Properties

Label 770.2.n.k.631.4
Level $770$
Weight $2$
Character 770.631
Analytic conductor $6.148$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 5 x^{15} + 18 x^{14} - 35 x^{13} + 89 x^{12} - 185 x^{11} + 837 x^{10} - 1660 x^{9} + 4196 x^{8} - 8420 x^{7} + 13485 x^{6} - 14630 x^{5} + 11615 x^{4} - 5200 x^{3} + 1425 x^{2} - 225 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 631.4
Root \(-0.619365 - 1.90621i\) of defining polynomial
Character \(\chi\) \(=\) 770.631
Dual form 770.2.n.k.421.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.619365 - 1.90621i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{5} +(-1.62152 + 1.17810i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.822965 - 0.597919i) q^{9} +O(q^{10})\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.619365 - 1.90621i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{5} +(-1.62152 + 1.17810i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.822965 - 0.597919i) q^{9} -1.00000 q^{10} +(-0.948835 - 3.17800i) q^{11} +2.00431 q^{12} +(3.25978 + 2.36837i) q^{13} +(-0.309017 + 0.951057i) q^{14} +(-0.619365 - 1.90621i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(-0.243163 + 0.176668i) q^{17} +(0.314345 + 0.967454i) q^{18} +(2.39034 - 7.35672i) q^{19} +(0.809017 + 0.587785i) q^{20} -2.00431 q^{21} +(-1.10036 + 3.12877i) q^{22} -6.48607 q^{23} +(-1.62152 - 1.17810i) q^{24} +(0.309017 - 0.951057i) q^{25} +(-1.24512 - 3.83210i) q^{26} +(3.21508 - 2.33589i) q^{27} +(0.809017 - 0.587785i) q^{28} +(0.561399 + 1.72781i) q^{29} +(-0.619365 + 1.90621i) q^{30} +(-6.09578 - 4.42884i) q^{31} +1.00000 q^{32} +(-6.64561 - 0.159667i) q^{33} +0.300566 q^{34} +(-0.809017 - 0.587785i) q^{35} +(0.314345 - 0.967454i) q^{36} +(2.81579 + 8.66612i) q^{37} +(-6.25800 + 4.54670i) q^{38} +(6.53359 - 4.74693i) q^{39} +(-0.309017 - 0.951057i) q^{40} +(2.99230 - 9.20937i) q^{41} +(1.62152 + 1.17810i) q^{42} +3.42569 q^{43} +(2.72926 - 1.88445i) q^{44} -1.01724 q^{45} +(5.24734 + 3.81242i) q^{46} +(-1.91962 + 5.90798i) q^{47} +(0.619365 + 1.90621i) q^{48} +(-0.809017 + 0.587785i) q^{49} +(-0.809017 + 0.587785i) q^{50} +(0.186160 + 0.572941i) q^{51} +(-1.24512 + 3.83210i) q^{52} +(-5.17368 - 3.75890i) q^{53} -3.97405 q^{54} +(-2.63561 - 2.01335i) q^{55} -1.00000 q^{56} +(-12.5429 - 9.11298i) q^{57} +(0.561399 - 1.72781i) q^{58} +(1.70560 + 5.24931i) q^{59} +(1.62152 - 1.17810i) q^{60} +(2.93547 - 2.13274i) q^{61} +(2.32838 + 7.16602i) q^{62} +(-0.314345 + 0.967454i) q^{63} +(-0.809017 - 0.587785i) q^{64} +4.02930 q^{65} +(5.28256 + 4.03537i) q^{66} +0.505448 q^{67} +(-0.243163 - 0.176668i) q^{68} +(-4.01724 + 12.3638i) q^{69} +(0.309017 + 0.951057i) q^{70} +(-6.77887 + 4.92514i) q^{71} +(-0.822965 + 0.597919i) q^{72} +(0.433471 + 1.33409i) q^{73} +(2.81579 - 8.66612i) q^{74} +(-1.62152 - 1.17810i) q^{75} +7.73531 q^{76} +(-2.72926 + 1.88445i) q^{77} -8.07596 q^{78} +(-5.01595 - 3.64430i) q^{79} +(-0.309017 + 0.951057i) q^{80} +(-3.40442 - 10.4777i) q^{81} +(-7.83396 + 5.69170i) q^{82} +(-11.7929 + 8.56803i) q^{83} +(-0.619365 - 1.90621i) q^{84} +(-0.0928800 + 0.285855i) q^{85} +(-2.77144 - 2.01357i) q^{86} +3.64127 q^{87} +(-3.31567 - 0.0796618i) q^{88} +1.92815 q^{89} +(0.822965 + 0.597919i) q^{90} +(1.24512 - 3.83210i) q^{91} +(-2.00431 - 6.16862i) q^{92} +(-12.2178 + 8.87675i) q^{93} +(5.02563 - 3.65133i) q^{94} +(-2.39034 - 7.35672i) q^{95} +(0.619365 - 1.90621i) q^{96} +(13.3442 + 9.69514i) q^{97} +1.00000 q^{98} +(-1.11933 + 3.18271i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} + O(q^{10}) \) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} - 16q^{10} - 2q^{11} + 8q^{13} + 4q^{14} + 5q^{15} - 4q^{16} - 13q^{17} - 9q^{18} + 15q^{19} + 4q^{20} - 2q^{22} + 20q^{23} + 5q^{24} - 4q^{25} - 7q^{26} + 10q^{27} + 4q^{28} - 14q^{29} + 5q^{30} - 6q^{31} + 16q^{32} - 25q^{33} + 12q^{34} - 4q^{35} - 9q^{36} + 28q^{37} - 20q^{38} + 15q^{39} + 4q^{40} + 2q^{41} - 5q^{42} - 10q^{43} + 3q^{44} - 16q^{45} - 10q^{46} - 10q^{47} - 5q^{48} - 4q^{49} - 4q^{50} - 42q^{51} - 7q^{52} - 2q^{53} - 3q^{55} - 16q^{56} + 21q^{57} - 14q^{58} + 7q^{59} - 5q^{60} + 4q^{61} + 14q^{62} + 9q^{63} - 4q^{64} + 2q^{65} - 10q^{66} + 66q^{67} - 13q^{68} - 64q^{69} - 4q^{70} + 2q^{71} + q^{72} + 12q^{73} + 28q^{74} + 5q^{75} + 10q^{76} - 3q^{77} + 70q^{78} + 2q^{79} + 4q^{80} - 30q^{81} - 13q^{82} - 5q^{83} + 5q^{84} - 7q^{85} + 5q^{86} - 24q^{87} - 2q^{88} + 2q^{89} - q^{90} + 7q^{91} - 38q^{93} + 25q^{94} - 15q^{95} - 5q^{96} + 22q^{97} + 16q^{98} - 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0.619365 1.90621i 0.357590 1.10055i −0.596902 0.802314i \(-0.703602\pi\)
0.954492 0.298236i \(-0.0963981\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) −1.62152 + 1.17810i −0.661982 + 0.480958i
\(7\) −0.309017 0.951057i −0.116797 0.359466i
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) −0.822965 0.597919i −0.274322 0.199306i
\(10\) −1.00000 −0.316228
\(11\) −0.948835 3.17800i −0.286084 0.958204i
\(12\) 2.00431 0.578593
\(13\) 3.25978 + 2.36837i 0.904099 + 0.656866i 0.939516 0.342506i \(-0.111276\pi\)
−0.0354166 + 0.999373i \(0.511276\pi\)
\(14\) −0.309017 + 0.951057i −0.0825883 + 0.254181i
\(15\) −0.619365 1.90621i −0.159919 0.492181i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −0.243163 + 0.176668i −0.0589757 + 0.0428483i −0.616883 0.787055i \(-0.711605\pi\)
0.557907 + 0.829904i \(0.311605\pi\)
\(18\) 0.314345 + 0.967454i 0.0740918 + 0.228031i
\(19\) 2.39034 7.35672i 0.548382 1.68775i −0.164427 0.986389i \(-0.552578\pi\)
0.712810 0.701358i \(-0.247422\pi\)
\(20\) 0.809017 + 0.587785i 0.180902 + 0.131433i
\(21\) −2.00431 −0.437375
\(22\) −1.10036 + 3.12877i −0.234598 + 0.667056i
\(23\) −6.48607 −1.35244 −0.676219 0.736700i \(-0.736383\pi\)
−0.676219 + 0.736700i \(0.736383\pi\)
\(24\) −1.62152 1.17810i −0.330991 0.240479i
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) −1.24512 3.83210i −0.244189 0.751536i
\(27\) 3.21508 2.33589i 0.618742 0.449542i
\(28\) 0.809017 0.587785i 0.152890 0.111081i
