Properties

Label 7728.2.a
Level $7728$
Weight $2$
Character orbit 7728.a
Rep. character $\chi_{7728}(1,\cdot)$
Character field $\Q$
Dimension $132$
Newform subspaces $60$
Sturm bound $3072$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7728 = 2^{4} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7728.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 60 \)
Sturm bound: \(3072\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7728))\).

Total New Old
Modular forms 1560 132 1428
Cusp forms 1513 132 1381
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(23\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(+\)\(7\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(10\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(10\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(7\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(10\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(7\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(7\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(10\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(8\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(8\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(8\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(8\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(8\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(8\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(8\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(8\)
Plus space\(+\)\(60\)
Minus space\(-\)\(72\)

Trace form

\( 132q - 8q^{5} + 132q^{9} + O(q^{10}) \) \( 132q - 8q^{5} + 132q^{9} - 8q^{13} + 8q^{17} + 140q^{25} - 8q^{29} - 8q^{37} - 16q^{39} + 8q^{41} - 32q^{43} - 8q^{45} + 132q^{49} - 8q^{53} - 32q^{55} - 8q^{61} + 48q^{65} + 40q^{73} - 32q^{75} + 132q^{81} - 16q^{85} + 40q^{89} + 8q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7728))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 7 23
7728.2.a.a \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(-3\) \(-1\) \(-\) \(+\) \(+\) \(-\) \(q-q^{3}-3q^{5}-q^{7}+q^{9}+5q^{13}+3q^{15}+\cdots\)
7728.2.a.b \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(-2\) \(1\) \(-\) \(+\) \(-\) \(+\) \(q-q^{3}-2q^{5}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\)
7728.2.a.c \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) \(-\) \(+\) \(+\) \(+\) \(q-q^{3}-q^{7}+q^{9}-6q^{11}+2q^{13}+\cdots\)
7728.2.a.d \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) \(-\) \(+\) \(+\) \(-\) \(q-q^{3}-q^{7}+q^{9}-3q^{11}+2q^{13}+\cdots\)
7728.2.a.e \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) \(-\) \(+\) \(+\) \(+\) \(q-q^{3}-q^{7}+q^{9}-q^{11}+2q^{13}+4q^{17}+\cdots\)
7728.2.a.f \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(0\) \(1\) \(+\) \(+\) \(-\) \(+\) \(q-q^{3}+q^{7}+q^{9}-q^{11}-6q^{13}-7q^{19}+\cdots\)
7728.2.a.g \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(0\) \(1\) \(-\) \(+\) \(-\) \(+\) \(q-q^{3}+q^{7}+q^{9}+2q^{11}-6q^{13}+\cdots\)
7728.2.a.h \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(2\) \(-1\) \(+\) \(+\) \(+\) \(+\) \(q-q^{3}+2q^{5}-q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots\)
