Properties

Label 770.2.n.k.631.1
Level $770$
Weight $2$
Character 770.631
Analytic conductor $6.148$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 5 x^{15} + 18 x^{14} - 35 x^{13} + 89 x^{12} - 185 x^{11} + 837 x^{10} - 1660 x^{9} + 4196 x^{8} - 8420 x^{7} + 13485 x^{6} - 14630 x^{5} + 11615 x^{4} - 5200 x^{3} + 1425 x^{2} - 225 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 631.1
Root \(0.897614 + 2.76257i\) of defining polynomial
Character \(\chi\) \(=\) 770.631
Dual form 770.2.n.k.421.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(-0.897614 + 2.76257i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{5} +(2.34998 - 1.70736i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-4.39904 - 3.19609i) q^{9} +O(q^{10})\) \(q+(-0.809017 - 0.587785i) q^{2} +(-0.897614 + 2.76257i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{5} +(2.34998 - 1.70736i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-4.39904 - 3.19609i) q^{9} -1.00000 q^{10} +(3.20987 + 0.834702i) q^{11} -2.90474 q^{12} +(5.26686 + 3.82660i) q^{13} +(-0.309017 + 0.951057i) q^{14} +(0.897614 + 2.76257i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(-5.72647 + 4.16052i) q^{17} +(1.68028 + 5.17138i) q^{18} +(1.22828 - 3.78025i) q^{19} +(0.809017 + 0.587785i) q^{20} +2.90474 q^{21} +(-2.10621 - 2.56200i) q^{22} +9.39994 q^{23} +(2.34998 + 1.70736i) q^{24} +(0.309017 - 0.951057i) q^{25} +(-2.01176 - 6.19157i) q^{26} +(5.72812 - 4.16172i) q^{27} +(0.809017 - 0.587785i) q^{28} +(0.364402 + 1.12151i) q^{29} +(0.897614 - 2.76257i) q^{30} +(1.03837 + 0.754419i) q^{31} +1.00000 q^{32} +(-5.18715 + 8.11826i) q^{33} +7.07831 q^{34} +(-0.809017 - 0.587785i) q^{35} +(1.68028 - 5.17138i) q^{36} +(-0.311511 - 0.958733i) q^{37} +(-3.21567 + 2.33632i) q^{38} +(-15.2989 + 11.1153i) q^{39} +(-0.309017 - 0.951057i) q^{40} +(-1.67841 + 5.16560i) q^{41} +(-2.34998 - 1.70736i) q^{42} -11.2003 q^{43} +(0.198055 + 3.31071i) q^{44} -5.43751 q^{45} +(-7.60471 - 5.52514i) q^{46} +(-3.52015 + 10.8339i) q^{47} +(-0.897614 - 2.76257i) q^{48} +(-0.809017 + 0.587785i) q^{49} +(-0.809017 + 0.587785i) q^{50} +(-6.35359 - 19.5543i) q^{51} +(-2.01176 + 6.19157i) q^{52} +(6.27479 + 4.55890i) q^{53} -7.08034 q^{54} +(3.08747 - 1.21143i) q^{55} -1.00000 q^{56} +(9.34069 + 6.78641i) q^{57} +(0.364402 - 1.12151i) q^{58} +(-1.74470 - 5.36963i) q^{59} +(-2.34998 + 1.70736i) q^{60} +(-5.12643 + 3.72457i) q^{61} +(-0.396621 - 1.22068i) q^{62} +(-1.68028 + 5.17138i) q^{63} +(-0.809017 - 0.587785i) q^{64} +6.51020 