\(29\) 0.561399 + 1.72781i 0.104249 + 0.320846i 0.989554 0.144166i \(-0.0460500\pi\)
−0.885304 + 0.465012i \(0.846050\pi\)
\(30\) −0.619365 + 1.90621i −0.113080 + 0.348024i
\(31\) −6.09578 4.42884i −1.09483 0.795443i −0.114625 0.993409i \(-0.536567\pi\)
−0.980209 + 0.197965i \(0.936567\pi\)
\(32\) 1.00000 0.176777
\(33\) −6.64561 0.159667i −1.15685 0.0277944i
\(34\) 0.300566 0.0515466
\(35\) −0.809017 0.587785i −0.136749 0.0993538i
\(36\) 0.314345 0.967454i 0.0523908 0.161242i
\(37\) 2.81579 + 8.66612i 0.462914 + 1.42470i 0.861588 + 0.507609i \(0.169470\pi\)
−0.398674 + 0.917093i \(0.630530\pi\)
\(38\) −6.25800 + 4.54670i −1.01518 + 0.737572i
\(39\) 6.53359 4.74693i 1.04621 0.760117i
\(40\) −0.309017 0.951057i −0.0488599 0.150375i
\(41\) 2.99230 9.20937i 0.467319 1.43826i −0.388722 0.921355i \(-0.627083\pi\)
0.856042 0.516906i \(-0.172917\pi\)
\(42\) 1.62152 + 1.17810i 0.250206 + 0.181785i
\(43\) 3.42569 0.522412 0.261206 0.965283i \(-0.415880\pi\)
0.261206 + 0.965283i \(0.415880\pi\)
\(44\) 2.72926 1.88445i 0.411451 0.284092i
\(45\) −1.01724 −0.151641
\(46\) 5.24734 + 3.81242i 0.773678 + 0.562110i
\(47\) −1.91962 + 5.90798i −0.280005 + 0.861767i 0.707846 + 0.706367i \(0.249667\pi\)
−0.987851 + 0.155401i \(0.950333\pi\)
\(48\) 0.619365 + 1.90621i 0.0893976 + 0.275137i
\(49\) −0.809017 + 0.587785i −0.115574 + 0.0839693i
\(50\) −0.809017 + 0.587785i −0.114412 + 0.0831254i
\(51\) 0.186160 + 0.572941i 0.0260676 + 0.0802278i
\(52\) −1.24512 + 3.83210i −0.172668 + 0.531416i
\(53\) −5.17368 3.75890i −0.710659 0.516324i 0.172727 0.984970i \(-0.444742\pi\)
−0.883386 + 0.468646i \(0.844742\pi\)
\(54\) −3.97405 −0.540800
\(55\) −2.63561 2.01335i −0.355385 0.271480i
\(56\) −1.00000 −0.133631
\(57\) −12.5429 9.11298i −1.66135 1.20704i
\(58\) 0.561399 1.72781i 0.0737153 0.226872i
\(59\) 1.70560 + 5.24931i 0.222051 + 0.683402i 0.998578 + 0.0533176i \(0.0169796\pi\)
−0.776527 + 0.630084i \(0.783020\pi\)
\(60\) 1.62152 1.17810i 0.209337 0.152092i
\(61\) 2.93547 2.13274i 0.375848 0.273070i −0.383784 0.923423i \(-0.625379\pi\)
0.759632 + 0.650353i \(0.225379\pi\)
\(62\) 2.32838 + 7.16602i 0.295705 + 0.910085i
\(63\) −0.314345 + 0.967454i −0.0396037 + 0.121888i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 4.02930 0.499774
\(66\) 5.28256 + 4.03537i 0.650239 + 0.496719i
\(67\) 0.505448 0.0617503 0.0308751 0.999523i \(-0.490171\pi\)
0.0308751 + 0.999523i \(0.490171\pi\)
\(68\) −0.243163 0.176668i −0.0294878 0.0214242i
\(69\) −4.01724 + 12.3638i −0.483619 + 1.48843i
\(70\) 0.309017 + 0.951057i 0.0369346 + 0.113673i
\(71\) −6.77887 + 4.92514i −0.804504 + 0.584507i −0.912232 0.409674i \(-0.865643\pi\)
0.107728 + 0.994180i \(0.465643\pi\)
\(72\) −0.822965 + 0.597919i −0.0969874 + 0.0704655i
\(73\) 0.433471 + 1.33409i 0.0507339 + 0.156143i 0.973214 0.229903i \(-0.0738408\pi\)
−0.922480 + 0.386046i \(0.873841\pi\)
\(74\) 2.81579 8.66612i 0.327329 1.00742i
\(75\) −1.62152 1.17810i −0.187237 0.136035i
\(76\) 7.73531 0.887301
\(77\) −2.72926 + 1.88445i −0.311028 + 0.214753i
\(78\) −8.07596 −0.914422
\(79\) −5.01595 3.64430i −0.564338 0.410016i 0.268706 0.963222i \(-0.413404\pi\)
−0.833044 + 0.553207i \(0.813404\pi\)
\(80\) −0.309017 + 0.951057i −0.0345492 + 0.106331i
\(81\) −3.40442 10.4777i −0.378269 1.16419i
\(82\) −7.83396 + 5.69170i −0.865116 + 0.628543i
\(83\) −11.7929 + 8.56803i −1.29444 + 0.940464i −0.999885 0.0151718i \(-0.995170\pi\)
−0.294552 + 0.955635i \(0.595170\pi\)
\(84\) −0.619365 1.90621i −0.0675782 0.207984i
\(85\) −0.0928800 + 0.285855i −0.0100742 + 0.0310053i
\(86\) −2.77144 2.01357i −0.298852 0.217129i
\(87\) 3.64127 0.390386
\(88\) −3.31567 0.0796618i −0.353451 0.00849198i
\(89\) 1.92815 0.204384 0.102192 0.994765i \(-0.467414\pi\)
0.102192 + 0.994765i \(0.467414\pi\)
\(90\) 0.822965 + 0.597919i 0.0867482 + 0.0630262i
\(91\) 1.24512 3.83210i 0.130524 0.401713i
\(92\) −2.00431 6.16862i −0.208963 0.643123i
\(93\) −12.2178 + 8.87675i −1.26693 + 0.920476i
\(94\) 5.02563 3.65133i 0.518354 0.376606i
\(95\) −2.39034 7.35672i −0.245244 0.754783i
\(96\) 0.619365 1.90621i 0.0632136 0.194552i
\(97\) 13.3442 + 9.69514i 1.35490 + 0.984392i 0.998751 + 0.0499629i \(0.0159103\pi\)
0.356149 + 0.934429i \(0.384090\pi\)
\(98\) 1.00000 0.101015
\(99\) −1.11933 + 3.18271i −0.112497 + 0.319875i
\(100\) 1.00000 0.100000
\(101\) −7.64039 5.55107i −0.760247 0.552352i 0.138739 0.990329i \(-0.455695\pi\)
−0.898986 + 0.437977i \(0.855695\pi\)
\(102\) 0.186160 0.572941i 0.0184326 0.0567296i
\(103\) −1.08769 3.34756i −0.107173 0.329845i 0.883061 0.469258i \(-0.155479\pi\)
−0.990234 + 0.139413i \(0.955479\pi\)
\(104\) 3.25978 2.36837i 0.319647 0.232237i
\(105\) −1.62152 + 1.17810i −0.158244 + 0.114971i
\(106\) 1.97617 + 6.08202i 0.191943 + 0.590738i
\(107\) 3.22154 9.91487i 0.311438 0.958507i −0.665758 0.746168i \(-0.731892\pi\)
0.977196 0.212339i \(-0.0681082\pi\)
\(108\) 3.21508 + 2.33589i 0.309371 + 0.224771i
\(109\) 12.1571 1.16444 0.582221 0.813030i \(-0.302184\pi\)
0.582221 + 0.813030i \(0.302184\pi\)
\(110\) 0.948835 + 3.17800i 0.0904679 + 0.303011i
\(111\) 18.2634 1.73349
\(112\) 0.809017 + 0.587785i 0.0764449 + 0.0555405i
\(113\) −2.06181 + 6.34561i −0.193959 + 0.596944i 0.806028 + 0.591877i \(0.201613\pi\)
−0.999987 + 0.00506720i \(0.998387\pi\)
\(114\) 4.79098 + 14.7451i 0.448716 + 1.38101i
\(115\) −5.24734 + 3.81242i −0.489317 + 0.355510i
\(116\) −1.46976 + 1.06784i −0.136464 + 0.0991469i
\(117\) −1.26659 3.89817i −0.117096 0.360386i
\(118\) 1.70560 5.24931i 0.157014 0.483238i
\(119\) 0.243163 + 0.176668i 0.0222907 + 0.0161951i
\(120\) −2.00431 −0.182967
\(121\) −9.19942 + 6.03080i −0.836311 + 0.548255i
\(122\) −3.62844 −0.328503
\(123\) −15.7016 11.4079i −1.41577 1.02862i
\(124\) 2.32838 7.16602i 0.209095 0.643527i
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) 0.822965 0.597919i 0.0733156 0.0532669i
\(127\) 10.4297 7.57765i 0.925490 0.672408i −0.0193944 0.999812i \(-0.506174\pi\)
0.944884 + 0.327404i \(0.106174\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 2.12175 6.53007i 0.186810 0.574941i
\(130\) −3.25978 2.36837i −0.285901 0.207719i
