Properties

Label 770.2.n.k.71.3
Level $770$
Weight $2$
Character 770.71
Analytic conductor $6.148$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 5 x^{15} + 18 x^{14} - 35 x^{13} + 89 x^{12} - 185 x^{11} + 837 x^{10} - 1660 x^{9} + 4196 x^{8} - 8420 x^{7} + 13485 x^{6} - 14630 x^{5} + 11615 x^{4} - 5200 x^{3} + 1425 x^{2} - 225 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 71.3
Root \(0.295920 - 0.214999i\) of defining polynomial
Character \(\chi\) \(=\) 770.71
Dual form 770.2.n.k.141.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(-0.295920 - 0.214999i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(0.113032 - 0.347875i) q^{6} +(0.809017 - 0.587785i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(-0.885707 - 2.72592i) q^{9} +O(q^{10})\) \(q+(0.309017 + 0.951057i) q^{2} +(-0.295920 - 0.214999i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(0.113032 - 0.347875i) q^{6} +(0.809017 - 0.587785i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(-0.885707 - 2.72592i) q^{9} -1.00000 q^{10} +(-2.13291 - 2.53982i) q^{11} +0.365778 q^{12} +(-0.679988 - 2.09279i) q^{13} +(0.809017 + 0.587785i) q^{14} +(0.295920 - 0.214999i) q^{15} +(0.309017 - 0.951057i) q^{16} +(1.93547 - 5.95676i) q^{17} +(2.31881 - 1.68471i) q^{18} +(4.86192 + 3.53240i) q^{19} +(-0.309017 - 0.951057i) q^{20} -0.365778 q^{21} +(1.75640 - 2.81337i) q^{22} +0.452126 q^{23} +(0.113032 + 0.347875i) q^{24} +(-0.809017 - 0.587785i) q^{25} +(1.78023 - 1.29341i) q^{26} +(-0.663066 + 2.04071i) q^{27} +(-0.309017 + 0.951057i) q^{28} +(1.54336 - 1.12132i) q^{29} +(0.295920 + 0.214999i) q^{30} +(-1.86991 - 5.75500i) q^{31} +1.00000 q^{32} +(0.0851150 + 1.21016i) q^{33} +6.26330 q^{34} +(0.309017 + 0.951057i) q^{35} +(2.31881 + 1.68471i) q^{36} +(-2.86494 + 2.08150i) q^{37} +(-1.85709 + 5.71554i) q^{38} +(-0.248725 + 0.765496i) q^{39} +(0.809017 - 0.587785i) q^{40} +(0.0167272 + 0.0121531i) q^{41} +(-0.113032 - 0.347875i) q^{42} +3.71582 q^{43} +(3.21843 + 0.801061i) q^{44} +2.86621 q^{45} +(0.139715 + 0.429998i) q^{46} +(-6.98448 - 5.07452i) q^{47} +(-0.295920 + 0.214999i) q^{48} +(0.309017 - 0.951057i) q^{49} +(0.309017 - 0.951057i) q^{50} +(-1.85344 + 1.34660i) q^{51} +(1.78023 + 1.29341i) q^{52} +(2.48301 + 7.64190i) q^{53} -2.14573 q^{54} +(3.07462 - 1.24367i) q^{55} -1.00000 q^{56} +(-0.679282 - 2.09062i) q^{57} +(1.54336 + 1.12132i) q^{58} +(10.2971 - 7.48127i) q^{59} +(-0.113032 + 0.347875i) q^{60} +(1.86032 - 5.72548i) q^{61} +(4.89549 - 3.55679i) q^{62} +(-2.31881 - 1.68471i) q^{63} +(0.309017 + 0.951057i) q^{64} +2.20049 q^{65} +(-1.12463 + 0.454909i) q^{66} +8.19469 q^{67} +(1.93547 + 5.95676i) q^{68} +(-0.133793 - 0.0972066i) q^{69} +(-0.809017 + 0.587785i) q^{70} +(4.87028 - 14.9892i) q^{71} +(-0.885707 + 2.72592i) q^{72} +(-10.3426 + 7.51437i) q^{73} +(-2.86494 - 2.08150i) q^{74} +(0.113032 + 0.347875i) q^{75} -6.00967 q^{76} +(-3.21843 - 0.801061i) q^{77} -0.804890 q^{78} +(3.32023 + 10.2186i) q^{79} +(0.809017 + 0.587785i) q^{80} +(-6.32146 + 4.59281i) q^{81} +(-0.00638924 + 0.0196641i) q^{82} +(3.38927 - 10.4311i) q^{83} +(0.295920 - 0.214999i) q^{84} +(5.06712 + 3.68148i) q^{85} +(1.14825 + 3.53396i) q^{86} -0.697795 q^{87} +(0.232696 + 3.30845i) q^{88} -9.56469 q^{89} +(0.885707 + 2.72592i) q^{90} +(-1.78023 - 1.29341i) q^{91} +(-0.365778 + 0.265753i) q^{92} +(-0.683973 + 2.10505i) q^{93} +(2.66783 - 8.21074i) q^{94} +(-4.86192 + 3.53240i) q^{95} +(-0.295920 - 0.214999i) q^{96} +(-1.30581 - 4.01887i) q^{97} +1.00000 q^{98} +(-5.03422 + 8.06370i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} + O(q^{10}) \) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} - 16q^{10} - 2q^{11} + 8q^{13} + 4q^{14} + 5q^{15} - 4q^{16} - 13q^{17} - 9q^{18} + 15q^{19} + 4q^{20} - 2q^{22} + 20q^{23} + 5q^{24} - 4q^{25} - 7q^{26} + 10q^{27} + 4q^{28} - 14q^{29} + 5q^{30} - 6q^{31} + 16q^{32} - 25q^{33} + 12q^{34} - 4q^{35} - 9q^{36} + 28q^{37} - 20q^{38} + 15q^{39} + 4q^{40} + 2q^{41} - 5q^{42} - 10q^{43} + 3q^{44} - 16q^{45} - 10q^{46} - 10q^{47} - 5q^{48} - 4q^{49} - 4q^{50} - 42q^{51} - 7q^{52} - 2q^{53} - 3q^{55} - 16q^{56} + 21q^{57} - 14q^{58} + 7q^{59} - 5q^{60} + 4q^{61} + 14q^{62} + 9q^{63} - 4q^{64} + 2q^{65} - 10q^{66} + 66q^{67} - 13q^{68} - 64q^{69} - 4q^{70} + 2q^{71} + q^{72} + 12q^{73} + 28q^{74} + 5q^{75} + 10q^{76} - 3q^{77} + 70q^{78} + 2q^{79} + 4q^{80} - 30q^{81} - 13q^{82} - 5q^{83} + 5q^{84} - 7q^{85} + 5q^{86} - 24q^{87} - 2q^{88} + 2q^{89} - q^{90} + 7q^{91} - 38q^{93} + 25q^{94} - 15q^{95} - 5q^{96} + 22q^{97} + 16q^{98} - 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) −0.295920 0.214999i −0.170850 0.124130i 0.499074 0.866559i \(-0.333673\pi\)
−0.669924 + 0.742429i \(0.733673\pi\)
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0.113032 0.347875i 0.0461449 0.142020i
\(7\) 0.809017 0.587785i 0.305780 0.222162i
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) −0.885707 2.72592i −0.295236 0.908641i
\(10\) −1.00000 −0.316228
\(11\) −2.13291 2.53982i −0.643098 0.765784i
\(12\) 0.365778 0.105591
\(13\) −0.679988 2.09279i −0.188595 0.580435i 0.811397 0.584496i \(-0.198708\pi\)
−0.999992 + 0.00406027i \(0.998708\pi\)
\(14\) 0.809017 + 0.587785i 0.216219 + 0.157092i
\(15\) 0.295920 0.214999i 0.0764063 0.0555125i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 1.93547 5.95676i 0.469420 1.44473i −0.383918 0.923367i \(-0.625425\pi\)
0.853338 0.521358i \(-0.174575\pi\)
\(18\) 2.31881 1.68471i 0.546549 0.397091i
\(19\) 4.86192 + 3.53240i 1.11540 + 0.810387i 0.983506 0.180876i \(-0.0578934\pi\)
0.131896 + 0.991264i \(0.457893\pi\)
\(20\) −0.309017 0.951057i −0.0690983 0.212663i
\(21\) −0.365778 −0.0798193
\(22\) 1.75640 2.81337i 0.374467 0.599812i
\(23\) 0.452126 0.0942748 0.0471374 0.998888i \(-0.484990\pi\)
0.0471374 + 0.998888i \(0.484990\pi\)
\(24\) 0.113032 + 0.347875i 0.0230725 + 0.0710098i
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 1.78023 1.29341i 0.349132 0.253660i
\(27\) −0.663066 + 2.04071i −0.127607 + 0.392735i
\(28\) −0.309017 + 0.951057i −0.0583987 + 0.179733i