7728.2.a.i \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(2\) \(-1\) \(+\) \(+\) \(+\) \(-\) \(q-q^{3}+2q^{5}-q^{7}+q^{9}+6q^{13}-2q^{15}+\cdots\)
7728.2.a.j \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(3\) \(1\) \(-\) \(+\) \(-\) \(+\) \(q-q^{3}+3q^{5}+q^{7}+q^{9}-4q^{11}-3q^{13}+\cdots\)
7728.2.a.k \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(4\) \(-1\) \(+\) \(+\) \(+\) \(-\) \(q-q^{3}+4q^{5}-q^{7}+q^{9}-3q^{11}-2q^{13}+\cdots\)
7728.2.a.l \(1\) \(61.708\) \(\Q\) None \(0\) \(-1\) \(4\) \(1\) \(-\) \(+\) \(-\) \(-\) \(q-q^{3}+4q^{5}+q^{7}+q^{9}+5q^{11}-2q^{13}+\cdots\)
7728.2.a.m \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(-4\) \(-1\) \(-\) \(-\) \(+\) \(+\) \(q+q^{3}-4q^{5}-q^{7}+q^{9}-2q^{11}+2q^{13}+\cdots\)
7728.2.a.n \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(-3\) \(1\) \(+\) \(-\) \(-\) \(+\) \(q+q^{3}-3q^{5}+q^{7}+q^{9}-q^{13}-3q^{15}+\cdots\)
7728.2.a.o \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(-2\) \(-1\) \(-\) \(-\) \(+\) \(-\) \(q+q^{3}-2q^{5}-q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\)
7728.2.a.p \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(-2\) \(1\) \(-\) \(-\) \(-\) \(-\) \(q+q^{3}-2q^{5}+q^{7}+q^{9}+4q^{13}-2q^{15}+\cdots\)
7728.2.a.q \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(0\) \(1\) \(+\) \(-\) \(-\) \(+\) \(q+q^{3}+q^{7}+q^{9}+2q^{11}-6q^{13}+\cdots\)
7728.2.a.r \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(0\) \(1\) \(-\) \(-\) \(-\) \(-\) \(q+q^{3}+q^{7}+q^{9}+5q^{11}-6q^{13}+\cdots\)
7728.2.a.s \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(1\) \(-1\) \(-\) \(-\) \(+\) \(+\) \(q+q^{3}+q^{5}-q^{7}+q^{9}-q^{13}+q^{15}+\cdots\)
7728.2.a.t \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(2\) \(-1\) \(-\) \(-\) \(+\) \(+\) \(q+q^{3}+2q^{5}-q^{7}+q^{9}+4q^{11}-4q^{13}+\cdots\)
7728.2.a.u \(1\) \(61.708\) \(\Q\) None \(0\) \(1\) \(3\) \(-1\) \(-\) \(-\) \(+\) \(-\) \(q+q^{3}+3q^{5}-q^{7}+q^{9}-4q^{11}+3q^{13}+\cdots\)
7728.2.a.v \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(-5\) \(-2\) \(-\) \(+\) \(+\) \(-\) \(q-q^{3}+(-2-\beta )q^{5}-q^{7}+q^{9}+(3+\cdots)q^{11}+\cdots\)
7728.2.a.w \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(-5\) \(-2\) \(-\) \(+\) \(+\) \(+\) \(q-q^{3}+(-2-\beta )q^{5}-q^{7}+q^{9}+q^{11}+\cdots\)
7728.2.a.x \(2\) \(61.708\) \(\Q(\sqrt{13}) \) None \(0\) \(-2\) \(-5\) \(2\) \(-\) \(+\) \(-\) \(+\) \(q-q^{3}+(-2-\beta )q^{5}+q^{7}+q^{9}+5q^{11}+\cdots\)
7728.2.a.y \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(-1\) \(-2\) \(+\) \(+\) \(+\) \(+\) \(q-q^{3}-\beta q^{5}-q^{7}+q^{9}+(3-2\beta )q^{11}+\cdots\)
7728.2.a.z \(2\) \(61.708\) \(\Q(\sqrt{41}) \) None \(0\) \(-2\) \(-1\) \(2\) \(-\) \(+\) \(-\) \(-\) \(q-q^{3}-\beta q^{5}+q^{7}+q^{9}+(2+\beta )q^{13}+\cdots\)
7728.2.a.ba \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(-1\) \(2\) \(-\) \(+\) \(-\) \(-\) \(q-q^{3}-\beta q^{5}+q^{7}+q^{9}+3q^{11}+(-1+\cdots)q^{13}+\cdots\)