\(131\) 20.3862 1.78115 0.890577 0.454833i \(-0.150301\pi\)
0.890577 + 0.454833i \(0.150301\pi\)
\(132\) −1.90176 6.36969i −0.165527 0.554411i
\(133\) −7.73531 −0.670737
\(134\) −0.408916 0.297095i −0.0353249 0.0256651i
\(135\) 1.22805 3.77955i 0.105694 0.325292i
\(136\) 0.0928800 + 0.285855i 0.00796439 + 0.0245119i
\(137\) 14.3159 10.4011i 1.22309 0.888627i 0.226737 0.973956i \(-0.427194\pi\)
0.996353 + 0.0853292i \(0.0271942\pi\)
\(138\) 10.5173 7.64125i 0.895290 0.650466i
\(139\) 4.16475 + 12.8178i 0.353250 + 1.08719i 0.957017 + 0.290030i \(0.0936654\pi\)
−0.603768 + 0.797160i \(0.706335\pi\)
\(140\) 0.309017 0.951057i 0.0261167 0.0803789i
\(141\) 10.0729 + 7.31839i 0.848291 + 0.616319i
\(142\) 8.37915 0.703163
\(143\) 4.43369 12.6068i 0.370764 1.05423i
\(144\) 1.01724 0.0847701
\(145\) 1.46976 + 1.06784i 0.122057 + 0.0886797i
\(146\) 0.433471 1.33409i 0.0358743 0.110410i
\(147\) 0.619365 + 1.90621i 0.0510843 + 0.157221i
\(148\) −7.37184 + 5.35596i −0.605962 + 0.440257i
\(149\) 1.39488 1.01344i 0.114273 0.0830242i −0.529181 0.848509i \(-0.677501\pi\)
0.643454 + 0.765485i \(0.277501\pi\)
\(150\) 0.619365 + 1.90621i 0.0505709 + 0.155641i
\(151\) −2.82718 + 8.70117i −0.230073 + 0.708091i 0.767664 + 0.640852i \(0.221419\pi\)
−0.997737 + 0.0672389i \(0.978581\pi\)
\(152\) −6.25800 4.54670i −0.507591 0.368786i
\(153\) 0.305748 0.0247183
\(154\) 3.31567 + 0.0796618i 0.267184 + 0.00641933i
\(155\) −7.53480 −0.605209
\(156\) 6.53359 + 4.74693i 0.523106 + 0.380058i
\(157\) −0.270707 + 0.833150i −0.0216047 + 0.0664926i −0.961278 0.275582i \(-0.911129\pi\)
0.939673 + 0.342074i \(0.111129\pi\)
\(158\) 1.91592 + 5.89660i 0.152423 + 0.469108i
\(159\) −10.3696 + 7.53398i −0.822365 + 0.597483i
\(160\) 0.809017 0.587785i 0.0639584 0.0464685i
\(161\) 2.00431 + 6.16862i 0.157961 + 0.486155i
\(162\) −3.40442 + 10.4777i −0.267477 + 0.823209i
\(163\) 5.25270 + 3.81631i 0.411423 + 0.298916i 0.774178 0.632968i \(-0.218164\pi\)
−0.362755 + 0.931885i \(0.618164\pi\)
\(164\) 9.68330 0.756139
\(165\) −5.47026 + 3.77702i −0.425859 + 0.294041i
\(166\) 14.5768 1.13138
\(167\) 16.2064 + 11.7746i 1.25409 + 0.911150i 0.998452 0.0556230i \(-0.0177145\pi\)
0.255638 + 0.966773i \(0.417714\pi\)
\(168\) −0.619365 + 1.90621i −0.0477850 + 0.147067i
\(169\) 0.999759 + 3.07694i 0.0769045 + 0.236688i
\(170\) 0.243163 0.176668i 0.0186497 0.0135498i
\(171\) −6.36589 + 4.62509i −0.486812 + 0.353690i
\(172\) 1.05860 + 3.25802i 0.0807171 + 0.248422i
\(173\) 0.469977 1.44644i 0.0357317 0.109971i −0.931600 0.363486i \(-0.881587\pi\)
0.967332 + 0.253515i \(0.0815866\pi\)
\(174\) −2.94585 2.14029i −0.223324 0.162255i
\(175\) −1.00000 −0.0755929
\(176\) 2.63561 + 2.01335i 0.198666 + 0.151762i
\(177\) 11.0627 0.831521
\(178\) −1.55991 1.13334i −0.116920 0.0849473i
\(179\) 7.46313 22.9692i 0.557821 1.71680i −0.130554 0.991441i \(-0.541676\pi\)
0.688375 0.725355i \(-0.258324\pi\)
\(180\) −0.314345 0.967454i −0.0234299 0.0721098i
\(181\) −13.4801 + 9.79384i −1.00197 + 0.727971i −0.962509 0.271251i \(-0.912563\pi\)
−0.0394568 + 0.999221i \(0.512563\pi\)
\(182\) −3.25978 + 2.36837i −0.241631 + 0.175555i
\(183\) −2.24733 6.91656i −0.166127 0.511286i
\(184\) −2.00431 + 6.16862i −0.147759 + 0.454757i
\(185\) 7.37184 + 5.35596i 0.541989 + 0.393778i
\(186\) 15.1020 1.10733
\(187\) 0.792174 + 0.605144i 0.0579295 + 0.0442525i
\(188\) −6.21202 −0.453058
\(189\) −3.21508 2.33589i −0.233862 0.169911i
\(190\) −2.39034 + 7.35672i −0.173414 + 0.533712i
\(191\) −0.919475 2.82985i −0.0665308 0.204761i 0.912264 0.409602i \(-0.134332\pi\)
−0.978795 + 0.204841i \(0.934332\pi\)
\(192\) −1.62152 + 1.17810i −0.117023 + 0.0850221i
\(193\) 9.30418 6.75988i 0.669730 0.486587i −0.200205 0.979754i \(-0.564161\pi\)
0.869935 + 0.493167i \(0.164161\pi\)
\(194\) −5.09704 15.6871i −0.365946 1.12627i
\(195\) 2.49561 7.68069i 0.178714 0.550026i
\(196\) −0.809017 0.587785i −0.0577869 0.0419847i
\(197\) 16.0597 1.14420 0.572101 0.820183i \(-0.306128\pi\)
0.572101 + 0.820183i \(0.306128\pi\)
\(198\) 2.77631 1.91694i 0.197304 0.136231i
\(199\) 11.0899 0.786140 0.393070 0.919509i \(-0.371413\pi\)
0.393070 + 0.919509i \(0.371413\pi\)
\(200\) −0.809017 0.587785i −0.0572061 0.0415627i
\(201\) 0.313056 0.963488i 0.0220813 0.0679592i
\(202\) 2.91837 + 8.98182i 0.205336 + 0.631958i
\(203\) 1.46976 1.06784i 0.103157 0.0749480i
\(204\) −0.487373 + 0.354097i −0.0341229 + 0.0247918i
\(205\) −2.99230 9.20937i −0.208992 0.643210i
\(206\) −1.08769 + 3.34756i −0.0757829 + 0.233236i
\(207\) 5.33781 + 3.87815i 0.371004 + 0.269550i
\(208\) −4.02930 −0.279382
\(209\) −25.6477 0.616209i −1.77409 0.0426241i
\(210\) 2.00431 0.138310
\(211\) 20.6418 + 14.9971i 1.42104 + 1.03244i 0.991599 + 0.129348i \(0.0412884\pi\)
0.429438 + 0.903096i \(0.358712\pi\)
\(212\) 1.97617 6.08202i 0.135724 0.417715i
\(213\) 5.18975 + 15.9724i 0.355596 + 1.09441i
\(214\) −8.43409 + 6.12773i −0.576543 + 0.418883i
\(215\) 2.77144 2.01357i 0.189011 0.137324i
\(216\) −1.22805 3.77955i −0.0835582 0.257166i
\(217\) −2.32838 + 7.16602i −0.158061 + 0.486461i
\(218\) −9.83533 7.14579i −0.666133 0.483974i
\(219\) 2.81152 0.189985
\(220\) 1.10036 3.12877i 0.0741863 0.210942i
\(221\) −1.21107 −0.0814655
\(222\) −14.7754 10.7350i −0.991662 0.720484i
\(223\) −7.16435 + 22.0496i −0.479760 + 1.47655i 0.359669 + 0.933080i \(0.382890\pi\)
−0.839429 + 0.543470i \(0.817110\pi\)
\(224\) −0.309017 0.951057i −0.0206471 0.0635451i
\(225\) −0.822965 + 0.597919i −0.0548644 + 0.0398613i
\(226\) 5.39789 3.92180i 0.359063 0.260874i
\(227\) −1.53693 4.73019i −0.102010 0.313954i 0.887007 0.461755i \(-0.152780\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(228\) 4.79098 14.7451i 0.317290 0.976519i
\(229\) 20.7616 + 15.0842i 1.37196 + 0.996790i 0.997581 + 0.0695165i \(0.0221456\pi\)
0.374384 + 0.927274i \(0.377854\pi\)
\(230\) 6.48607 0.427679
\(231\) 1.90176 + 6.36969i 0.125126 + 0.419095i
\(232\) 1.81673 0.119274
\(233\) −3.08589 2.24203i −0.202164 0.146880i 0.482097 0.876118i \(-0.339875\pi\)
−0.684261 + 0.729237i \(0.739875\pi\)
\(234\) −1.26659 + 3.89817i −0.0827996 + 0.254831i
