\(435\) 9.00000 0.431517
\(436\) 0 0
\(437\) −8.00000 −0.382692
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 27.0000 1.28281 0.641404 0.767203i \(-0.278352\pi\)
0.641404 + 0.767203i \(0.278352\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 11.0000 0.516825
\(454\) 0 0
\(455\) 15.0000 0.703211
\(456\) 0 0
\(457\) −28.0000 −1.30978 −0.654892 0.755722i \(-0.727286\pi\)
−0.654892 + 0.755722i \(0.727286\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 31.0000 1.44069 0.720346 0.693615i \(-0.243983\pi\)
0.720346 + 0.693615i \(0.243983\pi\)
\(464\) 0 0
\(465\) −6.00000 −0.278243
\(466\) 0 0
\(467\) 33.0000 1.52706 0.763529 0.645774i \(-0.223465\pi\)
0.763529 + 0.645774i \(0.223465\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −32.0000 −1.46826
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) 6.00000 0.274147 0.137073 0.990561i \(-0.456230\pi\)
0.137073 + 0.990561i \(0.456230\pi\)
\(480\) 0 0
\(481\) −35.0000 −1.59586
\(482\) 0 0
\(483\) 1.00000 0.0455016
\(484\) 0 0
\(485\) 3.00000 0.136223
\(486\) 0 0
\(487\) 31.0000 1.40474 0.702372 0.711810i \(-0.252124\pi\)
0.702372 + 0.711810i \(0.252124\pi\)
\(488\) 0 0
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 0 0
\(513\) 8.00000 0.353209
\(514\) 0 0
\(515\) −3.00000 −0.132196
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) −26.0000 −1.13690 −0.568450 0.822718i \(-0.692457\pi\)
−0.568450 + 0.822718i \(0.692457\pi\)
\(524\) 0 0
\(525\) 4.00000 0.174574
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) 45.0000 1.94917
\(534\) 0 0
\(535\) 36.0000 1.55642
\(536\) 0 0
\(537\) 15.0000 0.647298
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) 57.0000 2.44161
\(546\) 0 0
\(547\) 10.0000 0.427569 0.213785 0.976881i \(-0.431421\pi\)
0.213785 + 0.976881i \(0.431421\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) 0 0
\(555\) −21.0000 −0.891400
\(556\) 0 0
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 0 0
\(559\) 5.00000 0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.00000 0.126435 0.0632175 0.998000i \(-0.479864\pi\)
0.0632175 + 0.998000i \(0.479864\pi\)
\(564\) 0 0
\(565\) −45.0000 −1.89316
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 45.0000 1.88650 0.943249 0.332086i \(-0.107752\pi\)
0.943249 + 0.332086i \(0.107752\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 26.0000 1.08239 0.541197 0.840896i \(-0.317971\pi\)
0.541197 + 0.840896i \(0.317971\pi\)
\(578\) 0 0
\(579\) 1.00000 0.0415586
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −15.0000 −0.620174
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) −9.00000 −0.370211
\(592\) 0 0
\(593\) −27.0000 −1.10876 −0.554379 0.832265i \(-0.687044\pi\)
−0.554379 + 0.832265i \(0.687044\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.0000 0.695764
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −16.0000 −0.652654 −0.326327 0.945257i \(-0.605811\pi\)
−0.326327 + 0.945257i \(0.605811\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 33.0000 1.34164
\(606\) 0 0
\(607\) −14.0000 −0.568242 −0.284121 0.958788i \(-0.591702\pi\)
−0.284121 + 0.958788i \(0.591702\pi\)
\(608\) 0 0
\(609\) 3.00000 0.121566
\(610\) 0 0
\(611\) 15.0000 0.606835
\(612\) 0 0
\(613\) −1.00000 −0.0403896 −0.0201948 0.999796i \(-0.506429\pi\)
−0.0201948 + 0.999796i \(0.506429\pi\)
\(614\) 0 0
\(615\) 27.0000 1.08875
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −20.0000 −0.796187 −0.398094 0.917345i \(-0.630328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(632\) 0 0
\(633\) 8.00000 0.317971
\(634\) 0 0
\(635\) −39.0000 −1.54767
\(636\) 0 0
\(637\) 5.00000 0.198107
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −15.0000 −0.592464 −0.296232 0.955116i \(-0.595730\pi\)
−0.296232 + 0.955116i \(0.595730\pi\)
\(642\) 0 0
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) 3.00000 0.118125
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) 0 0
\(653\) −9.00000 −0.352197 −0.176099 0.984373i \(-0.556348\pi\)