q^{65} +(8.96829 - 3.51888i) q^{66} +3.88122 q^{67} +(-5.72647 - 4.16052i) q^{68} +(-8.43751 + 25.9680i) q^{69} +(0.309017 + 0.951057i) q^{70} +(0.210285 - 0.152781i) q^{71} +(-4.39904 + 3.19609i) q^{72} +(1.49096 + 4.58872i) q^{73} +(-0.311511 + 0.958733i) q^{74} +(2.34998 + 1.70736i) q^{75} +3.97479 q^{76} +(-0.198055 - 3.31071i) q^{77} +18.9104 q^{78} +(-11.6035 - 8.43046i) q^{79} +(-0.309017 + 0.951057i) q^{80} +(1.31456 + 4.04581i) q^{81} +(4.39413 - 3.19252i) q^{82} +(-3.71745 + 2.70088i) q^{83} +(0.897614 + 2.76257i) q^{84} +(-2.18732 + 6.73187i) q^{85} +(9.06122 + 6.58336i) q^{86} -3.42535 q^{87} +(1.78575 - 2.79483i) q^{88} -1.43088 q^{89} +(4.39904 + 3.19609i) q^{90} +(2.01176 - 6.19157i) q^{91} +(2.90474 + 8.93987i) q^{92} +(-3.01619 + 2.19139i) q^{93} +(9.21588 - 6.69573i) q^{94} +(-1.22828 - 3.78025i) q^{95} +(-0.897614 + 2.76257i) q^{96} +(6.96317 + 5.05904i) q^{97} +1.00000 q^{98} +(-11.4526 - 13.9309i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} + O(q^{10}) \) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} - 16q^{10} - 2q^{11} + 8q^{13} + 4q^{14} + 5q^{15} - 4q^{16} - 13q^{17} - 9q^{18} + 15q^{19} + 4q^{20} - 2q^{22} + 20q^{23} + 5q^{24} - 4q^{25} - 7q^{26} + 10q^{27} + 4q^{28} - 14q^{29} + 5q^{30} - 6q^{31} + 16q^{32} - 25q^{33} + 12q^{34} - 4q^{35} - 9q^{36} + 28q^{37} - 20q^{38} + 15q^{39} + 4q^{40} + 2q^{41} - 5q^{42} - 10q^{43} + 3q^{44} - 16q^{45} - 10q^{46} - 10q^{47} - 5q^{48} - 4q^{49} - 4q^{50} - 42q^{51} - 7q^{52} - 2q^{53} - 3q^{55} - 16q^{56} + 21q^{57} - 14q^{58} + 7q^{59} - 5q^{60} + 4q^{61} + 14q^{62} + 9q^{63} - 4q^{64} + 2q^{65} - 10q^{66} + 66q^{67} - 13q^{68} - 64q^{69} - 4q^{70} + 2q^{71} + q^{72} + 12q^{73} + 28q^{74} + 5q^{75} + 10q^{76} - 3q^{77} + 70q^{78} + 2q^{79} + 4q^{80} - 30q^{81} - 13q^{82} - 5q^{83} + 5q^{84} - 7q^{85} + 5q^{86} - 24q^{87} - 2q^{88} + 2q^{89} - q^{90} + 7q^{91} - 38q^{93} + 25q^{94} - 15q^{95} - 5q^{96} + 22q^{97} + 16q^{98} - 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) −0.897614 + 2.76257i −0.518238 + 1.59497i 0.259075 + 0.965857i \(0.416582\pi\)
−0.777313 + 0.629114i \(0.783418\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) 2.34998 1.70736i 0.959377 0.697028i
\(7\) −0.309017 0.951057i −0.116797 0.359466i
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) −4.39904 3.19609i −1.46635 1.06536i
\(10\) −1.00000 −0.316228
\(11\) 3.20987 + 0.834702i 0.967813 + 0.251672i
\(12\) −2.90474 −0.838526
\(13\) 5.26686 + 3.82660i 1.46076 + 1.06131i 0.983163 + 0.182731i \(0.0584938\pi\)