\(235\) 1.91962 + 5.90798i 0.125222 + 0.385394i
\(236\) −4.46533 + 3.24425i −0.290668 + 0.211183i
\(237\) −10.0535 + 7.30429i −0.653045 + 0.474465i
\(238\) −0.0928800 0.285855i −0.00602051 0.0185292i
\(239\) 2.03364 6.25890i 0.131545 0.404855i −0.863491 0.504363i \(-0.831727\pi\)
0.995037 + 0.0995089i \(0.0317272\pi\)
\(240\) 1.62152 + 1.17810i 0.104668 + 0.0760461i
\(241\) 23.9679 1.54391 0.771955 0.635677i \(-0.219279\pi\)
0.771955 + 0.635677i \(0.219279\pi\)
\(242\) 10.9873 + 0.528264i 0.706291 + 0.0339581i
\(243\) −10.1592 −0.651710
\(244\) 2.93547 + 2.13274i 0.187924 + 0.136535i
\(245\) −0.309017 + 0.951057i −0.0197424 + 0.0607608i
\(246\) 5.99749 + 18.4584i 0.382386 + 1.17686i
\(247\) 25.2154 18.3200i 1.60442 1.16568i
\(248\) −6.09578 + 4.42884i −0.387082 + 0.281232i
\(249\) 9.02836 + 27.7864i 0.572149 + 1.76089i
\(250\) −0.309017 + 0.951057i −0.0195440 + 0.0601501i
\(251\) −4.11462 2.98945i −0.259712 0.188692i 0.450308 0.892873i \(-0.351314\pi\)
−0.710020 + 0.704181i \(0.751314\pi\)
\(252\) −1.01724 −0.0640802
\(253\) 6.15421 + 20.6128i 0.386912 + 1.29591i
\(254\) −12.8919 −0.808908
\(255\) 0.487373 + 0.354097i 0.0305205 + 0.0221744i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 3.42909 + 10.5537i 0.213901 + 0.658319i 0.999230 + 0.0392405i \(0.0124938\pi\)
−0.785329 + 0.619079i \(0.787506\pi\)
\(258\) −5.55481 + 4.03581i −0.345827 + 0.251258i
\(259\) 7.37184 5.35596i 0.458064 0.332803i
\(260\) 1.24512 + 3.83210i 0.0772193 + 0.237656i
\(261\) 0.571078 1.75760i 0.0353489 0.108793i
\(262\) −16.4928 11.9827i −1.01893 0.740295i
\(263\) −2.64779 −0.163270 −0.0816348 0.996662i \(-0.526014\pi\)
−0.0816348 + 0.996662i \(0.526014\pi\)
\(264\) −2.20546 + 6.27101i −0.135737 + 0.385954i
\(265\) −6.39502 −0.392843
\(266\) 6.25800 + 4.54670i 0.383702 + 0.278776i
\(267\) 1.19423 3.67546i 0.0730856 0.224934i
\(268\) 0.156192 + 0.480709i 0.00954094 + 0.0293640i
\(269\) 2.76845 2.01139i 0.168795 0.122637i −0.500181 0.865921i \(-0.666733\pi\)
0.668976 + 0.743284i \(0.266733\pi\)
\(270\) −3.21508 + 2.33589i −0.195663 + 0.142158i
\(271\) −6.54460 20.1422i −0.397556 1.22355i −0.926953 0.375177i \(-0.877582\pi\)
0.529397 0.848374i \(-0.322418\pi\)
\(272\) 0.0928800 0.285855i 0.00563168 0.0173325i
\(273\) −6.53359 4.74693i −0.395431 0.287297i
\(274\) −17.6954 −1.06902
\(275\) −3.31567 0.0796618i −0.199942 0.00480379i
\(276\) −13.0001 −0.782512
\(277\) −22.1602 16.1003i −1.33148 0.967376i −0.999712 0.0240142i \(-0.992355\pi\)
−0.331767 0.943361i \(-0.607645\pi\)
\(278\) 4.16475 12.8178i 0.249785 0.768760i
\(279\) 2.36852 + 7.28957i 0.141800 + 0.436415i
\(280\) −0.809017 + 0.587785i −0.0483480 + 0.0351269i
\(281\) −9.11112 + 6.61962i −0.543524 + 0.394893i −0.825392 0.564560i \(-0.809046\pi\)
0.281868 + 0.959453i \(0.409046\pi\)
\(282\) −3.84750 11.8414i −0.229115 0.705145i
\(283\) −6.27083 + 19.2996i −0.372762 + 1.14724i 0.572214 + 0.820104i \(0.306085\pi\)
−0.944976 + 0.327139i \(0.893915\pi\)
\(284\) −6.77887 4.92514i −0.402252 0.292253i
\(285\) −15.5039 −0.918373
\(286\) −10.9970 + 7.59303i −0.650266 + 0.448985i
\(287\) −9.68330 −0.571587
\(288\) −0.822965 0.597919i −0.0484937 0.0352327i
\(289\) −5.22537 + 16.0820i −0.307375 + 0.946002i
\(290\) −0.561399 1.72781i −0.0329665 0.101460i
\(291\) 26.7459 19.4320i 1.56787 1.13913i
\(292\) −1.13484 + 0.824510i −0.0664116 + 0.0482508i
\(293\) −3.69423 11.3697i −0.215819 0.664222i −0.999094 0.0425477i \(-0.986453\pi\)
0.783275 0.621675i \(-0.213547\pi\)
\(294\) 0.619365 1.90621i 0.0361221 0.111172i
\(295\) 4.46533 + 3.24425i 0.259981 + 0.188888i
\(296\) 9.11210 0.529630
\(297\) −10.4740 8.00116i −0.607766 0.464274i
\(298\) −1.72417 −0.0998783
\(299\) −21.1431 15.3614i −1.22274 0.888372i
\(300\) 0.619365 1.90621i 0.0357590 0.110055i
\(301\) −1.05860 3.25802i −0.0610164 0.187789i
\(302\) 7.40166 5.37762i 0.425918 0.309447i
\(303\) −15.3137 + 11.1260i −0.879748 + 0.639174i
\(304\) 2.39034 + 7.35672i 0.137096 + 0.421937i
\(305\) 1.12125 3.45085i 0.0642025 0.197595i
\(306\) −0.247355 0.179714i −0.0141404 0.0102736i
\(307\) −19.6625 −1.12220 −0.561100 0.827748i \(-0.689622\pi\)
−0.561100 + 0.827748i \(0.689622\pi\)
\(308\) −2.63561 2.01335i −0.150178 0.114721i
\(309\) −7.05482 −0.401335
\(310\) 6.09578 + 4.42884i 0.346217 + 0.251541i
\(311\) −3.33815 + 10.2738i −0.189289 + 0.582571i −0.999996 0.00288089i \(-0.999083\pi\)
0.810707 + 0.585452i \(0.199083\pi\)
\(312\) −2.49561 7.68069i −0.141286 0.434833i
\(313\) 11.9289 8.66683i 0.674260 0.489878i −0.197189 0.980366i \(-0.563181\pi\)
0.871448 + 0.490487i \(0.163181\pi\)
\(314\) 0.708719 0.514915i 0.0399954 0.0290583i
\(315\) 0.314345 + 0.967454i 0.0177113 + 0.0545099i
\(316\) 1.91592 5.89660i 0.107779 0.331710i
\(317\) −14.1310 10.2667i −0.793674 0.576638i 0.115377 0.993322i \(-0.463192\pi\)
−0.909052 + 0.416684i \(0.863192\pi\)
\(318\) 12.8176 0.718774
\(319\) 4.95831 3.42353i 0.277612 0.191681i
\(320\) −1.00000 −0.0559017
\(321\) −16.9045 12.2818i −0.943517 0.685505i
\(322\) 2.00431 6.16862i 0.111696 0.343764i
\(323\) 0.718455 + 2.21118i 0.0399759 + 0.123033i
\(324\) 8.91289 6.47560i 0.495161 0.359755i
\(325\) 3.25978 2.36837i 0.180820 0.131373i
\(326\) −2.00635 6.17492i −0.111122 0.341997i
\(327\) 7.52970 23.1740i 0.416393 1.28153i
\(328\) −7.83396 5.69170i −0.432558 0.314272i
\(329\) 6.21202 0.342480
\(330\) 6.64561 + 0.159667i 0.365829 + 0.00878936i
\(331\) 22.3375 1.22778 0.613890 0.789391i \(-0.289604\pi\)
0.613890 + 0.789391i \(0.289604\pi\)
\(332\) −11.7929 8.56803i −0.647219 0.470232i
\(333\) 2.86434 8.81553i 0.156965 0.483088i
\(334\) −6.19030 19.0518i −0.338718 1.04247i
\(335\) 0.408916 0.297095i 0.0223415 0.0162320i
\(336\) 1.62152 1.17810i 0.0884610 0.0642707i
\(337\) 4.39996 + 13.5417i 0.239681 + 0.737662i 0.996466 + 0.0839982i \(0.0267690\pi\)
−0.756785 + 0.653664i \(0.773231\pi\)
\(338\) 0.999759 3.07694i 0.0543797 0.167364i
\(339\) 10.8190 + 7.86049i 0.587609 + 0.426923i
\(340\) −0.300566 −0.0163005
\(341\) −8.29099 + 23.5746i −0.448982 + 1.27664i
\(342\) 7.86868 0.425489