\(29\) 1.54336 1.12132i 0.286595 0.208224i −0.435194 0.900337i \(-0.643320\pi\)
0.721789 + 0.692113i \(0.243320\pi\)
\(30\) 0.295920 + 0.214999i 0.0540274 + 0.0392532i
\(31\) −1.86991 5.75500i −0.335846 1.03363i −0.966304 0.257405i \(-0.917133\pi\)
0.630457 0.776224i \(-0.282867\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.0851150 + 1.21016i 0.0148166 + 0.210662i
\(34\) 6.26330 1.07415
\(35\) 0.309017 + 0.951057i 0.0522334 + 0.160758i
\(36\) 2.31881 + 1.68471i 0.386468 + 0.280786i
\(37\) −2.86494 + 2.08150i −0.470994 + 0.342197i −0.797829 0.602884i \(-0.794018\pi\)
0.326835 + 0.945082i \(0.394018\pi\)
\(38\) −1.85709 + 5.71554i −0.301260 + 0.927182i
\(39\) −0.248725 + 0.765496i −0.0398278 + 0.122577i
\(40\) 0.809017 0.587785i 0.127917 0.0929370i
\(41\) 0.0167272 + 0.0121531i 0.00261236 + 0.00189799i 0.589091 0.808067i \(-0.299486\pi\)
−0.586478 + 0.809965i \(0.699486\pi\)
\(42\) −0.113032 0.347875i −0.0174411 0.0536783i
\(43\) 3.71582 0.566657 0.283329 0.959023i \(-0.408561\pi\)
0.283329 + 0.959023i \(0.408561\pi\)
\(44\) 3.21843 + 0.801061i 0.485197 + 0.120764i
\(45\) 2.86621 0.427269
\(46\) 0.139715 + 0.429998i 0.0205998 + 0.0633997i
\(47\) −6.98448 5.07452i −1.01879 0.740195i −0.0527559 0.998607i \(-0.516801\pi\)
−0.966035 + 0.258413i \(0.916801\pi\)
\(48\) −0.295920 + 0.214999i −0.0427124 + 0.0310324i
\(49\) 0.309017 0.951057i 0.0441453 0.135865i
\(50\) 0.309017 0.951057i 0.0437016 0.134500i
\(51\) −1.85344 + 1.34660i −0.259534 + 0.188562i
\(52\) 1.78023 + 1.29341i 0.246874 + 0.179364i
\(53\) 2.48301 + 7.64190i 0.341067 + 1.04970i 0.963656 + 0.267147i \(0.0860809\pi\)
−0.622589 + 0.782549i \(0.713919\pi\)
\(54\) −2.14573 −0.291997
\(55\) 3.07462 1.24367i 0.414581 0.167697i
\(56\) −1.00000 −0.133631
\(57\) −0.679282 2.09062i −0.0899731 0.276909i
\(58\) 1.54336 + 1.12132i 0.202653 + 0.147236i
\(59\) 10.2971 7.48127i 1.34057 0.973979i 0.341144 0.940011i \(-0.389186\pi\)
0.999423 0.0339680i \(-0.0108144\pi\)
\(60\) −0.113032 + 0.347875i −0.0145923 + 0.0449105i
\(61\) 1.86032 5.72548i 0.238190 0.733073i −0.758492 0.651682i \(-0.774064\pi\)
0.996682 0.0813910i \(-0.0259363\pi\)
\(62\) 4.89549 3.55679i 0.621728 0.451712i
\(63\) −2.31881 1.68471i −0.292143 0.212254i
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) 2.20049 0.272937
\(66\) −1.12463 + 0.454909i −0.138432 + 0.0559954i
\(67\) 8.19469 1.00114 0.500570 0.865696i \(-0.333124\pi\)
0.500570 + 0.865696i \(0.333124\pi\)
\(68\) 1.93547 + 5.95676i 0.234710 + 0.722363i
\(69\) −0.133793 0.0972066i −0.0161068 0.0117023i
\(70\) −0.809017 + 0.587785i −0.0966960 + 0.0702538i
\(71\) 4.87028 14.9892i 0.577995 1.77889i −0.0477498 0.998859i \(-0.515205\pi\)
0.625745 0.780028i \(-0.284795\pi\)
\(72\) −0.885707 + 2.72592i −0.104382 + 0.321253i
\(73\) −10.3426 + 7.51437i −1.21052 + 0.879491i −0.995277 0.0970710i \(-0.969053\pi\)
−0.215238 + 0.976562i \(0.569053\pi\)
\(74\) −2.86494 2.08150i −0.333043 0.241970i
\(75\) 0.113032 + 0.347875i 0.0130518 + 0.0401692i
\(76\) −6.00967 −0.689356
\(77\) −3.21843 0.801061i −0.366774 0.0912893i
\(78\) −0.804890 −0.0911358
\(79\) 3.32023 + 10.2186i 0.373555 + 1.14969i 0.944448 + 0.328661i \(0.106597\pi\)
−0.570893 + 0.821025i \(0.693403\pi\)
\(80\) 0.809017 + 0.587785i 0.0904508 + 0.0657164i
\(81\) −6.32146 + 4.59281i −0.702385 + 0.510313i
\(82\) −0.00638924 + 0.0196641i −0.000705573 + 0.00217153i
\(83\) 3.38927 10.4311i 0.372021 1.14496i −0.573446 0.819243i \(-0.694394\pi\)
0.945467 0.325718i \(-0.105606\pi\)
\(84\) 0.295920 0.214999i 0.0322876 0.0234583i
\(85\) 5.06712 + 3.68148i 0.549606 + 0.399312i
\(86\) 1.14825 + 3.53396i 0.123819 + 0.381076i
\(87\) −0.697795 −0.0748115
\(88\) 0.232696 + 3.30845i 0.0248055 + 0.352682i
\(89\) −9.56469 −1.01385 −0.506927 0.861989i \(-0.669219\pi\)
−0.506927 + 0.861989i \(0.669219\pi\)
\(90\) 0.885707 + 2.72592i 0.0933617 + 0.287338i
\(91\) −1.78023 1.29341i −0.186619 0.135587i
\(92\) −0.365778 + 0.265753i −0.0381350 + 0.0277067i
\(93\) −0.683973 + 2.10505i −0.0709247 + 0.218284i
\(94\) 2.66783 8.21074i 0.275166 0.846873i
\(95\) −4.86192 + 3.53240i −0.498823 + 0.362416i
\(96\) −0.295920 0.214999i −0.0302023 0.0219432i
\(97\) −1.30581 4.01887i −0.132585 0.408054i 0.862622 0.505850i \(-0.168821\pi\)
−0.995207 + 0.0977955i \(0.968821\pi\)
\(98\) 1.00000 0.101015
\(99\) −5.03422 + 8.06370i −0.505958 + 0.810432i
\(100\) 1.00000 0.100000
\(101\) −3.10608 9.55954i −0.309067 0.951209i −0.978128 0.208002i \(-0.933304\pi\)
0.669062 0.743207i \(-0.266696\pi\)
\(102\) −1.85344 1.34660i −0.183518 0.133334i
\(103\) −11.8704 + 8.62434i −1.16962 + 0.849781i −0.990964 0.134130i \(-0.957176\pi\)
−0.178659 + 0.983911i \(0.557176\pi\)
\(104\) −0.679988 + 2.09279i −0.0666784 + 0.205215i
\(105\) 0.113032 0.347875i 0.0110308 0.0339492i
\(106\) −6.50059 + 4.72296i −0.631393 + 0.458734i
\(107\) 1.49721 + 1.08778i 0.144740 + 0.105160i 0.657799 0.753194i \(-0.271488\pi\)
−0.513059 + 0.858354i \(0.671488\pi\)
\(108\) −0.663066 2.04071i −0.0638036 0.196367i
\(109\) −16.3800 −1.56892 −0.784459 0.620181i \(-0.787059\pi\)
−0.784459 + 0.620181i \(0.787059\pi\)
\(110\) 2.13291 + 2.53982i 0.203365 + 0.242162i
\(111\) 1.29532 0.122946
\(112\) −0.309017 0.951057i −0.0291994 0.0898664i
\(113\) 8.71200 + 6.32964i 0.819556 + 0.595442i 0.916585 0.399839i \(-0.130934\pi\)
−0.0970291 + 0.995282i \(0.530934\pi\)
\(114\) 1.77838 1.29207i 0.166561 0.121014i
\(115\) −0.139715 + 0.429998i −0.0130285 + 0.0400975i
\(116\) −0.589512 + 1.81433i −0.0547348 + 0.168456i
\(117\) −5.10252 + 3.70719i −0.471728 + 0.342730i
\(118\) 10.2971 + 7.48127i 0.947924 + 0.688707i
\(119\) −1.93547 5.95676i −0.177424 0.546055i
\(120\) −0.365778 −0.0333908
\(121\) −1.90135 + 10.8344i −0.172850 + 0.984948i
\(122\) 6.02013 0.545037
\(123\) −0.00233704 0.00719267i −0.000210724 0.000648542i
\(124\) 4.89549 + 3.55679i 0.439628 + 0.319409i
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0.885707 2.72592i 0.0789050 0.242845i
\(127\) 1.37301 4.22569i 0.121835 0.374969i −0.871476 0.490438i \(-0.836837\pi\)
0.993311 + 0.115468i \(0.0368369\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) −1.09959 0.798897i −0.0968133 0.0703390i