0.477602 + 0.878576i \(0.341506\pi\)
\(14\) −0.309017 + 0.951057i −0.0825883 + 0.254181i
\(15\) 0.897614 + 2.76257i 0.231763 + 0.713293i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −5.72647 + 4.16052i −1.38887 + 1.00908i −0.392885 + 0.919587i \(0.628523\pi\)
−0.995988 + 0.0894880i \(0.971477\pi\)
\(18\) 1.68028 + 5.17138i 0.396047 + 1.21891i
\(19\) 1.22828 3.78025i 0.281786 0.867249i −0.705557 0.708653i \(-0.749303\pi\)
0.987344 0.158596i \(-0.0506967\pi\)
\(20\) 0.809017 + 0.587785i 0.180902 + 0.131433i
\(21\) 2.90474 0.633866
\(22\) −2.10621 2.56200i −0.449046 0.546221i
\(23\) 9.39994 1.96002 0.980011 0.198943i \(-0.0637509\pi\)
0.980011 + 0.198943i \(0.0637509\pi\)
\(24\) 2.34998 + 1.70736i 0.479688 + 0.348514i
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) −2.01176 6.19157i −0.394539 1.21427i
\(27\) 5.72812 4.16172i 1.10238 0.800924i
\(28\) 0.809017 0.587785i 0.152890 0.111081i
\(29\) 0.364402 + 1.12151i 0.0676677 + 0.208260i 0.979173 0.203029i \(-0.0650787\pi\)
−0.911505 + 0.411289i \(0.865079\pi\)
\(30\) 0.897614 2.76257i 0.163881 0.504374i
\(31\) 1.03837 + 0.754419i 0.186496 + 0.135498i 0.677116 0.735876i \(-0.263230\pi\)
−0.490620 + 0.871374i \(0.663230\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.18715 + 8.11826i −0.902967 + 1.41321i
\(34\) 7.07831 1.21392
\(35\) −0.809017 0.587785i −0.136749 0.0993538i
\(36\) 1.68028 5.17138i 0.280047 0.861897i
\(37\) −0.311511 0.958733i −0.0512121 0.157615i 0.922180 0.386762i \(-0.126406\pi\)
−0.973392 + 0.229147i \(0.926406\pi\)
\(38\) −3.21567 + 2.33632i −0.521651 + 0.379002i
\(39\) −15.2989 + 11.1153i −2.44978 + 1.77987i
\(40\) −0.309017 0.951057i −0.0488599 0.150375i
\(41\) −1.67841 + 5.16560i −0.262123 + 0.806732i 0.730219 + 0.683213i \(0.239418\pi\)
−0.992342 + 0.123519i \(0.960582\pi\)
\(42\) −2.34998 1.70736i −0.362610 0.263452i
\(43\) −11.2003 −1.70803 −0.854013 0.520251i \(-0.825838\pi\)
−0.854013 + 0.520251i \(0.825838\pi\)
\(44\) 0.198055 + 3.31071i 0.0298580 + 0.499108i
\(45\) −5.43751 −0.810577
\(46\) −7.60471 5.52514i −1.12125 0.814638i
\(47\) −3.52015 + 10.8339i −0.513467 + 1.58029i 0.272587 + 0.962131i \(0.412121\pi\)
−0.786054 + 0.618158i \(0.787879\pi\)
\(48\) −0.897614 2.76257i −0.129559 0.398743i
\(49\) −0.809017 + 0.587785i −0.115574 + 0.0839693i
\(50\) −0.809017 + 0.587785i −0.114412 + 0.0831254i
\(51\) −6.35359 19.5543i −0.889680 2.73815i
\(52\) −2.01176 + 6.19157i −0.278981 + 0.858616i
\(53\) 6.27479 + 4.55890i 0.861908 + 0.626213i 0.928403 0.371574i \(-0.121182\pi\)