\(343\) 0.809017 + 0.587785i 0.0436828 + 0.0317374i
\(344\) 1.05860 3.25802i 0.0570756 0.175661i
\(345\) 4.01724 + 12.3638i 0.216281 + 0.665644i
\(346\) −1.23042 + 0.893950i −0.0661476 + 0.0480591i
\(347\) −16.6901 + 12.1260i −0.895969 + 0.650960i −0.937427 0.348181i \(-0.886800\pi\)
0.0414585 + 0.999140i \(0.486800\pi\)
\(348\) 1.12522 + 3.46306i 0.0603179 + 0.185639i
\(349\) −4.94572 + 15.2214i −0.264738 + 0.814780i 0.727015 + 0.686621i \(0.240907\pi\)
−0.991754 + 0.128159i \(0.959093\pi\)
\(350\) 0.809017 + 0.587785i 0.0432438 + 0.0314184i
\(351\) 16.0127 0.854693
\(352\) −0.948835 3.17800i −0.0505731 0.169388i
\(353\) −1.46881 −0.0781767 −0.0390883 0.999236i \(-0.512445\pi\)
−0.0390883 + 0.999236i \(0.512445\pi\)
\(354\) −8.94988 6.50247i −0.475681 0.345602i
\(355\) −2.58930 + 7.96904i −0.137426 + 0.422953i
\(356\) 0.595831 + 1.83378i 0.0315790 + 0.0971901i
\(357\) 0.487373 0.354097i 0.0257945 0.0187408i
\(358\) −19.5387 + 14.1957i −1.03265 + 0.750267i
\(359\) −2.60561 8.01924i −0.137519 0.423239i 0.858454 0.512890i \(-0.171425\pi\)
−0.995973 + 0.0896504i \(0.971425\pi\)
\(360\) −0.314345 + 0.967454i −0.0165674 + 0.0509893i
\(361\) −33.0362 24.0022i −1.73875 1.26328i
\(362\) 16.6623 0.875750
\(363\) 5.79817 + 21.2713i 0.304325 + 1.11645i
\(364\) 4.02930 0.211193
\(365\) 1.13484 + 0.824510i 0.0594003 + 0.0431568i
\(366\) −2.24733 + 6.91656i −0.117470 + 0.361534i
\(367\) 8.42350 + 25.9249i 0.439703 + 1.35327i 0.888190 + 0.459477i \(0.151963\pi\)
−0.448486 + 0.893790i \(0.648037\pi\)
\(368\) 5.24734 3.81242i 0.273537 0.198736i
\(369\) −7.96902 + 5.78983i −0.414851 + 0.301407i
\(370\) −2.81579 8.66612i −0.146386 0.450530i
\(371\) −1.97617 + 6.08202i −0.102598 + 0.315763i
\(372\) −12.2178 8.87675i −0.633463 0.460238i
\(373\) 14.7417 0.763299 0.381649 0.924307i \(-0.375356\pi\)
0.381649 + 0.924307i \(0.375356\pi\)
\(374\) −0.285187 0.955200i −0.0147467 0.0493922i
\(375\) −2.00431 −0.103502
\(376\) 5.02563 + 3.65133i 0.259177 + 0.188303i
\(377\) −2.26205 + 6.96187i −0.116501 + 0.358554i
\(378\) 1.22805 + 3.77955i 0.0631641 + 0.194399i
\(379\) 21.2022 15.4043i 1.08908 0.791266i 0.109840 0.993949i \(-0.464966\pi\)
0.979244 + 0.202683i \(0.0649663\pi\)
\(380\) 6.25800 4.54670i 0.321029 0.233241i
\(381\) −7.98477 24.5746i −0.409072 1.25899i
\(382\) −0.919475 + 2.82985i −0.0470444 + 0.144788i
\(383\) 14.6056 + 10.6116i 0.746312 + 0.542227i 0.894681 0.446705i \(-0.147403\pi\)
−0.148370 + 0.988932i \(0.547403\pi\)
\(384\) 2.00431 0.102282
\(385\) −1.10036 + 3.12877i −0.0560796 + 0.159457i
\(386\) −11.5006 −0.585365
\(387\) −2.81922 2.04828i −0.143309 0.104120i
\(388\) −5.09704 + 15.6871i −0.258763 + 0.796390i
\(389\) −6.61462 20.3577i −0.335375 1.03218i −0.966537 0.256527i \(-0.917422\pi\)
0.631162 0.775651i \(-0.282578\pi\)
\(390\) −6.53359 + 4.74693i −0.330841 + 0.240370i
\(391\) 1.57717 1.14588i 0.0797610 0.0579498i
\(392\) 0.309017 + 0.951057i 0.0156077 + 0.0480356i
\(393\) 12.6265 38.8604i 0.636923 1.96025i
\(394\) −12.9925 9.43963i −0.654554 0.475561i
\(395\) −6.20005 −0.311959
\(396\) −3.37283 0.0810353i −0.169491 0.00407218i
\(397\) 4.87615 0.244727 0.122364 0.992485i \(-0.460953\pi\)
0.122364 + 0.992485i \(0.460953\pi\)
\(398\) −8.97189 6.51846i −0.449720 0.326741i
\(399\) −4.79098 + 14.7451i −0.239849 + 0.738179i
\(400\) 0.309017 + 0.951057i 0.0154508 + 0.0475528i
\(401\) −12.6757 + 9.20942i −0.632994 + 0.459897i −0.857436 0.514591i \(-0.827944\pi\)
0.224442 + 0.974487i \(0.427944\pi\)
\(402\) −0.819592 + 0.595469i −0.0408775 + 0.0296993i
\(403\) −9.38175 28.8741i −0.467338 1.43832i
\(404\) 2.91837 8.98182i 0.145194 0.446862i
\(405\) −8.91289 6.47560i −0.442885 0.321775i
\(406\) −1.81673 −0.0901626
\(407\) 24.8692 17.1713i 1.23272 0.851151i
\(408\) 0.602426 0.0298245
\(409\) −30.0809 21.8551i −1.48741 1.08066i −0.975075 0.221876i \(-0.928782\pi\)
−0.512331 0.858788i \(-0.671218\pi\)
\(410\) −2.99230 + 9.20937i −0.147779 + 0.454818i
\(411\) −10.9599 33.7312i −0.540613 1.66384i
\(412\) 2.84761 2.06891i 0.140291 0.101928i
\(413\) 4.46533 3.24425i 0.219724 0.159639i
\(414\) −2.03886 6.27497i −0.100205 0.308398i
\(415\) −4.50448 + 13.8634i −0.221116 + 0.680526i
\(416\) 3.25978 + 2.36837i 0.159824 + 0.116119i
\(417\) 27.0129 1.32283
\(418\) 20.3872 + 15.5739i 0.997173 + 0.761743i
\(419\) −27.2599 −1.33173 −0.665865 0.746072i \(-0.731938\pi\)
−0.665865 + 0.746072i \(0.731938\pi\)
\(420\) −1.62152 1.17810i −0.0791219 0.0574855i
\(421\) −4.07894 + 12.5537i −0.198795 + 0.611829i 0.801116 + 0.598509i \(0.204240\pi\)
−0.999911 + 0.0133199i \(0.995760\pi\)
\(422\) −7.88445 24.2658i −0.383809 1.18124i
\(423\) 5.11228 3.71429i 0.248567 0.180595i
\(424\) −5.17368 + 3.75890i −0.251256 + 0.182548i
\(425\) 0.0928800 + 0.285855i 0.00450534 + 0.0138660i
\(426\) 5.18975 15.9724i 0.251444 0.773865i
\(427\) −2.93547 2.13274i −0.142057 0.103211i
\(428\) 10.4251 0.503917
\(429\) −21.2851 16.2597i −1.02765 0.785026i
\(430\) −3.42569 −0.165201
\(431\) 14.1201 + 10.2588i 0.680140 + 0.494151i 0.873404 0.486996i \(-0.161907\pi\)
−0.193264 + 0.981147i \(0.561907\pi\)
\(432\) −1.22805 + 3.77955i −0.0590846 + 0.181844i
\(433\) −8.73900 26.8959i −0.419970 1.29253i −0.907729 0.419556i \(-0.862186\pi\)
0.487760 0.872978i \(-0.337814\pi\)
\(434\) 6.09578 4.42884i 0.292607 0.212591i
\(435\) 2.94585 2.14029i 0.141243 0.102619i
\(436\) 3.75676 + 11.5621i 0.179916 + 0.553725i
\(437\) −15.5039 + 47.7162i −0.741653 + 2.28257i
\(438\) −2.27457 1.65257i −0.108683 0.0789629i
\(439\) 35.7484 1.70618 0.853090 0.521764i \(-0.174726\pi\)
0.853090 + 0.521764i \(0.174726\pi\)
\(440\) −2.72926 + 1.88445i −0.130112 + 0.0898378i
\(441\) 1.01724 0.0484401
\(442\) 0.979777 + 0.711850i 0.0466032 + 0.0338592i
\(443\) 4.61798 14.2127i 0.219407 0.675266i −0.779404 0.626521i \(-0.784478\pi\)
0.998811 0.0487441i \(-0.0155219\pi\)
\(444\) 5.64371 + 17.3696i 0.267839 + 0.824323i
\(445\) 1.55991 1.13334i 0.0739467 0.0537254i
\(446\) 18.7565 13.6274i 0.888146 0.645276i
\(447\) −1.06789 3.28662i −0.0505094 0.155452i
\(448\) −0.309017 + 0.951057i −0.0145997 + 0.0449332i