\(130\) 0.679988 + 2.09279i 0.0596389 + 0.183550i
\(131\) −2.54949 −0.222750 −0.111375 0.993778i \(-0.535526\pi\)
−0.111375 + 0.993778i \(0.535526\pi\)
\(132\) −0.780173 0.929009i −0.0679053 0.0808599i
\(133\) 6.00967 0.521104
\(134\) 2.53230 + 7.79361i 0.218757 + 0.673265i
\(135\) −1.73593 1.26123i −0.149405 0.108549i
\(136\) −5.06712 + 3.68148i −0.434502 + 0.315684i
\(137\) −4.68562 + 14.4208i −0.400319 + 1.23206i 0.524422 + 0.851459i \(0.324281\pi\)
−0.924741 + 0.380597i \(0.875719\pi\)
\(138\) 0.0511045 0.157284i 0.00435031 0.0133889i
\(139\) −3.69344 + 2.68344i −0.313273 + 0.227606i −0.733300 0.679905i \(-0.762021\pi\)
0.420026 + 0.907512i \(0.362021\pi\)
\(140\) −0.809017 0.587785i −0.0683744 0.0496769i
\(141\) 0.975834 + 3.00331i 0.0821800 + 0.252924i
\(142\) 15.7605 1.32260
\(143\) −3.86495 + 6.19079i −0.323203 + 0.517700i
\(144\) −2.86621 −0.238851
\(145\) 0.589512 + 1.81433i 0.0489563 + 0.150672i
\(146\) −10.3426 7.51437i −0.855963 0.621894i
\(147\) −0.295920 + 0.214999i −0.0244071 + 0.0177328i
\(148\) 1.09431 3.36794i 0.0899519 0.276843i
\(149\) 4.29884 13.2305i 0.352175 1.08388i −0.605455 0.795879i \(-0.707009\pi\)
0.957630 0.288002i \(-0.0929911\pi\)
\(150\) −0.295920 + 0.214999i −0.0241618 + 0.0175546i
\(151\) −3.05829 2.22197i −0.248880 0.180822i 0.456350 0.889800i \(-0.349156\pi\)
−0.705230 + 0.708978i \(0.749156\pi\)
\(152\) −1.85709 5.71554i −0.150630 0.463591i
\(153\) −17.9519 −1.45133
\(154\) −0.232696 3.30845i −0.0187512 0.266603i
\(155\) 6.05116 0.486041
\(156\) −0.248725 0.765496i −0.0199139 0.0612887i
\(157\) −10.2569 7.45207i −0.818590 0.594740i 0.0977184 0.995214i \(-0.468846\pi\)
−0.916308 + 0.400474i \(0.868846\pi\)
\(158\) −8.69249 + 6.31546i −0.691537 + 0.502431i
\(159\) 0.908228 2.79524i 0.0720272 0.221677i
\(160\) −0.309017 + 0.951057i −0.0244299 + 0.0751876i
\(161\) 0.365778 0.265753i 0.0288273 0.0209443i
\(162\) −6.32146 4.59281i −0.496661 0.360845i
\(163\) 5.82602 + 17.9306i 0.456329 + 1.40444i 0.869568 + 0.493813i \(0.164397\pi\)
−0.413239 + 0.910623i \(0.635603\pi\)
\(164\) −0.0206760 −0.00161452
\(165\) −1.17723 0.293010i −0.0916473 0.0228108i
\(166\) 10.9679 0.851274
\(167\) 4.81553 + 14.8207i 0.372637 + 1.14686i 0.945059 + 0.326899i \(0.106004\pi\)
−0.572422 + 0.819959i \(0.693996\pi\)
\(168\) 0.295920 + 0.214999i 0.0228308 + 0.0165875i
\(169\) 6.59984 4.79506i 0.507680 0.368851i
\(170\) −1.93547 + 5.95676i −0.148444 + 0.456862i
\(171\) 5.32280 16.3819i 0.407045 1.25276i
\(172\) −3.00616 + 2.18410i −0.229218 + 0.166536i
\(173\) −5.49440 3.99191i −0.417731 0.303500i 0.358993 0.933340i \(-0.383120\pi\)
−0.776724 + 0.629841i \(0.783120\pi\)
\(174\) −0.215630 0.663642i −0.0163469 0.0503106i
\(175\) −1.00000 −0.0755929
\(176\) −3.07462 + 1.24367i −0.231758 + 0.0937455i
\(177\) −4.65559 −0.349935
\(178\) −2.95565 9.09656i −0.221535 0.681816i
\(179\) 19.1974 + 13.9478i 1.43488 + 1.04250i 0.989081 + 0.147374i \(0.0470821\pi\)
0.445804 + 0.895131i \(0.352918\pi\)
\(180\) −2.31881 + 1.68471i −0.172834 + 0.125571i
\(181\) 4.49101 13.8219i 0.333814 1.02737i −0.633489 0.773751i \(-0.718378\pi\)
0.967303 0.253622i \(-0.0816220\pi\)
\(182\) 0.679988 2.09279i 0.0504041 0.155128i
\(183\) −1.78148 + 1.29432i −0.131691 + 0.0956789i
\(184\) −0.365778 0.265753i −0.0269655 0.0195916i
\(185\) −1.09431 3.36794i −0.0804554 0.247616i
\(186\) −2.21338 −0.162293
\(187\) −19.2573 + 7.78951i −1.40823 + 0.569626i
\(188\) 8.63329 0.629647
\(189\) 0.663066 + 2.04071i 0.0482310 + 0.148440i
\(190\) −4.86192 3.53240i −0.352721 0.256267i
\(191\) 5.45507 3.96334i 0.394715 0.286777i −0.372670 0.927964i \(-0.621558\pi\)
0.767385 + 0.641187i \(0.221558\pi\)
\(192\) 0.113032 0.347875i 0.00815735 0.0251057i
\(193\) −3.24216 + 9.97834i −0.233376 + 0.718256i 0.763957 + 0.645267i \(0.223254\pi\)
−0.997333 + 0.0729893i \(0.976746\pi\)
\(194\) 3.41865 2.48380i 0.245445 0.178326i
\(195\) −0.651170 0.473102i −0.0466312 0.0338796i
\(196\) 0.309017 + 0.951057i 0.0220726 + 0.0679326i
\(197\) −8.40324 −0.598706 −0.299353 0.954142i \(-0.596771\pi\)
−0.299353 + 0.954142i \(0.596771\pi\)
\(198\) −9.22469 2.29601i −0.655570 0.163170i
\(199\) 5.41088 0.383567 0.191783 0.981437i \(-0.438573\pi\)
0.191783 + 0.981437i \(0.438573\pi\)
\(200\) 0.309017 + 0.951057i 0.0218508 + 0.0672499i
\(201\) −2.42498 1.76185i −0.171045 0.124271i
\(202\) 8.13183 5.90812i 0.572153 0.415694i
\(203\) 0.589512 1.81433i 0.0413756 0.127341i
\(204\) 0.707951 2.17885i 0.0495665 0.152550i
\(205\) −0.0167272 + 0.0121531i −0.00116828 + 0.000848806i
\(206\) −11.8704 8.62434i −0.827049 0.600886i
\(207\) −0.400451 1.23246i −0.0278333 0.0856620i
\(208\) −2.20049 −0.152576
\(209\) −1.39843 19.8827i −0.0967312 1.37532i
\(210\) 0.365778 0.0252411
\(211\) 2.63712 + 8.11623i 0.181547 + 0.558745i 0.999872 0.0160117i \(-0.00509689\pi\)
−0.818325 + 0.574756i \(0.805097\pi\)
\(212\) −6.50059 4.72296i −0.446462 0.324374i
\(213\) −4.66387 + 3.38850i −0.319563 + 0.232176i
\(214\) −0.571882 + 1.76007i −0.0390931 + 0.120316i
\(215\) −1.14825 + 3.53396i −0.0783101 + 0.241014i
\(216\) 1.73593 1.26123i 0.118115 0.0858157i
\(217\) −4.89549 3.55679i −0.332328 0.241450i
\(218\) −5.06169 15.5783i −0.342821 1.05509i
\(219\) 4.67618 0.315987
\(220\) −1.75640 + 2.81337i −0.118417 + 0.189677i
\(221\) −13.7823 −0.927100
\(222\) 0.400275 + 1.23192i 0.0268647 + 0.0826810i
\(223\) 15.8930 + 11.5470i 1.06428 + 0.773243i 0.974875 0.222753i \(-0.0715043\pi\)
0.0894024 + 0.995996i \(0.471504\pi\)
\(224\) 0.809017 0.587785i 0.0540547 0.0392731i
\(225\) −0.885707 + 2.72592i −0.0590471 + 0.181728i
\(226\) −3.32769 + 10.2416i −0.221355 + 0.681259i
\(227\) −1.92337 + 1.39741i −0.127659 + 0.0927496i −0.649782 0.760120i \(-0.725140\pi\)
0.522124 + 0.852870i \(0.325140\pi\)
\(228\) 1.77838 + 1.29207i 0.117776 + 0.0855695i
\(229\) 3.00685 + 9.25415i 0.198699 + 0.611531i 0.999913 + 0.0131546i \(0.00418736\pi\)
−0.801215 + 0.598377i \(0.795813\pi\)
\(230\) −0.452126 −0.0298123
\(231\) 0.780173 + 0.929009i 0.0513316 + 0.0611243i
\(232\) −1.90770 −0.125247
\(233\) 5.70261 + 17.5508i 0.373591 + 1.14979i 0.944425 + 0.328728i \(0.106620\pi\)