−0.0664953 + 0.997787i \(0.521182\pi\)
\(54\) −7.08034 −0.963513
\(55\) 3.08747 1.21143i 0.416314 0.163349i
\(56\) −1.00000 −0.133631
\(57\) 9.34069 + 6.78641i 1.23721 + 0.898882i
\(58\) 0.364402 1.12151i 0.0478483 0.147262i
\(59\) −1.74470 5.36963i −0.227141 0.699067i −0.998067 0.0621428i \(-0.980207\pi\)
0.770927 0.636924i \(-0.219793\pi\)
\(60\) −2.34998 + 1.70736i −0.303382 + 0.220420i
\(61\) −5.12643 + 3.72457i −0.656372 + 0.476882i −0.865436 0.501020i \(-0.832958\pi\)
0.209064 + 0.977902i \(0.432958\pi\)
\(62\) −0.396621 1.22068i −0.0503710 0.155026i
\(63\) −1.68028 + 5.17138i −0.211696 + 0.651533i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 6.51020 0.807491
\(66\) 8.96829 3.51888i 1.10392 0.433144i
\(67\) 3.88122 0.474166 0.237083 0.971489i \(-0.423809\pi\)
0.237083 + 0.971489i \(0.423809\pi\)
\(68\) −5.72647 4.16052i −0.694437 0.504538i
\(69\) −8.43751 + 25.9680i −1.01576 + 3.12618i
\(70\) 0.309017 + 0.951057i 0.0369346 + 0.113673i
\(71\) 0.210285 0.152781i 0.0249562 0.0181317i −0.575237 0.817987i \(-0.695090\pi\)
0.600193 + 0.799855i \(0.295090\pi\)
\(72\) −4.39904 + 3.19609i −0.518432 + 0.376663i
\(73\) 1.49096 + 4.58872i 0.174504 + 0.537069i 0.999610 0.0279089i \(-0.00888484\pi\)
−0.825106 + 0.564977i \(0.808885\pi\)
\(74\) −0.311511 + 0.958733i −0.0362124 + 0.111450i
\(75\) 2.34998 + 1.70736i 0.271353 + 0.197149i
\(76\) 3.97479 0.455940
\(77\) −0.198055 3.31071i −0.0225705 0.377290i
\(78\) 18.9104 2.14119
\(79\) −11.6035 8.43046i −1.30550 0.948501i −0.305507 0.952190i \(-0.598826\pi\)
−0.999993 + 0.00368850i \(0.998826\pi\)
\(80\) −0.309017 + 0.951057i −0.0345492 + 0.106331i
\(81\) 1.31456 + 4.04581i 0.146062 + 0.449534i
\(82\) 4.39413 3.19252i 0.485250 0.352555i
\(83\) −3.71745 + 2.70088i −0.408043 + 0.296460i −0.772809 0.634639i \(-0.781149\pi\)
0.364766 + 0.931099i \(0.381149\pi\)
\(84\) 0.897614 + 2.76257i 0.0979377 + 0.301421i
\(85\) −2.18732 + 6.73187i −0.237248 + 0.730174i
\(86\) 9.06122 + 6.58336i 0.977096 + 0.709902i
\(87\) −3.42535 −0.367236
\(88\) 1.78575 2.79483i 0.190362 0.297930i
\(89\) −1.43088 −0.151673 −0.0758366 0.997120i \(-0.524163\pi\)
−0.0758366 + 0.997120i \(0.524163\pi\)
\(90\) 4.39904 + 3.19609i 0.463700 + 0.336897i
\(91\) 2.01176 6.19157i 0.210890 0.649053i
\(92\) 2.90474 + 8.93987i 0.302840 + 0.932046i
\(93\) −3.01619 + 2.19139i −0.312764 + 0.227237i
\(94\) 9.21588 6.69573i 0.950545 0.690612i
\(95\) −1.22828 3.78025i −0.126019 0.387845i
\(96\) −0.897614 + 2.76257i −0.0916123 + 0.281954i