\(449\) −11.3139 8.22003i −0.533936 0.387927i 0.287892 0.957663i \(-0.407046\pi\)
−0.821828 + 0.569736i \(0.807046\pi\)
\(450\) 1.01724 0.0479532
\(451\) −32.1066 0.771389i −1.51184 0.0363233i
\(452\) −6.67216 −0.313832
\(453\) 14.8352 + 10.7784i 0.697018 + 0.506413i
\(454\) −1.53693 + 4.73019i −0.0721318 + 0.221999i
\(455\) −1.24512 3.83210i −0.0583723 0.179651i
\(456\) −12.5429 + 9.11298i −0.587377 + 0.426754i
\(457\) −8.30976 + 6.03739i −0.388714 + 0.282417i −0.764928 0.644115i \(-0.777226\pi\)
0.376214 + 0.926533i \(0.377226\pi\)
\(458\) −7.93022 24.4067i −0.370555 1.14045i
\(459\) −0.369110 + 1.13600i −0.0172286 + 0.0530241i
\(460\) −5.24734 3.81242i −0.244659 0.177755i
\(461\) −17.4058 −0.810671 −0.405335 0.914168i \(-0.632845\pi\)
−0.405335 + 0.914168i \(0.632845\pi\)
\(462\) 2.20546 6.27101i 0.102607 0.291754i
\(463\) −30.3943 −1.41254 −0.706271 0.707942i \(-0.749624\pi\)
−0.706271 + 0.707942i \(0.749624\pi\)
\(464\) −1.46976 1.06784i −0.0682320 0.0495734i
\(465\) −4.66678 + 14.3629i −0.216417 + 0.666063i
\(466\) 1.17871 + 3.62769i 0.0546025 + 0.168049i
\(467\) −19.2588 + 13.9924i −0.891193 + 0.647490i −0.936189 0.351498i \(-0.885673\pi\)
0.0449959 + 0.998987i \(0.485673\pi\)
\(468\) 3.31598 2.40920i 0.153281 0.111365i
\(469\) −0.156192 0.480709i −0.00721227 0.0221971i
\(470\) 1.91962 5.90798i 0.0885454 0.272515i
\(471\) 1.42049 + 1.03205i 0.0654527 + 0.0475542i
\(472\) 5.51945 0.254053
\(473\) −3.25041 10.8868i −0.149454 0.500578i
\(474\) 12.4268 0.570782
\(475\) −6.25800 4.54670i −0.287137 0.208617i
\(476\) −0.0928800 + 0.285855i −0.00425715 + 0.0131021i
\(477\) 2.01024 + 6.18688i 0.0920426 + 0.283278i
\(478\) −5.32414 + 3.86821i −0.243520 + 0.176928i
\(479\) −6.31030 + 4.58470i −0.288325 + 0.209480i −0.722540 0.691329i \(-0.757026\pi\)
0.434215 + 0.900809i \(0.357026\pi\)
\(480\) −0.619365 1.90621i −0.0282700 0.0870061i
\(481\) −11.3457 + 34.9184i −0.517319 + 1.59214i
\(482\) −19.3905 14.0880i −0.883211 0.641690i
\(483\) 13.0001 0.591523
\(484\) −8.57841 6.88555i −0.389928 0.312980i
\(485\) 16.4944 0.748970
\(486\) 8.21893 + 5.97140i 0.372818 + 0.270868i
\(487\) −5.96739 + 18.3657i −0.270408 + 0.832232i 0.719989 + 0.693985i \(0.244147\pi\)
−0.990398 + 0.138246i \(0.955853\pi\)
\(488\) −1.12125 3.45085i −0.0507565 0.156213i
\(489\) 10.5280 7.64905i 0.476093 0.345902i
\(490\) 0.809017 0.587785i 0.0365477 0.0265534i
\(491\) 5.10436 + 15.7096i 0.230356 + 0.708964i 0.997704 + 0.0677321i \(0.0215763\pi\)
−0.767347 + 0.641232i \(0.778424\pi\)
\(492\) 5.99749 18.4584i 0.270388 0.832168i
\(493\) −0.441760 0.320958i −0.0198959 0.0144552i
\(494\) −31.1679 −1.40231
\(495\) 0.965194 + 3.23280i 0.0433822 + 0.145303i
\(496\) 7.53480 0.338322
\(497\) 6.77887 + 4.92514i 0.304074 + 0.220923i
\(498\) 9.02836 27.7864i 0.404570 1.24514i
\(499\) 3.66780 + 11.2883i 0.164193 + 0.505335i 0.998976 0.0452447i \(-0.0144068\pi\)
−0.834783 + 0.550580i \(0.814407\pi\)
\(500\) 0.809017 0.587785i 0.0361803 0.0262866i
\(501\) 32.4826 23.6000i 1.45122 1.05437i
\(502\) 1.57164 + 4.83702i 0.0701459 + 0.215887i
\(503\) −2.08942 + 6.43058i −0.0931628 + 0.286726i −0.986771 0.162123i \(-0.948166\pi\)
0.893608 + 0.448849i \(0.148166\pi\)
\(504\) 0.822965 + 0.597919i 0.0366578 + 0.0266334i
\(505\) −9.44404 −0.420254
\(506\) 7.13702 20.2934i 0.317279 0.902153i
\(507\) 6.48451 0.287987
\(508\) 10.4297 + 7.57765i 0.462745 + 0.336204i
\(509\) −11.5367 + 35.5064i −0.511357 + 1.57379i 0.278457 + 0.960449i \(0.410177\pi\)
−0.789814 + 0.613346i \(0.789823\pi\)
\(510\) −0.186160 0.572941i −0.00824330 0.0253703i
\(511\) 1.13484 0.824510i 0.0502024 0.0364742i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) −9.49935 29.2360i −0.419407 1.29080i
\(514\) 3.42909 10.5537i 0.151251 0.465502i
\(515\) −2.84761 2.06891i −0.125480 0.0911669i
\(516\) 6.86612 0.302264
\(517\) 20.5970 + 0.494861i 0.905854 + 0.0217639i
\(518\) −9.11210 −0.400363
\(519\) −2.46613 1.79175i −0.108251 0.0786491i
\(520\) 1.24512 3.83210i 0.0546023 0.168049i
\(521\) −4.21188 12.9628i −0.184526 0.567911i 0.815414 0.578878i \(-0.196509\pi\)
−0.999940 + 0.0109664i \(0.996509\pi\)
\(522\) −1.49510 + 1.08626i −0.0654389 + 0.0475441i
\(523\) 5.68747 4.13219i 0.248696 0.180688i −0.456453 0.889748i \(-0.650880\pi\)
0.705149 + 0.709060i \(0.250880\pi\)
\(524\) 6.29969 + 19.3885i 0.275203 + 0.846989i
\(525\) −0.619365 + 1.90621i −0.0270313 + 0.0831937i
\(526\) 2.14210 + 1.55633i 0.0934002 + 0.0678592i
\(527\) 2.26470 0.0986520
\(528\) 5.47026 3.77702i 0.238063 0.164374i
\(529\) 19.0691 0.829091
\(530\) 5.17368 + 3.75890i 0.224730 + 0.163276i
\(531\) 1.73501 5.33981i 0.0752930 0.231728i
\(532\) −2.39034 7.35672i −0.103634 0.318954i
\(533\) 31.5654 22.9336i 1.36725 0.993364i
\(534\) −3.12653 + 2.27156i −0.135298 + 0.0982999i
\(535\) −3.22154 9.91487i −0.139279 0.428657i
\(536\) 0.156192 0.480709i 0.00674646 0.0207635i
\(537\) −39.1616 28.4526i −1.68995 1.22782i
\(538\) −3.42199 −0.147532
\(539\) 2.63561 + 2.01335i 0.113524 + 0.0867211i
\(540\) 3.97405 0.171016
\(541\) −12.4101 9.01647i −0.533552 0.387648i 0.288133 0.957590i \(-0.406966\pi\)
−0.821685 + 0.569942i \(0.806966\pi\)
\(542\) −6.54460 + 20.1422i −0.281114 + 0.865181i
\(543\) 10.3200 + 31.7618i 0.442875 + 1.36303i
\(544\) −0.243163 + 0.176668i −0.0104255 + 0.00757459i
\(545\) 9.83533 7.14579i 0.421299 0.306092i
\(546\) 2.49561 + 7.68069i 0.106802 + 0.328703i
\(547\) 5.45498 16.7887i 0.233238 0.717834i −0.764112 0.645084i \(-0.776822\pi\)
0.997350 0.0727500i \(-0.0231775\pi\)
\(548\) 14.3159 + 10.4011i 0.611545 + 0.444313i
\(549\) −3.69100 −0.157528
\(550\) 2.63561 + 2.01335i 0.112383 + 0.0858495i
\(551\) 14.0529 0.598675
\(552\) 10.5173 + 7.64125i 0.447645 + 0.325233i
\(553\) −1.91592 + 5.89660i −0.0814733 + 0.250749i
\(554\) 8.46445 + 26.0509i 0.359620 + 1.10680i
\(555\) 14.7754 10.7350i 0.627182 0.455674i
\(556\) −10.9035 + 7.92183i −0.462410 + 0.335960i
\(557\) 8.52089 + 26.2246i 0.361042 + 1.11117i 0.952423 + 0.304780i \(0.0985828\pi\)
−0.591381 + 0.806392i \(0.701417\pi\)
\(558\) 2.36852 7.28957i 0.100268 0.308592i