−0.570834 + 0.821066i \(0.693380\pi\)
\(234\) −5.10252 3.70719i −0.333562 0.242347i
\(235\) 6.98448 5.07452i 0.455617 0.331025i
\(236\) −3.93314 + 12.1050i −0.256026 + 0.787966i
\(237\) 1.21447 3.73775i 0.0788882 0.242793i
\(238\) 5.06712 3.68148i 0.328453 0.238635i
\(239\) −14.2442 10.3490i −0.921381 0.669422i 0.0224865 0.999747i \(-0.492842\pi\)
−0.943867 + 0.330325i \(0.892842\pi\)
\(240\) −0.113032 0.347875i −0.00729616 0.0224553i
\(241\) 17.4835 1.12621 0.563105 0.826385i \(-0.309607\pi\)
0.563105 + 0.826385i \(0.309607\pi\)
\(242\) −10.8917 + 1.53973i −0.700145 + 0.0989774i
\(243\) 9.29528 0.596293
\(244\) 1.86032 + 5.72548i 0.119095 + 0.366536i
\(245\) 0.809017 + 0.587785i 0.0516862 + 0.0375522i
\(246\) 0.00611845 0.00444532i 0.000390098 0.000283423i
\(247\) 4.08651 12.5770i 0.260018 0.800254i
\(248\) −1.86991 + 5.75500i −0.118740 + 0.365443i
\(249\) −3.24563 + 2.35809i −0.205683 + 0.149438i
\(250\) 0.809017 + 0.587785i 0.0511667 + 0.0371748i
\(251\) −7.09456 21.8348i −0.447805 1.37820i −0.879379 0.476123i \(-0.842042\pi\)
0.431574 0.902078i \(-0.357958\pi\)
\(252\) 2.86621 0.180554
\(253\) −0.964346 1.14832i −0.0606279 0.0721942i
\(254\) 4.44315 0.278788
\(255\) −0.707951 2.17885i −0.0443336 0.136445i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −11.5373 + 8.38233i −0.719676 + 0.522875i −0.886281 0.463148i \(-0.846720\pi\)
0.166604 + 0.986024i \(0.446720\pi\)
\(258\) 0.420005 1.29264i 0.0261484 0.0804764i
\(259\) −1.09431 + 3.36794i −0.0679972 + 0.209274i
\(260\) −1.78023 + 1.29341i −0.110405 + 0.0802142i
\(261\) −4.42360 3.21393i −0.273814 0.198937i
\(262\) −0.787837 2.42471i −0.0486727 0.149799i
\(263\) 9.29262 0.573007 0.286504 0.958079i \(-0.407507\pi\)
0.286504 + 0.958079i \(0.407507\pi\)
\(264\) 0.642454 1.02907i 0.0395403 0.0633348i
\(265\) −8.03517 −0.493597
\(266\) 1.85709 + 5.71554i 0.113865 + 0.350442i
\(267\) 2.83039 + 2.05640i 0.173217 + 0.125849i
\(268\) −6.62964 + 4.81672i −0.404970 + 0.294228i
\(269\) 0.364312 1.12124i 0.0222125 0.0683629i −0.939336 0.342999i \(-0.888557\pi\)
0.961548 + 0.274636i \(0.0885573\pi\)
\(270\) 0.663066 2.04071i 0.0403529 0.124194i
\(271\) 6.57300 4.77556i 0.399281 0.290095i −0.369967 0.929045i \(-0.620631\pi\)
0.769248 + 0.638950i \(0.220631\pi\)
\(272\) −5.06712 3.68148i −0.307239 0.223222i
\(273\) 0.248725 + 0.765496i 0.0150535 + 0.0463299i
\(274\) −15.1630 −0.916028
\(275\) 0.232696 + 3.30845i 0.0140321 + 0.199507i
\(276\) 0.165378 0.00995457
\(277\) 2.54334 + 7.82760i 0.152814 + 0.470315i 0.997933 0.0642645i \(-0.0204701\pi\)
−0.845118 + 0.534579i \(0.820470\pi\)
\(278\) −3.69344 2.68344i −0.221518 0.160942i
\(279\) −14.0315 + 10.1945i −0.840044 + 0.610328i
\(280\) 0.309017 0.951057i 0.0184673 0.0568365i
\(281\) 6.51179 20.0412i 0.388461 1.19556i −0.545477 0.838126i \(-0.683652\pi\)
0.933938 0.357435i \(-0.116348\pi\)
\(282\) −2.55477 + 1.85615i −0.152134 + 0.110532i
\(283\) −0.378928 0.275307i −0.0225249 0.0163653i 0.576466 0.817121i \(-0.304431\pi\)
−0.598991 + 0.800756i \(0.704431\pi\)
\(284\) 4.87028 + 14.9892i 0.288998 + 0.889443i
\(285\) 2.19820 0.130210
\(286\) −7.08212 1.76273i −0.418775 0.104232i
\(287\) 0.0206760 0.00122047
\(288\) −0.885707 2.72592i −0.0521908 0.160627i
\(289\) −17.9836 13.0659i −1.05786 0.768581i
\(290\) −1.54336 + 1.12132i −0.0906294 + 0.0658461i
\(291\) −0.477636 + 1.47001i −0.0279995 + 0.0861736i
\(292\) 3.95054 12.1585i 0.231188 0.711523i
\(293\) 5.43588 3.94940i 0.317567 0.230726i −0.417569 0.908645i \(-0.637118\pi\)
0.735137 + 0.677919i \(0.237118\pi\)
\(294\) −0.295920 0.214999i −0.0172584 0.0125390i
\(295\) 3.93314 + 12.1050i 0.228996 + 0.704778i
\(296\) 3.54127 0.205832
\(297\) 6.59729 2.66859i 0.382814 0.154847i
\(298\) 13.9113 0.805862
\(299\) −0.307441 0.946205i −0.0177798 0.0547204i
\(300\) −0.295920 0.214999i −0.0170850 0.0124130i
\(301\) 3.00616 2.18410i 0.173272 0.125890i
\(302\) 1.16816 3.59523i 0.0672201 0.206882i
\(303\) −1.13614 + 3.49667i −0.0652693 + 0.200878i
\(304\) 4.86192 3.53240i 0.278851 0.202597i
\(305\) 4.87039 + 3.53854i 0.278877 + 0.202616i
\(306\) −5.54745 17.0733i −0.317127 0.976015i
\(307\) 22.7190 1.29664 0.648321 0.761367i \(-0.275471\pi\)
0.648321 + 0.761367i \(0.275471\pi\)
\(308\) 3.07462 1.24367i 0.175193 0.0708650i
\(309\) 5.36691 0.305313
\(310\) 1.86991 + 5.75500i 0.106204 + 0.326862i
\(311\) 17.1596 + 12.4672i 0.973034 + 0.706951i 0.956141 0.292907i \(-0.0946225\pi\)
0.0168931 + 0.999857i \(0.494623\pi\)
\(312\) 0.651170 0.473102i 0.0368652 0.0267842i
\(313\) −1.14359 + 3.51962i −0.0646397 + 0.198941i −0.978160 0.207852i \(-0.933353\pi\)
0.913521 + 0.406793i \(0.133353\pi\)
\(314\) 3.91779 12.0577i 0.221094 0.680456i
\(315\) 2.31881 1.68471i 0.130650 0.0949229i
\(316\) −8.69249 6.31546i −0.488990 0.355272i
\(317\) −2.38273 7.33328i −0.133827 0.411878i 0.861578 0.507624i \(-0.169476\pi\)
−0.995406 + 0.0957463i \(0.969476\pi\)
\(318\) 2.93909 0.164816
\(319\) −6.13981 1.52818i −0.343763 0.0855619i
\(320\) −1.00000 −0.0559017
\(321\) −0.209182 0.643795i −0.0116754 0.0359332i
\(322\) 0.365778 + 0.265753i 0.0203840 + 0.0148098i
\(323\) 30.4517 22.1245i 1.69438 1.23104i
\(324\) 2.41458 7.43133i 0.134144 0.412852i
\(325\) −0.679988 + 2.09279i −0.0377190 + 0.116087i
\(326\) −15.2527 + 11.0817i −0.844769 + 0.613761i
\(327\) 4.84717 + 3.52168i 0.268049 + 0.194749i
\(328\) −0.00638924 0.0196641i −0.000352787 0.00108577i
\(329\) −8.63329 −0.475968
\(330\) −0.0851150 1.21016i −0.00468543 0.0666170i
\(331\) 32.2493 1.77258 0.886291 0.463128i \(-0.153273\pi\)
0.886291 + 0.463128i \(0.153273\pi\)
\(332\) 3.38927 + 10.4311i 0.186010 + 0.572481i
\(333\) 8.21152 + 5.96602i 0.449989 + 0.326936i
\(334\) −12.6072 + 9.15968i −0.689836 + 0.501195i
\(335\) −2.53230 + 7.79361i −0.138354 + 0.425810i
\(336\) −0.113032 + 0.347875i −0.00616638 + 0.0189782i
\(337\) −26.8716 + 19.5234i −1.46379 + 1.06351i −0.481437 + 0.876481i \(0.659885\pi\)
−0.982355 + 0.187026i \(0.940115\pi\)
\(338\) 6.59984 + 4.79506i 0.358984 + 0.260817i
\(339\) −1.21719 3.74614i −0.0661089 0.203462i
\(340\) −6.26330 −0.339675