\(97\) 6.96317 + 5.05904i 0.707003 + 0.513667i 0.882205 0.470865i \(-0.156058\pi\)
−0.175203 + 0.984532i \(0.556058\pi\)
\(98\) 1.00000 0.101015
\(99\) −11.4526 13.9309i −1.15103 1.40011i
\(100\) 1.00000 0.100000
\(101\) 5.77844 + 4.19829i 0.574977 + 0.417745i 0.836910 0.547341i \(-0.184360\pi\)
−0.261933 + 0.965086i \(0.584360\pi\)
\(102\) −6.35359 + 19.5543i −0.629099 + 1.93617i
\(103\) 0.964531 + 2.96852i 0.0950381 + 0.292497i 0.987264 0.159093i \(-0.0508570\pi\)
−0.892226 + 0.451590i \(0.850857\pi\)
\(104\) 5.26686 3.82660i 0.516458 0.375229i
\(105\) 2.34998 1.70736i 0.229335 0.166622i
\(106\) −2.39675 7.37645i −0.232793 0.716464i
\(107\) −1.01725 + 3.13076i −0.0983409 + 0.302662i −0.988110 0.153749i \(-0.950865\pi\)
0.889769 + 0.456411i \(0.150865\pi\)
\(108\) 5.72812 + 4.16172i 0.551188 + 0.400462i
\(109\) 12.5855 1.20547 0.602736 0.797941i \(-0.294077\pi\)
0.602736 + 0.797941i \(0.294077\pi\)
\(110\) −3.20987 0.834702i −0.306049 0.0795858i
\(111\) 2.92819 0.277931
\(112\) 0.809017 + 0.587785i 0.0764449 + 0.0555405i
\(113\) 0.372334 1.14593i 0.0350263 0.107800i −0.932015 0.362420i \(-0.881951\pi\)
0.967041 + 0.254620i \(0.0819505\pi\)
\(114\) −3.56783 10.9806i −0.334158 1.02843i
\(115\) 7.60471 5.52514i 0.709143 0.515222i
\(116\) −0.954016 + 0.693133i −0.0885782 + 0.0643558i
\(117\) −10.9390 33.6667i −1.01131 3.11249i
\(118\) −1.74470 + 5.36963i −0.160613 + 0.494315i
\(119\) 5.72647 + 4.16052i 0.524945 + 0.381395i
\(120\) 2.90474 0.265165
\(121\) 9.60654 + 5.35857i 0.873322 + 0.487143i
\(122\) 6.33662 0.573690
\(123\) −12.7638 9.27344i −1.15087 0.836158i
\(124\) −0.396621 + 1.22068i −0.0356177 + 0.109620i
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) 4.39904 3.19609i 0.391898 0.284730i
\(127\) 12.9464 9.40609i 1.14880 0.834655i 0.160483 0.987039i \(-0.448695\pi\)
0.988321 + 0.152383i \(0.0486949\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 10.0535 30.9416i 0.885164 2.72425i
\(130\) −5.26686 3.82660i −0.461934 0.335615i
\(131\) 14.6019 1.27577 0.637887 0.770130i \(-0.279809\pi\)
0.637887 + 0.770130i \(0.279809\pi\)
\(132\) −9.32384 2.42459i −0.811536 0.211034i
\(133\) −3.97479 −0.344658
\(134\) −3.13997 2.28132i −0.271252 0.197076i
\(135\) 2.18795 6.73381i 0.188308 0.579554i
\(136\) 2.18732 + 6.73187i 0.187561 + 0.577253i
\(137\) −8.17078 + 5.93642i −0.698077 + 0.507183i −0.879305 0.476258i \(-0.841993\pi\)
0.181228 + 0.983441i \(0.441993\pi\)
\(138\) 22.0897 16.0491i 1.88040 1.36619i
\(139\) −5.72022 17.6050i −0.485183 1.49324i −0.831716 0.555202i \(-0.812641\pi\)