\(559\) 11.1670 + 8.11328i 0.472312 + 0.343155i
\(560\) 1.00000 0.0422577
\(561\) 1.64417 1.13524i 0.0694171 0.0479300i
\(562\) 11.2620 0.475057
\(563\) 11.5918 + 8.42196i 0.488538 + 0.354943i 0.804622 0.593788i \(-0.202368\pi\)
−0.316084 + 0.948731i \(0.602368\pi\)
\(564\) −3.84750 + 11.8414i −0.162009 + 0.498613i
\(565\) 2.06181 + 6.34561i 0.0867411 + 0.266962i
\(566\) 16.4172 11.9278i 0.690068 0.501364i
\(567\) −8.91289 + 6.47560i −0.374306 + 0.271950i
\(568\) 2.58930 + 7.96904i 0.108645 + 0.334374i
\(569\) −9.03211 + 27.7980i −0.378646 + 1.16535i 0.562340 + 0.826906i \(0.309901\pi\)
−0.940986 + 0.338446i \(0.890099\pi\)
\(570\) 12.5429 + 9.11298i 0.525366 + 0.381701i
\(571\) −42.5911 −1.78238 −0.891190 0.453630i \(-0.850129\pi\)
−0.891190 + 0.453630i \(0.850129\pi\)
\(572\) 13.3598 + 0.320982i 0.558603 + 0.0134209i
\(573\) −5.96378 −0.249140
\(574\) 7.83396 + 5.69170i 0.326983 + 0.237567i
\(575\) −2.00431 + 6.16862i −0.0835853 + 0.257249i
\(576\) 0.314345 + 0.967454i 0.0130977 + 0.0403106i
\(577\) −20.5602 + 14.9378i −0.855931 + 0.621870i −0.926775 0.375617i \(-0.877431\pi\)
0.0708441 + 0.997487i \(0.477431\pi\)
\(578\) 13.6802 9.93925i 0.569021 0.413418i
\(579\) −7.12306 21.9225i −0.296024 0.911069i
\(580\) −0.561399 + 1.72781i −0.0233108 + 0.0717434i
\(581\) 11.7929 + 8.56803i 0.489251 + 0.355462i
\(582\) −33.0597 −1.37037
\(583\) −7.03683 + 20.0085i −0.291436 + 0.828669i
\(584\) 1.40274 0.0580458
\(585\) −3.31598 2.40920i −0.137099 0.0996081i
\(586\) −3.69423 + 11.3697i −0.152607 + 0.469676i
\(587\) 14.8328 + 45.6507i 0.612216 + 1.88421i 0.436300 + 0.899801i \(0.356289\pi\)
0.175915 + 0.984405i \(0.443711\pi\)
\(588\) −1.62152 + 1.17810i −0.0668702 + 0.0485841i
\(589\) −47.1527 + 34.2585i −1.94289 + 1.41160i
\(590\) −1.70560 5.24931i −0.0702186 0.216111i
\(591\) 9.94678 30.6130i 0.409156 1.25925i
\(592\) −7.37184 5.35596i −0.302981 0.220128i
\(593\) 3.34128 0.137210 0.0686050 0.997644i \(-0.478145\pi\)
0.0686050 + 0.997644i \(0.478145\pi\)
\(594\) 3.77072 + 12.6296i 0.154715 + 0.518197i
\(595\) 0.300566 0.0123220
\(596\) 1.39488 + 1.01344i 0.0571365 + 0.0415121i
\(597\) 6.86867 21.1396i 0.281116 0.865186i
\(598\) 8.07596 + 24.8552i 0.330250 + 1.01641i
\(599\) 34.8735 25.3371i 1.42489 1.03525i 0.433954 0.900935i \(-0.357118\pi\)
0.990939 0.134310i \(-0.0428818\pi\)
\(600\) −1.62152 + 1.17810i −0.0661982 + 0.0480958i
\(601\) −5.51386 16.9699i −0.224915 0.692217i −0.998300 0.0582807i \(-0.981438\pi\)
0.773385 0.633936i \(-0.218562\pi\)
\(602\) −1.05860 + 3.25802i −0.0431451 + 0.132787i
\(603\) −0.415966 0.302217i −0.0169394 0.0123072i
\(604\) −9.14895 −0.372266
\(605\) −3.89767 + 10.2863i −0.158463 + 0.418198i
\(606\) 18.9287 0.768928
\(607\) 9.16115 + 6.65596i 0.371839 + 0.270157i 0.757973 0.652286i \(-0.226190\pi\)
−0.386134 + 0.922443i \(0.626190\pi\)
\(608\) 2.39034 7.35672i 0.0969412 0.298354i
\(609\) −1.12522 3.46306i −0.0455960 0.140330i
\(610\) −2.93547 + 2.13274i −0.118854 + 0.0863522i
\(611\) −20.2498 + 14.7123i −0.819218 + 0.595197i
\(612\) 0.0944813 + 0.290784i 0.00381918 + 0.0117542i
\(613\) −11.2013 + 34.4742i −0.452418 + 1.39240i 0.421723 + 0.906725i \(0.361426\pi\)
−0.874140 + 0.485674i \(0.838574\pi\)
\(614\) 15.9073 + 11.5574i 0.641968 + 0.466417i
\(615\) −19.4083 −0.782618
\(616\) 0.948835 + 3.17800i 0.0382296 + 0.128045i
\(617\) 40.1661 1.61702 0.808512 0.588479i \(-0.200273\pi\)
0.808512 + 0.588479i \(0.200273\pi\)
\(618\) 5.70747 + 4.14672i 0.229588 + 0.166806i
\(619\) 2.73811 8.42702i 0.110054 0.338711i −0.880830 0.473433i \(-0.843014\pi\)
0.990883 + 0.134723i \(0.0430144\pi\)
\(620\) −2.32838 7.16602i −0.0935100 0.287794i
\(621\) −20.8532 + 15.1507i −0.836811 + 0.607979i
\(622\) 8.73938 6.34953i 0.350417 0.254593i
\(623\) −0.595831 1.83378i −0.0238715 0.0734688i
\(624\) −2.49561 + 7.68069i −0.0999043 + 0.307474i
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) −14.7449 −0.589325
\(627\) −17.0599 + 48.5082i −0.681307 + 1.93723i
\(628\) −0.876025 −0.0349572
\(629\) −2.21572 1.60982i −0.0883467 0.0641876i
\(630\) 0.314345 0.967454i 0.0125238 0.0385443i
\(631\) −0.738828 2.27388i −0.0294123 0.0905217i 0.935273 0.353928i \(-0.115154\pi\)
−0.964685 + 0.263406i \(0.915154\pi\)
\(632\) −5.01595 + 3.64430i −0.199524 + 0.144962i
\(633\) 41.3724 30.0588i 1.64441 1.19473i
\(634\) 5.39755 + 16.6119i 0.214364 + 0.659745i
\(635\) 3.98381 12.2609i 0.158093 0.486559i
\(636\) −10.3696 7.53398i −0.411183 0.298742i
\(637\) −4.02930 −0.159647
\(638\) −6.02366 0.144724i −0.238479 0.00572967i
\(639\) 8.52362 0.337189
\(640\) 0.809017 + 0.587785i 0.0319792 + 0.0232343i
\(641\) −2.24826 + 6.91942i −0.0888008 + 0.273301i −0.985589 0.169160i \(-0.945894\pi\)
0.896788 + 0.442461i \(0.145894\pi\)
\(642\) 6.45695 + 19.8724i 0.254835 + 0.784302i
\(643\) 7.31762 5.31656i 0.288579 0.209665i −0.434072 0.900878i \(-0.642924\pi\)
0.722651 + 0.691213i \(0.242924\pi\)
\(644\) −5.24734 + 3.81242i −0.206774 + 0.150230i
\(645\) −2.12175 6.53007i −0.0835438 0.257121i
\(646\) 0.718455 2.21118i 0.0282673 0.0869977i
\(647\) 25.1052 + 18.2400i 0.986989 + 0.717089i 0.959260 0.282526i \(-0.0911724\pi\)
0.0277291 + 0.999615i \(0.491172\pi\)
\(648\) −11.0169 −0.432786
\(649\) 15.0640 10.4011i 0.591313 0.408281i
\(650\) −4.02930 −0.158042
\(651\) 12.2178 + 8.87675i 0.478853 + 0.347907i
\(652\) −2.00635 + 6.17492i −0.0785748 + 0.241828i
\(653\) 13.0937 + 40.2981i 0.512394 + 1.57699i 0.787973 + 0.615709i \(0.211130\pi\)
−0.275579 + 0.961278i \(0.588870\pi\)
\(654\) −19.7130 + 14.3223i −0.770840 + 0.560048i
\(655\) 16.4928 11.9827i 0.644427 0.468204i
\(656\) 2.99230 + 9.20937i 0.116830 + 0.359565i
\(657\) 0.440944 1.35709i 0.0172029 0.0529450i
\(658\) −5.02563 3.65133i −0.195919 0.142344i
\(659\) 25.5490 0.995247 0.497624 0.867393i \(-0.334206\pi\)
0.497624 + 0.867393i \(0.334206\pi\)
\(660\) −5.28256 4.03537i −0.205624 0.157076i
\(661\) 1.55717 0.0605669 0.0302834 0.999541i \(-0.490359\pi\)
0.0302834 + 0.999541i \(0.490359\pi\)
\(662\) −18.0714 13.1297i −0.702366 0.510299i
\(663\) −0.750095 + 2.30855i −0.0291313 + 0.0896568i