\(341\) −10.6283 + 17.0242i −0.575554 + 0.921910i
\(342\) 17.2250 0.931419
\(343\) −0.309017 0.951057i −0.0166853 0.0513522i
\(344\) −3.00616 2.18410i −0.162081 0.117759i
\(345\) 0.133793 0.0972066i 0.00720320 0.00523343i
\(346\) 2.09867 6.45905i 0.112825 0.347241i
\(347\) −1.04380 + 3.21248i −0.0560340 + 0.172455i −0.975157 0.221517i \(-0.928899\pi\)
0.919123 + 0.393972i \(0.128899\pi\)
\(348\) 0.564528 0.410154i 0.0302619 0.0219865i
\(349\) 25.4126 + 18.4634i 1.36031 + 0.988321i 0.998425 + 0.0560966i \(0.0178655\pi\)
0.361881 + 0.932224i \(0.382135\pi\)
\(350\) −0.309017 0.951057i −0.0165177 0.0508361i
\(351\) 4.72165 0.252023
\(352\) −2.13291 2.53982i −0.113685 0.135373i
\(353\) 34.9041 1.85776 0.928879 0.370383i \(-0.120774\pi\)
0.928879 + 0.370383i \(0.120774\pi\)
\(354\) −1.43865 4.42772i −0.0764636 0.235331i
\(355\) 12.7505 + 9.26381i 0.676729 + 0.491672i
\(356\) 7.73799 5.62198i 0.410113 0.297964i
\(357\) −0.707951 + 2.17885i −0.0374687 + 0.115317i
\(358\) −7.33277 + 22.5680i −0.387549 + 1.19275i
\(359\) −26.2740 + 19.0892i −1.38669 + 1.00749i −0.390471 + 0.920615i \(0.627688\pi\)
−0.996219 + 0.0868741i \(0.972312\pi\)
\(360\) −2.31881 1.68471i −0.122212 0.0887922i
\(361\) 5.28917 + 16.2784i 0.278378 + 0.856758i
\(362\) 14.5332 0.763848
\(363\) 2.89204 2.79734i 0.151793 0.146822i
\(364\) 2.20049 0.115337
\(365\) −3.95054 12.1585i −0.206781 0.636405i
\(366\) −1.78148 1.29432i −0.0931194 0.0676552i
\(367\) 23.2421 16.8864i 1.21323 0.881463i 0.217710 0.976014i \(-0.430141\pi\)
0.995520 + 0.0945504i \(0.0301413\pi\)
\(368\) 0.139715 0.429998i 0.00728313 0.0224152i
\(369\) 0.0183129 0.0563612i 0.000953330 0.00293405i
\(370\) 2.86494 2.08150i 0.148941 0.108212i
\(371\) 6.50059 + 4.72296i 0.337494 + 0.245204i
\(372\) −0.683973 2.10505i −0.0354623 0.109142i
\(373\) −36.4802 −1.88887 −0.944437 0.328691i \(-0.893392\pi\)
−0.944437 + 0.328691i \(0.893392\pi\)
\(374\) −13.3591 15.9077i −0.690782 0.822565i
\(375\) −0.365778 −0.0188887
\(376\) 2.66783 + 8.21074i 0.137583 + 0.423437i
\(377\) −3.39615 2.46745i −0.174911 0.127080i
\(378\) −1.73593 + 1.26123i −0.0892866 + 0.0648705i
\(379\) 0.0924189 0.284436i 0.00474724 0.0146105i −0.948655 0.316313i \(-0.897555\pi\)
0.953402 + 0.301703i \(0.0975550\pi\)
\(380\) 1.85709 5.71554i 0.0952667 0.293201i
\(381\) −1.31482 + 0.955273i −0.0673603 + 0.0489401i
\(382\) 5.45507 + 3.96334i 0.279106 + 0.202782i
\(383\) −4.85220 14.9335i −0.247936 0.763068i −0.995140 0.0984729i \(-0.968604\pi\)
0.747204 0.664595i \(-0.231396\pi\)
\(384\) 0.365778 0.0186660
\(385\) 1.75640 2.81337i 0.0895146 0.143383i
\(386\) −10.4918 −0.534021
\(387\) −3.29113 10.1290i −0.167297 0.514888i
\(388\) 3.41865 + 2.48380i 0.173556 + 0.126096i
\(389\) 7.81823 5.68027i 0.396400 0.288001i −0.371673 0.928364i \(-0.621216\pi\)
0.768073 + 0.640362i \(0.221216\pi\)
\(390\) 0.248725 0.765496i 0.0125947 0.0387624i
\(391\) 0.875076 2.69321i 0.0442545 0.136201i
\(392\) −0.809017 + 0.587785i −0.0408615 + 0.0296876i
\(393\) 0.754447 + 0.548138i 0.0380568 + 0.0276499i
\(394\) −2.59674 7.99196i −0.130822 0.402629i
\(395\) −10.7445 −0.540615
\(396\) −0.666955 9.48271i −0.0335157 0.476524i
\(397\) 17.7947 0.893090 0.446545 0.894761i \(-0.352654\pi\)
0.446545 + 0.894761i \(0.352654\pi\)
\(398\) 1.67205 + 5.14605i 0.0838124 + 0.257948i
\(399\) −1.77838 1.29207i −0.0890306 0.0646845i
\(400\) −0.809017 + 0.587785i −0.0404508 + 0.0293893i
\(401\) 11.5907 35.6725i 0.578812 1.78140i −0.0440023 0.999031i \(-0.514011\pi\)
0.622815 0.782369i \(-0.285989\pi\)
\(402\) 0.926258 2.85073i 0.0461976 0.142181i
\(403\) −10.7725 + 7.82667i −0.536616 + 0.389874i
\(404\) 8.13183 + 5.90812i 0.404573 + 0.293940i
\(405\) −2.41458 7.43133i −0.119982 0.369266i
\(406\) 1.90770 0.0946776
\(407\) 11.3973 + 2.83677i 0.564944 + 0.140613i
\(408\) 2.29098 0.113420
\(409\) 6.79682 + 20.9185i 0.336081 + 1.03435i 0.966187 + 0.257843i \(0.0830116\pi\)
−0.630106 + 0.776509i \(0.716988\pi\)
\(410\) −0.0167272 0.0121531i −0.000826100 0.000600196i
\(411\) 4.48703 3.26002i 0.221329 0.160805i
\(412\) 4.53408 13.9545i 0.223378 0.687487i
\(413\) 3.93314 12.1050i 0.193537 0.595646i
\(414\) 1.04839 0.761703i 0.0515258 0.0374357i
\(415\) 8.87322 + 6.44677i 0.435569 + 0.316460i
\(416\) −0.679988 2.09279i −0.0333392 0.102607i
\(417\) 1.66990 0.0817754
\(418\) 18.4774 7.47408i 0.903761 0.365569i
\(419\) −14.6014 −0.713327 −0.356664 0.934233i \(-0.616086\pi\)
−0.356664 + 0.934233i \(0.616086\pi\)
\(420\) 0.113032 + 0.347875i 0.00551538 + 0.0169746i
\(421\) 29.2168 + 21.2273i 1.42394 + 1.03455i 0.991105 + 0.133081i \(0.0424869\pi\)
0.432835 + 0.901473i \(0.357513\pi\)
\(422\) −6.90408 + 5.01611i −0.336085 + 0.244180i
\(423\) −7.64656 + 23.5337i −0.371788 + 1.14425i
\(424\) 2.48301 7.64190i 0.120585 0.371124i
\(425\) −5.06712 + 3.68148i −0.245791 + 0.178578i
\(426\) −4.66387 3.38850i −0.225965 0.164173i
\(427\) −1.86032 5.72548i −0.0900273 0.277075i
\(428\) −1.85065 −0.0894545
\(429\) 2.47473 1.00102i 0.119481 0.0483298i
\(430\) −3.71582 −0.179193
\(431\) 0.594012 + 1.82818i 0.0286126 + 0.0880604i 0.964343 0.264655i \(-0.0852582\pi\)
−0.935730 + 0.352716i \(0.885258\pi\)
\(432\) 1.73593 + 1.26123i 0.0835200 + 0.0606808i
\(433\) 6.56300 4.76830i 0.315398 0.229150i −0.418811 0.908073i \(-0.637553\pi\)
0.734209 + 0.678923i \(0.237553\pi\)
\(434\) 1.86991 5.75500i 0.0897587 0.276249i
\(435\) 0.215630 0.663642i 0.0103387 0.0318192i
\(436\) 13.2517 9.62791i 0.634640 0.461093i
\(437\) 2.19820 + 1.59709i 0.105154 + 0.0763991i
\(438\) 1.44502 + 4.44731i 0.0690457 + 0.212501i
\(439\) 3.97670 0.189797 0.0948987 0.995487i \(-0.469747\pi\)
0.0948987 + 0.995487i \(0.469747\pi\)
\(440\) −3.21843 0.801061i −0.153433 0.0381891i
\(441\) −2.86621 −0.136486
\(442\) −4.25897 13.1078i −0.202579 0.623473i
\(443\) 6.15912 + 4.47487i 0.292629 + 0.212607i 0.724407 0.689373i \(-0.242114\pi\)
−0.431778 + 0.901980i \(0.642114\pi\)
\(444\) −1.04793 + 0.761368i −0.0497327 + 0.0361329i
\(445\) 2.95565 9.09656i 0.140111 0.431218i
\(446\) −6.07060 + 18.6834i −0.287451 + 0.884685i
\(447\) −4.11665 + 2.99092i −0.194711 + 0.141466i
\(448\) 0.809017 + 0.587785i 0.0382225 + 0.0277702i