7728.2.a.bb \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(1\) \(-2\) \(-\) \(+\) \(+\) \(-\) \(q-q^{3}+(-1+3\beta )q^{5}-q^{7}+q^{9}-3q^{11}+\cdots\)
7728.2.a.bc \(2\) \(61.708\) \(\Q(\sqrt{41}) \) None \(0\) \(-2\) \(1\) \(-2\) \(-\) \(+\) \(+\) \(+\) \(q-q^{3}+\beta q^{5}-q^{7}+q^{9}+4q^{11}+(2+\cdots)q^{13}+\cdots\)
7728.2.a.bd \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(4\) \(-2\) \(-\) \(+\) \(+\) \(-\) \(q-q^{3}+2q^{5}-q^{7}+q^{9}-\beta q^{13}-2q^{15}+\cdots\)
7728.2.a.be \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(5\) \(-2\) \(-\) \(+\) \(+\) \(+\) \(q-q^{3}+(3-\beta )q^{5}-q^{7}+q^{9}-q^{11}+\cdots\)
7728.2.a.bf \(2\) \(61.708\) \(\Q(\sqrt{13}) \) None \(0\) \(2\) \(-5\) \(2\) \(-\) \(-\) \(-\) \(-\) \(q+q^{3}+(-2-\beta )q^{5}+q^{7}+q^{9}+(-3+\cdots)q^{11}+\cdots\)
7728.2.a.bg \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(-3\) \(-2\) \(-\) \(-\) \(+\) \(+\) \(q+q^{3}+(-1-\beta )q^{5}-q^{7}+q^{9}+(-1+\cdots)q^{11}+\cdots\)
7728.2.a.bh \(2\) \(61.708\) \(\Q(\sqrt{33}) \) None \(0\) \(2\) \(-3\) \(2\) \(-\) \(-\) \(-\) \(-\) \(q+q^{3}+(-1-\beta )q^{5}+q^{7}+q^{9}-4q^{11}+\cdots\)
7728.2.a.bi \(2\) \(61.708\) \(\Q(\sqrt{41}) \) None \(0\) \(2\) \(0\) \(-2\) \(+\) \(-\) \(+\) \(+\) \(q+q^{3}-q^{7}+q^{9}+\beta q^{11}+2q^{13}+\cdots\)
7728.2.a.bj \(2\) \(61.708\) \(\Q(\sqrt{33}) \) None \(0\) \(2\) \(1\) \(-2\) \(+\) \(-\) \(+\) \(+\) \(q+q^{3}+\beta q^{5}-q^{7}+q^{9}+(-1+\beta )q^{11}+\cdots\)
7728.2.a.bk \(2\) \(61.708\) \(\Q(\sqrt{13}) \) None \(0\) \(2\) \(1\) \(-2\) \(-\) \(-\) \(+\) \(-\) \(q+q^{3}+\beta q^{5}-q^{7}+q^{9}+(-1+2\beta )q^{11}+\cdots\)
7728.2.a.bl \(2\) \(61.708\) \(\Q(\sqrt{29}) \) None \(0\) \(2\) \(1\) \(2\) \(+\) \(-\) \(-\) \(+\) \(q+q^{3}+\beta q^{5}+q^{7}+q^{9}-5q^{11}+(1+\cdots)q^{13}+\cdots\)
7728.2.a.bm \(2\) \(61.708\) \(\Q(\sqrt{17}) \) None \(0\) \(2\) \(1\) \(2\) \(-\) \(-\) \(-\) \(+\) \(q+q^{3}+\beta q^{5}+q^{7}+q^{9}+(-2+2\beta )q^{11}+\cdots\)
7728.2.a.bn \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(1\) \(2\) \(-\) \(-\) \(-\) \(-\) \(q+q^{3}+\beta q^{5}+q^{7}+q^{9}+(-1+2\beta )q^{11}+\cdots\)
7728.2.a.bo \(2\) \(61.708\) \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(1\) \(2\) \(-\) \(-\) \(-\) \(+\) \(q+q^{3}+\beta q^{5}+q^{7}+q^{9}+(1+2\beta )q^{11}+\cdots\)
7728.2.a.bp \(3\) \(61.708\) 3.3.229.1 None \(0\) \(-3\) \(-3\) \(-3\) \(+\) \(+\) \(+\) \(-\) \(q-q^{3}+(-1+\beta _{1})q^{5}-q^{7}+q^{9}+(1+\cdots)q^{11}+\cdots\)
7728.2.a.bq \(3\) \(61.708\) 3.3.733.1 None \(0\) \(-3\) \(-3\) \(3\) \(+\) \(+\) \(-\) \(+\) \(q-q^{3}+(-1-\beta _{2})q^{5}+q^{7}+q^{9}+(1+\cdots)q^{11}+\cdots\)
7728.2.a.br \(3\) \(61.708\) 3.3.1101.1 None \(0\) \(-3\) \(1\) \(3\) \(-\) \(+\) \(-\) \(+\) \(q-q^{3}+\beta _{1}q^{5}+q^{7}+q^{9}-q^{11}+(-1+\cdots)q^{13}+\cdots\)
7728.2.a.bs \(3\) \(61.708\) 3.3.229.1 None \(0\) \(-3\) \(1\) \(3\) \(+\) \(+\) \(-\) \(-\) \(q-q^{3}-\beta _{2}q^{5}+q^{7}+q^{9}+(1+\beta _{1}+\cdots)q^{11}+\cdots\)
7728.2.a.bt \(3\) \(61.708\) 3.3.837.1 None \(0\) \(-3\) \(3\) \(3\) \(-\) \(+\) \(-\) \(-\) \(q-q^{3}+(1-\beta _{1})q^{5}+q^{7}+q^{9}+(-2+\cdots)q^{11}+\cdots\)