−0.176099 + 0.984373i \(0.556348\pi\)
\(654\) 0 0
\(655\) −54.0000 −2.10995
\(656\) 0 0
\(657\) −4.00000 −0.156055
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.0000 −0.930680
\(666\) 0 0
\(667\) 3.00000 0.116160
\(668\) 0 0
\(669\) 14.0000 0.541271
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 35.0000 1.34915 0.674575 0.738206i \(-0.264327\pi\)
0.674575 + 0.738206i \(0.264327\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) 1.00000 0.0383765
\(680\) 0 0
\(681\) −15.0000 −0.574801
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 27.0000 1.03162
\(686\) 0 0
\(687\) 4.00000 0.152610
\(688\) 0 0
\(689\) −60.0000 −2.28582
\(690\) 0 0
\(691\) 49.0000 1.86405 0.932024 0.362397i \(-0.118041\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15.0000 0.568982
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) 36.0000 1.35970 0.679851 0.733351i \(-0.262045\pi\)
0.679851 + 0.733351i \(0.262045\pi\)
\(702\) 0 0
\(703\) 56.0000 2.11208
\(704\) 0 0
\(705\) 9.00000 0.338960
\(706\) 0 0
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) −45.0000 −1.67822 −0.839108 0.543964i \(-0.816923\pi\)
−0.839108 + 0.543964i \(0.816923\pi\)
\(720\) 0 0
\(721\) −1.00000 −0.0372419
\(722\) 0 0
\(723\) 19.0000 0.706618
\(724\) 0 0
\(725\) 12.0000 0.445669
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 8.00000 0.295487 0.147743 0.989026i \(-0.452799\pi\)
0.147743 + 0.989026i \(0.452799\pi\)
\(734\) 0 0
\(735\) 3.00000 0.110657
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −50.0000 −1.83928 −0.919640 0.392763i \(-0.871519\pi\)
−0.919640 + 0.392763i \(0.871519\pi\)
\(740\) 0 0
\(741\) 40.0000 1.46944
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) 0 0
\(753\) −15.0000 −0.546630
\(754\) 0 0
\(755\) 33.0000 1.20099
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) 19.0000 0.687846
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 30.0000 1.08324
\(768\) 0 0
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) −51.0000 −1.83434 −0.917171 0.398493i \(-0.869533\pi\)
−0.917171 + 0.398493i \(0.869533\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) −7.00000 −0.251124
\(778\) 0 0
\(779\) −72.0000 −2.57967
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −3.00000 −0.107211
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) −9.00000 −0.320408
\(790\) 0 0
\(791\) −15.0000 −0.533339
\(792\) 0 0
\(793\) 70.0000 2.48577
\(794\) 0 0
\(795\) −36.0000 −1.27679
\(796\) 0 0
\(797\) 33.0000 1.16892 0.584460 0.811423i \(-0.301306\pi\)
0.584460 + 0.811423i \(0.301306\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 3.00000 0.105736
\(806\) 0 0
\(807\) 18.0000 0.633630
\(808\) 0 0
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 0 0
\(811\) −5.00000 −0.175574 −0.0877869 0.996139i \(-0.527979\pi\)
−0.0877869 + 0.996139i \(0.527979\pi\)
\(812\) 0 0
\(813\) −28.0000 −0.982003
\(814\) 0 0
\(815\) 60.0000 2.10171
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 0 0
\(819\) −5.00000 −0.174714
\(820\) 0 0
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) 13.0000 0.453152 0.226576 0.973994i \(-0.427247\pi\)
0.226576 + 0.973994i \(0.427247\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6.00000 −0.208640 −0.104320 0.994544i \(-0.533267\pi\)
−0.104320 + 0.994544i \(0.533267\pi\)
\(828\) 0 0
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 0 0
\(831\) 4.00000 0.138758
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −36.0000 −1.24583
\(836\) 0 0
\(837\) 2.00000 0.0691301
\(838\) 0 0
\(839\) −6.00000 −0.207143 −0.103572 0.994622i \(-0.533027\pi\)
−0.103572 + 0.994622i \(0.533027\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 15.0000 0.516627
\(844\) 0 0
\(845\) −36.0000 −1.23844
\(846\) 0 0
\(847\) 11.0000 0.377964
\(848\) 0 0
\(849\) 14.0000 0.480479
\(850\) 0 0
\(851\) −7.00000 −0.239957
\(852\) 0 0
\(853\) −49.0000 −1.67773 −0.838864 0.544341i \(-0.816780\pi\)