\(449\) 1.01243 + 3.11594i 0.0477796 + 0.147050i 0.972100 0.234567i \(-0.0753672\pi\)
−0.924320 + 0.381617i \(0.875367\pi\)
\(450\) −2.86621 −0.135114
\(451\) −0.00481122 0.0684056i −0.000226552 0.00322109i
\(452\) −10.7686 −0.506514
\(453\) 0.427287 + 1.31506i 0.0200757 + 0.0617867i
\(454\) −1.92337 1.39741i −0.0902684 0.0655838i
\(455\) 1.78023 1.29341i 0.0834586 0.0606362i
\(456\) −0.679282 + 2.09062i −0.0318103 + 0.0979021i
\(457\) 2.60182 8.00759i 0.121708 0.374579i −0.871579 0.490255i \(-0.836903\pi\)
0.993287 + 0.115676i \(0.0369035\pi\)
\(458\) −7.87205 + 5.71938i −0.367837 + 0.267249i
\(459\) 10.8727 + 7.89945i 0.507492 + 0.368715i
\(460\) −0.139715 0.429998i −0.00651423 0.0200487i
\(461\) −22.7631 −1.06018 −0.530091 0.847941i \(-0.677842\pi\)
−0.530091 + 0.847941i \(0.677842\pi\)
\(462\) −0.642454 + 1.02907i −0.0298896 + 0.0478766i
\(463\) 24.6401 1.14512 0.572561 0.819862i \(-0.305950\pi\)
0.572561 + 0.819862i \(0.305950\pi\)
\(464\) −0.589512 1.81433i −0.0273674 0.0842282i
\(465\) −1.79066 1.30099i −0.0830400 0.0603321i
\(466\) −14.9296 + 10.8470i −0.691602 + 0.502478i
\(467\) 1.35635 4.17442i 0.0627644 0.193169i −0.914757 0.404004i \(-0.867618\pi\)
0.977522 + 0.210835i \(0.0676182\pi\)
\(468\) 1.94899 5.99837i 0.0900920 0.277275i
\(469\) 6.62964 4.81672i 0.306128 0.222415i
\(470\) 6.98448 + 5.07452i 0.322170 + 0.234070i
\(471\) 1.43304 + 4.41044i 0.0660310 + 0.203222i
\(472\) −12.7279 −0.585849
\(473\) −7.92553 9.43751i −0.364416 0.433937i
\(474\) 3.93010 0.180516
\(475\) −1.85709 5.71554i −0.0852091 0.262247i
\(476\) 5.06712 + 3.68148i 0.232251 + 0.168740i
\(477\) 18.6320 13.5370i 0.853102 0.619815i
\(478\) 5.44080 16.7451i 0.248856 0.765901i
\(479\) −3.13427 + 9.64630i −0.143209 + 0.440751i −0.996776 0.0802312i \(-0.974434\pi\)
0.853568 + 0.520982i \(0.174434\pi\)
\(480\) 0.295920 0.214999i 0.0135069 0.00981331i
\(481\) 6.30428 + 4.58033i 0.287450 + 0.208845i
\(482\) 5.40269 + 16.6278i 0.246086 + 0.757375i
\(483\) −0.165378 −0.00752495
\(484\) −4.83009 9.88283i −0.219550 0.449219i
\(485\) 4.22569 0.191879
\(486\) 2.87240 + 8.84034i 0.130295 + 0.401006i
\(487\) 18.2996 + 13.2954i 0.829233 + 0.602473i 0.919342 0.393459i \(-0.128722\pi\)
−0.0901091 + 0.995932i \(0.528722\pi\)
\(488\) −4.87039 + 3.53854i −0.220472 + 0.160182i
\(489\) 2.13103 6.55863i 0.0963684 0.296591i
\(490\) −0.309017 + 0.951057i −0.0139600 + 0.0429644i
\(491\) −2.06416 + 1.49970i −0.0931542 + 0.0676805i −0.633387 0.773835i \(-0.718336\pi\)
0.540233 + 0.841515i \(0.318336\pi\)
\(492\) 0.00611845 + 0.00444532i 0.000275841 + 0.000200410i
\(493\) −3.69229 11.3637i −0.166293 0.511796i
\(494\) 13.2242 0.594985
\(495\) −6.11337 7.27964i −0.274776 0.327196i
\(496\) −6.05116 −0.271705
\(497\) −4.87028 14.9892i −0.218462 0.672356i
\(498\) −3.24563 2.35809i −0.145440 0.105668i
\(499\) −3.52428 + 2.56054i −0.157768 + 0.114625i −0.663869 0.747849i \(-0.731087\pi\)
0.506100 + 0.862475i \(0.331087\pi\)
\(500\) −0.309017 + 0.951057i −0.0138197 + 0.0425325i
\(501\) 1.76141 5.42107i 0.0786941 0.242196i
\(502\) 18.5738 13.4947i 0.828989 0.602296i
\(503\) −18.8133 13.6686i −0.838843 0.609455i 0.0832045 0.996532i \(-0.473485\pi\)
−0.922047 + 0.387078i \(0.873485\pi\)
\(504\) 0.885707 + 2.72592i 0.0394525 + 0.121422i
\(505\) 10.0515 0.447285
\(506\) 0.794116 1.27200i 0.0353028 0.0565472i
\(507\) −2.98396 −0.132522
\(508\) 1.37301 + 4.22569i 0.0609175 + 0.187485i
\(509\) 2.38245 + 1.73095i 0.105600 + 0.0767231i 0.639332 0.768931i \(-0.279211\pi\)
−0.533732 + 0.845654i \(0.679211\pi\)
\(510\) 1.85344 1.34660i 0.0820717 0.0596286i
\(511\) −3.95054 + 12.1585i −0.174762 + 0.537861i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) −10.4324 + 7.57956i −0.460600 + 0.334646i
\(514\) −11.5373 8.38233i −0.508888 0.369729i
\(515\) −4.53408 13.9545i −0.199796 0.614907i
\(516\) 1.35916 0.0598339
\(517\) 2.00893 + 28.5628i 0.0883527 + 1.25619i
\(518\) −3.54127 −0.155594
\(519\) 0.767648 + 2.36258i 0.0336960 + 0.103706i
\(520\) −1.78023 1.29341i −0.0780684 0.0567200i
\(521\) 28.4761 20.6891i 1.24756 0.906404i 0.249481 0.968380i \(-0.419740\pi\)
0.998078 + 0.0619752i \(0.0197400\pi\)
\(522\) 1.68966 5.20025i 0.0739546 0.227609i
\(523\) 1.34339 4.13453i 0.0587423 0.180790i −0.917380 0.398013i \(-0.869700\pi\)
0.976122 + 0.217223i \(0.0696999\pi\)
\(524\) 2.06258 1.49855i 0.0901044 0.0654647i
\(525\) 0.295920 + 0.214999i 0.0129150 + 0.00938332i
\(526\) 2.87158 + 8.83780i 0.125207 + 0.385347i
\(527\) −37.9003 −1.65096
\(528\) 1.17723 + 0.293010i 0.0512324 + 0.0127516i
\(529\) −22.7956 −0.991112
\(530\) −2.48301 7.64190i −0.107855 0.331943i
\(531\) −29.5136 21.4429i −1.28078 0.930542i
\(532\) −4.86192 + 3.53240i −0.210791 + 0.153149i
\(533\) 0.0140594 0.0432705i 0.000608982 0.00187425i
\(534\) −1.08111 + 3.32732i −0.0467843 + 0.143987i
\(535\) −1.49721 + 1.08778i −0.0647299 + 0.0470290i
\(536\) −6.62964 4.81672i −0.286357 0.208050i
\(537\) −2.68217 8.25486i −0.115744 0.356223i
\(538\) 1.17894 0.0508276
\(539\) −3.07462 + 1.24367i −0.132433 + 0.0535689i
\(540\) 2.14573 0.0923374
\(541\) 6.11641 + 18.8244i 0.262965 + 0.809323i 0.992155 + 0.125012i \(0.0398970\pi\)
−0.729190 + 0.684311i \(0.760103\pi\)
\(542\) 6.57300 + 4.77556i 0.282334 + 0.205128i
\(543\) −4.30067 + 3.12462i −0.184560 + 0.134090i
\(544\) 1.93547 5.95676i 0.0829825 0.255394i
\(545\) 5.06169 15.5783i 0.216819 0.667300i
\(546\) −0.651170 + 0.473102i −0.0278675 + 0.0202469i
\(547\) −10.0900 7.33080i −0.431416 0.313442i 0.350799 0.936451i \(-0.385910\pi\)
−0.782215 + 0.623009i \(0.785910\pi\)
\(548\) −4.68562 14.4208i −0.200160 0.616028i
\(549\) −17.2549 −0.736423
\(550\) −3.07462 + 1.24367i −0.131102 + 0.0530305i
\(551\) 11.4647 0.488411
\(552\) 0.0511045 + 0.157284i 0.00217515 + 0.00669443i
\(553\) 8.69249 + 6.31546i 0.369642 + 0.268561i
\(554\) −6.65855 + 4.83772i −0.282895 + 0.205535i
\(555\) −0.400275 + 1.23192i −0.0169907 + 0.0522921i
\(556\) 1.41077 4.34190i 0.0598299 0.184137i
\(557\) −24.5314 + 17.8231i −1.03943 + 0.755189i −0.970174 0.242410i \(-0.922062\pi\)
−0.0692547 + 0.997599i \(0.522062\pi\)