7728.2.a.bu \(3\) \(61.708\) 3.3.621.1 None \(0\) \(3\) \(-3\) \(-3\) \(+\) \(-\) \(+\) \(+\) \(q+q^{3}+(-1-\beta _{1}+\beta _{2})q^{5}-q^{7}+q^{9}+\cdots\)
7728.2.a.bv \(3\) \(61.708\) 3.3.1509.1 None \(0\) \(3\) \(-1\) \(-3\) \(-\) \(-\) \(+\) \(+\) \(q+q^{3}-\beta _{1}q^{5}-q^{7}+q^{9}+(-1+2\beta _{1}+\cdots)q^{11}+\cdots\)
7728.2.a.bw \(3\) \(61.708\) 3.3.229.1 None \(0\) \(3\) \(-1\) \(3\) \(+\) \(-\) \(-\) \(+\) \(q+q^{3}+\beta _{2}q^{5}+q^{7}+q^{9}+(-1-\beta _{1}+\cdots)q^{11}+\cdots\)
7728.2.a.bx \(3\) \(61.708\) 3.3.837.1 None \(0\) \(3\) \(0\) \(-3\) \(+\) \(-\) \(+\) \(-\) \(q+q^{3}+\beta _{1}q^{5}-q^{7}+q^{9}+(-2+\beta _{1}+\cdots)q^{11}+\cdots\)
7728.2.a.by \(3\) \(61.708\) 3.3.1229.1 None \(0\) \(3\) \(1\) \(-3\) \(+\) \(-\) \(+\) \(+\) \(q+q^{3}+\beta _{1}q^{5}-q^{7}+q^{9}+(1-\beta _{1}+\cdots)q^{11}+\cdots\)
7728.2.a.bz \(4\) \(61.708\) 4.4.39605.1 None \(0\) \(-4\) \(-2\) \(4\) \(+\) \(+\) \(-\) \(-\) \(q-q^{3}+(-1+\beta _{1})q^{5}+q^{7}+q^{9}+(1+\cdots)q^{11}+\cdots\)
7728.2.a.ca \(4\) \(61.708\) 4.4.256549.1 None \(0\) \(-4\) \(2\) \(-4\) \(+\) \(+\) \(+\) \(+\) \(q-q^{3}+\beta _{1}q^{5}-q^{7}+q^{9}+(1+\beta _{2}+\cdots)q^{11}+\cdots\)
7728.2.a.cb \(4\) \(61.708\) 4.4.2225.1 None \(0\) \(4\) \(-3\) \(-4\) \(+\) \(-\) \(+\) \(-\) \(q+q^{3}+(-1-\beta _{3})q^{5}-q^{7}+q^{9}+(-1+\cdots)q^{11}+\cdots\)
7728.2.a.cc \(4\) \(61.708\) 4.4.75645.1 None \(0\) \(4\) \(1\) \(4\) \(+\) \(-\) \(-\) \(-\) \(q+q^{3}+\beta _{1}q^{5}+q^{7}+q^{9}+(1+\beta _{1}+\cdots)q^{11}+\cdots\)
7728.2.a.cd \(4\) \(61.708\) 4.4.24197.1 None \(0\) \(4\) \(5\) \(-4\) \(-\) \(-\) \(+\) \(-\) \(q+q^{3}+(1-\beta _{3})q^{5}-q^{7}+q^{9}+(1+\beta _{2}+\cdots)q^{11}+\cdots\)
7728.2.a.ce \(4\) \(61.708\) 4.4.15317.1 None \(0\) \(4\) \(5\) \(4\) \(-\) \(-\) \(-\) \(+\) \(q+q^{3}+(1+\beta _{3})q^{5}+q^{7}+q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots\)
7728.2.a.cf \(5\) \(61.708\) 5.5.17679757.1 None \(0\) \(-5\) \(-6\) \(-5\) \(+\) \(+\) \(+\) \(-\) \(q-q^{3}+(-1-\beta _{1})q^{5}-q^{7}+q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots\)
7728.2.a.cg \(6\) \(61.708\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-6\) \(0\) \(6\) \(+\) \(+\) \(-\) \(+\) \(q-q^{3}+\beta _{5}q^{5}+q^{7}+q^{9}+(-1-\beta _{4}+\cdots)q^{11}+\cdots\)
7728.2.a.ch \(6\) \(61.708\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(6\) \(2\) \(6\) \(+\) \(-\) \(-\) \(-\) \(q+q^{3}-\beta _{3}q^{5}+q^{7}+q^{9}-\beta _{4}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7728))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(7728)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(276))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(483))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(552))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(644))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(966))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1104))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1288))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1932))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2576))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3864))\)\(^{\oplus 2}\)