\(664\) 4.50448 + 13.8634i 0.174808 + 0.538003i
\(665\) −6.25800 + 4.54670i −0.242675 + 0.176314i
\(666\) −7.49894 + 5.44830i −0.290578 + 0.211117i
\(667\) −3.64127 11.2067i −0.140991 0.433925i
\(668\) −6.19030 + 19.0518i −0.239510 + 0.737136i
\(669\) 37.5938 + 27.3135i 1.45346 + 1.05600i
\(670\) −0.505448 −0.0195271
\(671\) −9.56314 7.30531i −0.369181 0.282018i
\(672\) −2.00431 −0.0773178
\(673\) −20.2452 14.7090i −0.780394 0.566990i 0.124703 0.992194i \(-0.460202\pi\)
−0.905097 + 0.425204i \(0.860202\pi\)
\(674\) 4.39996 13.5417i 0.169480 0.521606i
\(675\) −1.22805 3.77955i −0.0472677 0.145475i
\(676\) −2.61740 + 1.90165i −0.100669 + 0.0731406i
\(677\) −18.9740 + 13.7854i −0.729231 + 0.529818i −0.889320 0.457285i \(-0.848822\pi\)
0.160089 + 0.987103i \(0.448822\pi\)
\(678\) −4.13250 12.7185i −0.158708 0.488452i
\(679\) 5.09704 15.6871i 0.195606 0.602014i
\(680\) 0.243163 + 0.176668i 0.00932487 + 0.00677492i
\(681\) −9.96865 −0.381999
\(682\) 20.5644 14.1990i 0.787451 0.543707i
\(683\) −36.6815 −1.40358 −0.701790 0.712384i \(-0.747616\pi\)
−0.701790 + 0.712384i \(0.747616\pi\)
\(684\) −6.36589 4.62509i −0.243406 0.176845i
\(685\) 5.46819 16.8294i 0.208929 0.643016i
\(686\) −0.309017 0.951057i −0.0117983 0.0363115i
\(687\) 41.6126 30.2333i 1.58762 1.15347i
\(688\) −2.77144 + 2.01357i −0.105660 + 0.0767666i
\(689\) −7.96259 24.5063i −0.303350 0.933616i
\(690\) 4.01724 12.3638i 0.152934 0.470682i
\(691\) −22.3427 16.2330i −0.849958 0.617531i 0.0751763 0.997170i \(-0.476048\pi\)
−0.925135 + 0.379639i \(0.876048\pi\)
\(692\) 1.52088 0.0578151
\(693\) 3.37283 + 0.0810353i 0.128123 + 0.00307828i
\(694\) 20.6300 0.783106
\(695\) 10.9035 + 7.92183i 0.413592 + 0.300492i
\(696\) 1.12522 3.46306i 0.0426512 0.131267i
\(697\) 0.899385 + 2.76802i 0.0340666 + 0.104846i
\(698\) 12.9481 9.40731i 0.490091 0.356072i
\(699\) −6.18507 + 4.49372i −0.233941 + 0.169968i
\(700\) −0.309017 0.951057i −0.0116797 0.0359466i
\(701\) 9.26683 28.5204i 0.350003 1.07720i −0.608847 0.793287i \(-0.708368\pi\)
0.958850 0.283912i \(-0.0916322\pi\)
\(702\) −12.9545 9.41201i −0.488937 0.355234i
\(703\) 70.4849 2.65839
\(704\) −1.10036 + 3.12877i −0.0414714 + 0.117920i
\(705\) 12.4508 0.468924
\(706\) 1.18829 + 0.863343i 0.0447219 + 0.0324923i
\(707\) −2.91837 + 8.98182i −0.109757 + 0.337796i
\(708\) 3.41855 + 10.5212i 0.128477 + 0.395412i
\(709\) 4.19485 3.04774i 0.157541 0.114460i −0.506222 0.862403i \(-0.668958\pi\)
0.663763 + 0.747943i \(0.268958\pi\)
\(710\) 6.77887 4.92514i 0.254407 0.184837i
\(711\) 1.94895 + 5.99827i 0.0730915 + 0.224953i
\(712\) 0.595831 1.83378i 0.0223297 0.0687238i
\(713\) 39.5376 + 28.7258i 1.48070 + 1.07579i
\(714\) −0.602426 −0.0225452
\(715\) −3.82314 12.8051i −0.142977 0.478885i
\(716\) 24.1512 0.902573
\(717\) −10.6712 7.75308i −0.398523 0.289544i
\(718\) −2.60561 + 8.01924i −0.0972405 + 0.299275i
\(719\) −5.18617 15.9614i −0.193411 0.595259i −0.999991 0.00413409i \(-0.998684\pi\)
0.806580 0.591125i \(-0.201316\pi\)
\(720\) 0.822965 0.597919i 0.0306701 0.0222831i
\(721\) −2.84761 + 2.06891i −0.106050 + 0.0770501i
\(722\) 12.6187 + 38.8364i 0.469620 + 1.44534i
\(723\) 14.8449 45.6878i 0.552087 1.69915i
\(724\) −13.4801 9.79384i −0.500983 0.363985i
\(725\) 1.81673 0.0674715
\(726\) 7.81213 20.6169i 0.289935 0.765165i
\(727\) 9.72794 0.360789 0.180395 0.983594i \(-0.442263\pi\)
0.180395 + 0.983594i \(0.442263\pi\)
\(728\) −3.25978 2.36837i −0.120815 0.0877775i
\(729\) 3.92105 12.0677i 0.145224 0.446953i
\(730\) −0.433471 1.33409i −0.0160435 0.0493767i
\(731\) −0.833000 + 0.605210i −0.0308096 + 0.0223845i
\(732\) 5.88357 4.27467i 0.217463 0.157996i
\(733\) 3.27165 + 10.0691i 0.120841 + 0.371911i 0.993120 0.117097i \(-0.0373589\pi\)
−0.872279 + 0.489008i \(0.837359\pi\)
\(734\) 8.42350 25.9249i 0.310917 0.956904i
\(735\) 1.62152 + 1.17810i 0.0598106 + 0.0434549i
\(736\) −6.48607 −0.239080
\(737\) −0.479586 1.60632i −0.0176658 0.0591694i
\(738\) 9.85025 0.362593
\(739\) 9.45815 + 6.87175i 0.347924 + 0.252781i 0.747998 0.663702i \(-0.231015\pi\)
−0.400074 + 0.916483i \(0.631015\pi\)
\(740\) −2.81579 + 8.66612i −0.103511 + 0.318573i
\(741\) −19.3043 59.4125i −0.709161 2.18257i
\(742\) 5.17368 3.75890i 0.189932 0.137993i
\(743\) −1.88042 + 1.36621i −0.0689859 + 0.0501212i −0.621744 0.783221i \(-0.713575\pi\)
0.552758 + 0.833342i \(0.313575\pi\)
\(744\) 4.66678 + 14.3629i 0.171093 + 0.526569i
\(745\) 0.532797 1.63978i 0.0195202 0.0600769i
\(746\) −11.9263 8.66498i −0.436654 0.317247i
\(747\) 14.8281 0.542533
\(748\) −0.330731 + 0.940402i −0.0120927 + 0.0343845i
\(749\) −10.4251 −0.380925
\(750\) 1.62152 + 1.17810i 0.0592094 + 0.0430182i
\(751\) −4.22108 + 12.9912i −0.154029 + 0.474054i −0.998061 0.0622392i \(-0.980176\pi\)
0.844032 + 0.536293i \(0.180176\pi\)
\(752\) −1.91962 5.90798i −0.0700013 0.215442i
\(753\) −8.24695 + 5.99176i −0.300536 + 0.218352i
\(754\) 5.92212 4.30267i 0.215671 0.156694i
\(755\) 2.82718 + 8.70117i 0.102892 + 0.316668i
\(756\) 1.22805 3.77955i 0.0446638 0.137461i
\(757\) −16.5366 12.0146i −0.601034 0.436677i 0.245212 0.969470i \(-0.421143\pi\)
−0.846246 + 0.532793i \(0.821143\pi\)
\(758\) −26.2074 −0.951894
\(759\) 43.1039 + 1.03561i 1.56457 + 0.0375902i
\(760\) −7.73531 −0.280589
\(761\) −4.48873 3.26126i −0.162716 0.118220i 0.503447 0.864026i \(-0.332065\pi\)
−0.666164 + 0.745806i \(0.732065\pi\)
\(762\) −7.98477 + 24.5746i −0.289258 + 0.890243i
\(763\) −3.75676 11.5621i −0.136004 0.418577i
\(764\) 2.40722 1.74894i 0.0870900 0.0632746i
\(765\) 0.247355 0.179714i 0.00894315 0.00649758i
\(766\) −5.57885 17.1699i −0.201572 0.620374i
\(767\) −6.87239 + 21.1511i −0.248148 + 0.763720i
\(768\) −1.62152 1.17810i −0.0585115 0.0425111i
\(769\) 8.18880 0.295296 0.147648 0.989040i \(-0.452830\pi\)
0.147648 + 0.989040i \(0.452830\pi\)
\(770\) 2.72926 1.88445i 0.0983556 0.0679110i
\(771\) 22.2413 0.801002
\(772\) 9.30418 + 6.75988i 0.334865 + 0.243293i
\(773\) 3.24605 9.99033i 0.116752 0.359327i −0.875556 0.483117i \(-0.839505\pi\)
0.992309 + 0.123789i \(0.0395047\pi\)
\(774\) 1.07685 + 3.31419i 0.0387065