\(558\) −14.0315 10.1945i −0.594001 0.431567i
\(559\) −2.52672 7.77643i −0.106869 0.328908i
\(560\) 1.00000 0.0422577
\(561\) 7.37336 + 1.83521i 0.311303 + 0.0774827i
\(562\) 21.0726 0.888894
\(563\) −5.91471 18.2036i −0.249275 0.767190i −0.994904 0.100828i \(-0.967851\pi\)
0.745629 0.666362i \(-0.232149\pi\)
\(564\) −2.55477 1.85615i −0.107575 0.0781579i
\(565\) −8.71200 + 6.32964i −0.366517 + 0.266290i
\(566\) 0.144738 0.445457i 0.00608378 0.0187239i
\(567\) −2.41458 + 7.43133i −0.101403 + 0.312086i
\(568\) −12.7505 + 9.26381i −0.535001 + 0.388701i
\(569\) −7.46296 5.42216i −0.312864 0.227309i 0.420261 0.907403i \(-0.361939\pi\)
−0.733124 + 0.680095i \(0.761939\pi\)
\(570\) 0.679282 + 2.09062i 0.0284520 + 0.0875663i
\(571\) 26.6182 1.11394 0.556968 0.830534i \(-0.311965\pi\)
0.556968 + 0.830534i \(0.311965\pi\)
\(572\) −0.512045 7.28021i −0.0214097 0.304401i
\(573\) −2.46638 −0.103035
\(574\) 0.00638924 + 0.0196641i 0.000266682 + 0.000820762i
\(575\) −0.365778 0.265753i −0.0152540 0.0110827i
\(576\) 2.31881 1.68471i 0.0966171 0.0701964i
\(577\) −2.51797 + 7.74951i −0.104824 + 0.322616i −0.989689 0.143232i \(-0.954251\pi\)
0.884865 + 0.465848i \(0.154251\pi\)
\(578\) 6.86913 21.1410i 0.285718 0.879350i
\(579\) 3.10475 2.25573i 0.129029 0.0937451i
\(580\) −1.54336 1.12132i −0.0640847 0.0465602i
\(581\) −3.38927 10.4311i −0.140611 0.432755i
\(582\) −1.54566 −0.0640698
\(583\) 14.1130 22.6059i 0.584501 0.936241i
\(584\) 12.7842 0.529014
\(585\) −1.94899 5.99837i −0.0805807 0.248002i
\(586\) 5.43588 + 3.94940i 0.224554 + 0.163148i
\(587\) 14.7093 10.6869i 0.607119 0.441097i −0.241280 0.970456i \(-0.577567\pi\)
0.848399 + 0.529358i \(0.177567\pi\)
\(588\) 0.113032 0.347875i 0.00466134 0.0143461i
\(589\) 11.2376 34.5856i 0.463035 1.42508i
\(590\) −10.2971 + 7.48127i −0.423925 + 0.307999i
\(591\) 2.48669 + 1.80669i 0.102289 + 0.0743172i
\(592\) 1.09431 + 3.36794i 0.0449759 + 0.138422i
\(593\) −14.6040 −0.599715 −0.299857 0.953984i \(-0.596939\pi\)
−0.299857 + 0.953984i \(0.596939\pi\)
\(594\) 4.57665 + 5.44976i 0.187782 + 0.223606i
\(595\) 6.26330 0.256770
\(596\) 4.29884 + 13.2305i 0.176087 + 0.541941i
\(597\) −1.60119 1.16333i −0.0655323 0.0476120i
\(598\) 0.804890 0.584787i 0.0329144 0.0239137i
\(599\) −4.93102 + 15.1761i −0.201476 + 0.620079i 0.798364 + 0.602176i \(0.205699\pi\)
−0.999840 + 0.0179039i \(0.994301\pi\)
\(600\) 0.113032 0.347875i 0.00461449 0.0142020i
\(601\) −17.8022 + 12.9341i −0.726167 + 0.527591i −0.888348 0.459170i \(-0.848147\pi\)
0.162182 + 0.986761i \(0.448147\pi\)
\(602\) 3.00616 + 2.18410i 0.122522 + 0.0890175i
\(603\) −7.25809 22.3381i −0.295572 0.909678i
\(604\) 3.78025 0.153816
\(605\) −9.71660 5.15632i −0.395036 0.209634i
\(606\) −3.67661 −0.149352
\(607\) −5.38148 16.5625i −0.218427 0.672250i −0.998892 0.0470510i \(-0.985018\pi\)
0.780465 0.625199i \(-0.214982\pi\)
\(608\) 4.86192 + 3.53240i 0.197177 + 0.143258i
\(609\) −0.564528 + 0.410154i −0.0228758 + 0.0166203i
\(610\) −1.86032 + 5.72548i −0.0753222 + 0.231818i
\(611\) −5.87053 + 18.0676i −0.237496 + 0.730939i
\(612\) 14.5234 10.5519i 0.587074 0.426534i
\(613\) 14.8948 + 10.8217i 0.601594 + 0.437083i 0.846444 0.532477i \(-0.178739\pi\)
−0.244851 + 0.969561i \(0.578739\pi\)
\(614\) 7.02056 + 21.6071i 0.283327 + 0.871990i
\(615\) 0.00756282 0.000304963
\(616\) 2.13291 + 2.53982i 0.0859376 + 0.102332i
\(617\) −5.54431 −0.223206 −0.111603 0.993753i \(-0.535598\pi\)
−0.111603 + 0.993753i \(0.535598\pi\)
\(618\) 1.65847 + 5.10423i 0.0667133 + 0.205322i
\(619\) 22.1129 + 16.0660i 0.888794 + 0.645747i 0.935563 0.353159i \(-0.114892\pi\)
−0.0467690 + 0.998906i \(0.514892\pi\)
\(620\) −4.89549 + 3.55679i −0.196608 + 0.142844i
\(621\) −0.299790 + 0.922658i −0.0120301 + 0.0370250i
\(622\) −6.55440 + 20.1724i −0.262808 + 0.808838i
\(623\) −7.73799 + 5.62198i −0.310016 + 0.225240i
\(624\) 0.651170 + 0.473102i 0.0260677 + 0.0189393i
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) −3.70075 −0.147912
\(627\) −3.86093 + 6.18436i −0.154191 + 0.246979i
\(628\) 12.6782 0.505916
\(629\) 6.85401 + 21.0945i 0.273287 + 0.841091i
\(630\) 2.31881 + 1.68471i 0.0923836 + 0.0671206i
\(631\) −26.8167 + 19.4835i −1.06755 + 0.775624i −0.975471 0.220127i \(-0.929353\pi\)
−0.0920837 + 0.995751i \(0.529353\pi\)
\(632\) 3.32023 10.2186i 0.132072 0.406475i
\(633\) 0.964601 2.96874i 0.0383395 0.117997i
\(634\) 6.23806 4.53222i 0.247745 0.179997i
\(635\) 3.59459 + 2.61162i 0.142647 + 0.103639i
\(636\) 0.908228 + 2.79524i 0.0360136 + 0.110838i
\(637\) −2.20049 −0.0871865
\(638\) −0.443915 6.31154i −0.0175747 0.249876i
\(639\) −45.1730 −1.78702
\(640\) −0.309017 0.951057i −0.0122150 0.0375938i
\(641\) −1.25607 0.912589i −0.0496118 0.0360451i 0.562703 0.826659i \(-0.309761\pi\)
−0.612315 + 0.790614i \(0.709761\pi\)
\(642\) 0.547645 0.397887i 0.0216138 0.0157034i
\(643\) 2.34982 7.23201i 0.0926680 0.285203i −0.893971 0.448125i \(-0.852092\pi\)
0.986639 + 0.162922i \(0.0520919\pi\)
\(644\) −0.139715 + 0.429998i −0.00550553 + 0.0169443i
\(645\) 1.09959 0.798897i 0.0432962 0.0314565i
\(646\) 30.4517 + 22.1245i 1.19811 + 0.870475i
\(647\) 2.61210 + 8.03921i 0.102692 + 0.316054i 0.989182 0.146694i \(-0.0468634\pi\)
−0.886490 + 0.462748i \(0.846863\pi\)
\(648\) 7.81376 0.306953
\(649\) −40.9639 10.1958i −1.60797 0.400221i
\(650\) −2.20049 −0.0863103
\(651\) 0.683973 + 2.10505i 0.0268070 + 0.0825035i
\(652\) −15.2527 11.0817i −0.597342 0.433994i
\(653\) −26.3453 + 19.1410i −1.03097 + 0.749044i −0.968503 0.249003i \(-0.919897\pi\)
−0.0624680 + 0.998047i \(0.519897\pi\)
\(654\) −1.85145 + 5.69819i −0.0723976 + 0.222817i
\(655\) 0.787837 2.42471i 0.0307833 0.0947413i
\(656\) 0.0167272 0.0121531i 0.000653089 0.000474497i
\(657\) 29.6442 + 21.5377i 1.15653 + 0.840267i
\(658\) −2.66783 8.21074i −0.104003 0.320088i
\(659\) 37.9922 1.47997 0.739983 0.672626i \(-0.234834\pi\)
0.739983 + 0.672626i \(0.234834\pi\)
\(660\) 1.12463 0.454909i 0.0437760 0.0177073i
\(661\) −15.0403 −0.584999 −0.292499 0.956266i \(-0.594487\pi\)
−0.292499 + 0.956266i \(0.594487\pi\)
\(662\) 9.96559 + 30.6709i 0.387324 + 1.19206i