−0.838864 + 0.544341i \(0.816780\pi\)
\(854\) 0 0
\(855\) 24.0000 0.820783
\(856\) 0 0
\(857\) −15.0000 −0.512390 −0.256195 0.966625i \(-0.582469\pi\)
−0.256195 + 0.966625i \(0.582469\pi\)
\(858\) 0 0
\(859\) 31.0000 1.05771 0.528853 0.848713i \(-0.322622\pi\)
0.528853 + 0.848713i \(0.322622\pi\)
\(860\) 0 0
\(861\) 9.00000 0.306719
\(862\) 0 0
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 20.0000 0.677674
\(872\) 0 0
\(873\) −1.00000 −0.0338449
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) −40.0000 −1.35070 −0.675352 0.737496i \(-0.736008\pi\)
−0.675352 + 0.737496i \(0.736008\pi\)
\(878\) 0 0
\(879\) 30.0000 1.01187
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 18.0000 0.605063
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −13.0000 −0.436006
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −24.0000 −0.803129
\(894\) 0 0
\(895\) 45.0000 1.50418
\(896\) 0 0
\(897\) −5.00000 −0.166945
\(898\) 0 0
\(899\) −6.00000 −0.200111
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 1.00000 0.0332779
\(904\) 0 0
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) −41.0000 −1.36138 −0.680691 0.732570i \(-0.738320\pi\)
−0.680691 + 0.732570i \(0.738320\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) −21.0000 −0.695761 −0.347881 0.937539i \(-0.613099\pi\)
−0.347881 + 0.937539i \(0.613099\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 42.0000 1.38848
\(916\) 0 0
\(917\) −18.0000 −0.594412
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 11.0000 0.362462
\(922\) 0 0
\(923\) −30.0000 −0.987462
\(924\) 0 0
\(925\) −28.0000 −0.920634
\(926\) 0 0
\(927\) 1.00000 0.0328443
\(928\) 0 0
\(929\) 33.0000 1.08269 0.541347 0.840799i \(-0.317914\pi\)
0.541347 + 0.840799i \(0.317914\pi\)
\(930\) 0 0
\(931\) −8.00000 −0.262189
\(932\) 0 0
\(933\) 12.0000 0.392862
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −25.0000 −0.816714 −0.408357 0.912822i \(-0.633898\pi\)
−0.408357 + 0.912822i \(0.633898\pi\)
\(938\) 0 0
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) −51.0000 −1.66255 −0.831276 0.555860i \(-0.812389\pi\)
−0.831276 + 0.555860i \(0.812389\pi\)
\(942\) 0 0
\(943\) 9.00000 0.293080
\(944\) 0 0
\(945\) −3.00000 −0.0975900
\(946\) 0 0
\(947\) 3.00000 0.0974869 0.0487435 0.998811i \(-0.484478\pi\)
0.0487435 + 0.998811i \(0.484478\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) 27.0000 0.875535
\(952\) 0 0
\(953\) −18.0000 −0.583077 −0.291539 0.956559i \(-0.594167\pi\)
−0.291539 + 0.956559i \(0.594167\pi\)
\(954\) 0 0
\(955\) −36.0000 −1.16493
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.00000 0.290625
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −12.0000 −0.386695
\(964\) 0 0
\(965\) 3.00000 0.0965734
\(966\) 0 0
\(967\) −44.0000 −1.41494 −0.707472 0.706741i \(-0.750165\pi\)
−0.707472 + 0.706741i \(0.750165\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 5.00000 0.160293
\(974\) 0 0
\(975\) −20.0000 −0.640513
\(976\) 0 0
\(977\) −21.0000 −0.671850 −0.335925 0.941889i \(-0.609049\pi\)
−0.335925 + 0.941889i \(0.609049\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −19.0000 −0.606623
\(982\) 0 0
\(983\) −30.0000 −0.956851 −0.478426 0.878128i \(-0.658792\pi\)
−0.478426 + 0.878128i \(0.658792\pi\)
\(984\) 0 0
\(985\) −27.0000 −0.860292
\(986\) 0 0
\(987\) 3.00000 0.0954911
\(988\) 0 0
\(989\) 1.00000 0.0317982
\(990\) 0 0
\(991\) 28.0000 0.889449 0.444725 0.895667i \(-0.353302\pi\)
0.444725 + 0.895667i \(0.353302\pi\)
\(992\) 0 0
\(993\) −16.0000 −0.507745
\(994\) 0 0
\(995\) 51.0000 1.61681
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) 0 0
\(999\) 7.00000 0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7728.2.a.a.1.1 1
4.3 odd 2 966.2.a.i.1.1 1
12.11 even 2 2898.2.a.j.1.1 1
28.27 even 2 6762.2.a.bd.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
966.2.a.i.1.1 1 4.3 odd 2
2898.2.a.j.1.1 1 12.11 even 2
6762.2.a.bd.1.1 1 28.27 even 2
7728.2.a.a.1.1 1 1.1 even 1 trivial