\(663\) 4.07847 + 2.96318i 0.158395 + 0.115081i
\(664\) −8.87322 + 6.44677i −0.344348 + 0.250183i
\(665\) −1.85709 + 5.71554i −0.0720149 + 0.221639i
\(666\) −3.13652 + 9.65322i −0.121538 + 0.374055i
\(667\) 0.697795 0.506978i 0.0270187 0.0196303i
\(668\) −12.6072 9.15968i −0.487788 0.354399i
\(669\) −2.22049 6.83397i −0.0858492 0.264217i
\(670\) −8.19469 −0.316588
\(671\) −18.5096 + 7.48708i −0.714555 + 0.289036i
\(672\) −0.365778 −0.0141102
\(673\) −11.8602 36.5020i −0.457178 1.40705i −0.868560 0.495585i \(-0.834954\pi\)
0.411382 0.911463i \(-0.365046\pi\)
\(674\) −26.8716 19.5234i −1.03506 0.752013i
\(675\) 1.73593 1.26123i 0.0668160 0.0485447i
\(676\) −2.52091 + 7.75858i −0.0969582 + 0.298407i
\(677\) −9.51784 + 29.2929i −0.365800 + 1.12582i 0.583678 + 0.811985i \(0.301613\pi\)
−0.949478 + 0.313832i \(0.898387\pi\)
\(678\) 3.18666 2.31524i 0.122383 0.0889163i
\(679\) −3.41865 2.48380i −0.131196 0.0953193i
\(680\) −1.93547 5.95676i −0.0742218 0.228431i
\(681\) 0.869608 0.0333234
\(682\) −19.4753 4.84735i −0.745746 0.185615i
\(683\) 46.0974 1.76387 0.881935 0.471371i \(-0.156241\pi\)
0.881935 + 0.471371i \(0.156241\pi\)
\(684\) 5.32280 + 16.3819i 0.203522 + 0.626378i
\(685\) −12.2671 8.91257i −0.468702 0.340532i
\(686\) 0.809017 0.587785i 0.0308884 0.0224417i
\(687\) 1.09984 3.38496i 0.0419615 0.129144i
\(688\) 1.14825 3.53396i 0.0437767 0.134731i
\(689\) 14.3045 10.3928i 0.544957 0.395935i
\(690\) 0.133793 + 0.0972066i 0.00509343 + 0.00370059i
\(691\) −8.24096 25.3631i −0.313501 0.964857i −0.976367 0.216119i \(-0.930660\pi\)
0.662866 0.748738i \(-0.269340\pi\)
\(692\) 6.79145 0.258172
\(693\) 0.666955 + 9.48271i 0.0253355 + 0.360218i
\(694\) −3.37780 −0.128220
\(695\) −1.41077 4.34190i −0.0535135 0.164698i
\(696\) 0.564528 + 0.410154i 0.0213984 + 0.0155468i
\(697\) 0.104768 0.0761183i 0.00396836 0.00288318i
\(698\) −9.70676 + 29.8743i −0.367406 + 1.13076i
\(699\) 2.08589 6.41971i 0.0788956 0.242816i
\(700\) 0.809017 0.587785i 0.0305780 0.0222162i
\(701\) −12.3565 8.97753i −0.466699 0.339077i 0.329454 0.944172i \(-0.393135\pi\)
−0.796153 + 0.605095i \(0.793135\pi\)
\(702\) 1.45907 + 4.49056i 0.0550691 + 0.169485i
\(703\) −21.2818 −0.802660
\(704\) 1.75640 2.81337i 0.0661970 0.106033i
\(705\) −3.15786 −0.118932
\(706\) 10.7860 + 33.1958i 0.405935 + 1.24934i
\(707\) −8.13183 5.90812i −0.305829 0.222198i
\(708\) 3.76645 2.73648i 0.141552 0.102843i
\(709\) −7.19676 + 22.1494i −0.270280 + 0.831837i 0.720150 + 0.693819i \(0.244073\pi\)
−0.990430 + 0.138018i \(0.955927\pi\)
\(710\) −4.87028 + 14.9892i −0.182778 + 0.562533i
\(711\) 24.9145 18.1014i 0.934365 0.678856i
\(712\) 7.73799 + 5.62198i 0.289994 + 0.210693i
\(713\) −0.845437 2.60199i −0.0316618 0.0974452i
\(714\) −2.29098 −0.0857377
\(715\) −4.69345 5.58884i −0.175525 0.209011i
\(716\) −23.7293 −0.886807
\(717\) 1.99012 + 6.12497i 0.0743226 + 0.228741i
\(718\) −26.2740 19.0892i −0.980538 0.712403i
\(719\) −5.37935 + 3.90833i −0.200616 + 0.145756i −0.683558 0.729896i \(-0.739568\pi\)
0.482942 + 0.875652i \(0.339568\pi\)
\(720\) 0.885707 2.72592i 0.0330083 0.101589i
\(721\) −4.53408 + 13.9545i −0.168858 + 0.519692i
\(722\) −13.8472 + 10.0606i −0.515341 + 0.374417i
\(723\) −5.17372 3.75893i −0.192413 0.139796i
\(724\) 4.49101 + 13.8219i 0.166907 + 0.513687i
\(725\) −1.90770 −0.0708502
\(726\) 3.55412 + 1.88607i 0.131906 + 0.0699985i
\(727\) −36.8003 −1.36485 −0.682424 0.730956i \(-0.739074\pi\)
−0.682424 + 0.730956i \(0.739074\pi\)
\(728\) 0.679988 + 2.09279i 0.0252020 + 0.0775639i
\(729\) 16.2137 + 11.7800i 0.600508 + 0.436295i
\(730\) 10.3426 7.51437i 0.382798 0.278119i
\(731\) 7.19185 22.1342i 0.266000 0.818664i
\(732\) 0.680464 2.09425i 0.0251507 0.0774059i
\(733\) 5.34569 3.88387i 0.197447 0.143454i −0.484669 0.874698i \(-0.661060\pi\)
0.682116 + 0.731244i \(0.261060\pi\)
\(734\) 23.2421 + 16.8864i 0.857883 + 0.623289i
\(735\) −0.113032 0.347875i −0.00416923 0.0128316i
\(736\) 0.452126 0.0166656
\(737\) −17.4786 20.8130i −0.643831 0.766657i
\(738\) 0.0592617 0.00218145
\(739\) −4.38065 13.4823i −0.161145 0.495953i 0.837587 0.546304i \(-0.183966\pi\)
−0.998732 + 0.0503517i \(0.983966\pi\)
\(740\) 2.86494 + 2.08150i 0.105317 + 0.0765176i
\(741\) −3.91331 + 2.84319i −0.143759 + 0.104447i
\(742\) −2.48301 + 7.64190i −0.0911540 + 0.280543i
\(743\) −6.75303 + 20.7837i −0.247745 + 0.762480i 0.747428 + 0.664343i \(0.231288\pi\)
−0.995173 + 0.0981371i \(0.968712\pi\)
\(744\) 1.79066 1.30099i 0.0656489 0.0476967i
\(745\) 11.2545 + 8.17688i 0.412333 + 0.299578i
\(746\) −11.2730 34.6948i −0.412734 1.27027i
\(747\) −31.4363 −1.15019
\(748\) 11.0009 17.6210i 0.402233 0.644287i
\(749\) 1.85065 0.0676213
\(750\) −0.113032 0.347875i −0.00412733 0.0127026i
\(751\) 14.8255 + 10.7713i 0.540990 + 0.393052i 0.824452 0.565931i \(-0.191483\pi\)
−0.283463 + 0.958983i \(0.591483\pi\)
\(752\) −6.98448 + 5.07452i −0.254698 + 0.185049i
\(753\) −2.59503 + 7.98669i −0.0945682 + 0.291051i
\(754\) 1.29721 3.99242i 0.0472418 0.145395i
\(755\) 3.05829 2.22197i 0.111302 0.0808659i
\(756\) −1.73593 1.26123i −0.0631352 0.0458704i
\(757\) −3.59659 11.0692i −0.130720 0.402316i 0.864180 0.503184i \(-0.167838\pi\)
−0.994900 + 0.100868i \(0.967838\pi\)
\(758\) 0.299074 0.0108629
\(759\) 0.0384827 + 0.547144i 0.00139684 + 0.0198601i
\(760\) 6.00967 0.217994
\(761\) 7.86593 + 24.2088i 0.285140 + 0.877569i 0.986357 + 0.164622i \(0.0526403\pi\)
−0.701217 + 0.712948i \(0.747360\pi\)
\(762\) −1.31482 0.955273i −0.0476309 0.0346059i
\(763\) −13.2517 + 9.62791i −0.479743 + 0.348554i
\(764\) −2.08365 + 6.41282i −0.0753838 + 0.232008i
\(765\) 5.54745 17.0733i 0.200568 0.617286i
\(766\) 12.7032 9.22943i 0.458986 0.333473i
\(767\) −22.6586 16.4625i −0.818156 0.594425i
\(768\) 0.113032 + 0.347875i 0.00407868 + 0.0125529i
\(769\) 41.1644 1.48442 0.742212 0.670165i \(-0.233777\pi\)
0.742212 + 0.670165i \(0.233777\pi\)
\(770\) 3.21843 + 0.801061i 0.115984 + 0.0288682i
\(771\) 5.21631 0.187861
\(772\) −3.24216 9.97834i −0.116688 0.359128i
\(773\) −3.18123 2.31130i −0.114421 0.0831316i 0.529103 0.848557i \(-0.322528\pi\)
−0.643524 + 0.765426i \(0.722528\pi\)
\(774\)