0.346532 0.938038i \(-0.387359\pi\)
\(140\) 0.309017 0.951057i 0.0261167 0.0803789i
\(141\) −26.7697 19.4493i −2.25442 1.63793i
\(142\) −0.259926 −0.0218125
\(143\) 13.7119 + 16.6792i 1.14664 + 1.39478i
\(144\) 5.43751 0.453126
\(145\) 0.954016 + 0.693133i 0.0792267 + 0.0575616i
\(146\) 1.49096 4.58872i 0.123393 0.379765i
\(147\) −0.897614 2.76257i −0.0740340 0.227853i
\(148\) 0.815547 0.592530i 0.0670375 0.0487056i
\(149\) −9.31392 + 6.76696i −0.763026 + 0.554371i −0.899837 0.436226i \(-0.856315\pi\)
0.136811 + 0.990597i \(0.456315\pi\)
\(150\) −0.897614 2.76257i −0.0732899 0.225563i
\(151\) 1.67922 5.16811i 0.136653 0.420575i −0.859191 0.511656i \(-0.829032\pi\)
0.995843 + 0.0910813i \(0.0290323\pi\)
\(152\) −3.21567 2.33632i −0.260826 0.189501i
\(153\) 38.4884 3.11160
\(154\) −1.78575 + 2.79483i −0.143900 + 0.225214i
\(155\) 1.28349 0.103093
\(156\) −15.2989 11.1153i −1.22489 0.889934i
\(157\) 2.46488 7.58611i 0.196719 0.605438i −0.803234 0.595664i \(-0.796889\pi\)
0.999952 0.00977361i \(-0.00311109\pi\)
\(158\) 4.43216 + 13.6408i 0.352604 + 1.08520i
\(159\) −18.2266 + 13.2424i −1.44546 + 1.05019i
\(160\) 0.809017 0.587785i 0.0639584 0.0464685i
\(161\) −2.90474 8.93987i −0.228926 0.704560i
\(162\) 1.31456 4.04581i 0.103282 0.317869i
\(163\) −11.6039 8.43072i −0.908886 0.660345i 0.0318466 0.999493i \(-0.489861\pi\)
−0.940733 + 0.339148i \(0.889861\pi\)
\(164\) −5.43144 −0.424124
\(165\) 0.575300 + 9.61674i 0.0447870 + 0.748662i
\(166\) 4.59502 0.356642
\(167\) 1.54554 + 1.12290i 0.119598 + 0.0868929i 0.645976 0.763358i \(-0.276450\pi\)
−0.526378 + 0.850250i \(0.676450\pi\)
\(168\) 0.897614 2.76257i 0.0692524 0.213137i
\(169\) 9.07975 + 27.9446i 0.698442 + 2.14958i
\(170\) 5.72647 4.16052i 0.439200 0.319098i
\(171\) −17.4853 + 12.7038i −1.33713 + 0.971483i
\(172\) −3.46108 10.6521i −0.263905 0.812215i
\(173\) −4.50935 + 13.8784i −0.342840 + 1.05515i 0.619890 + 0.784688i \(0.287177\pi\)
−0.962730 + 0.270464i \(0.912823\pi\)
\(174\) 2.77117 + 2.01337i 0.210082 + 0.152633i
\(175\) −1.00000 −0.0755929
\(176\) −3.08747 + 1.21143i −0.232727 + 0.0913147i
\(177\) 16.4001 1.23270
\(178\) 1.15761 + 0.841051i 0.0867663 + 0.0630394i
\(179\) −0.975544 + 3.00242i −0.0729156 + 0.224411i −0.980872 0.194653i \(-0.937642\pi\)
0.907957 + 0.419064i \(0.137642\pi\)
\(180\) −1.68028 5.17138i −0.125241 0.385452i
\(181\) 5.73629 4.16766i 0.426375 0.309780i −0.353823 0.935313i \(-0.615118\pi\)
0.780198 + 0.625533i \(0.215118\pi\)
\(182\) −5.26686 + 3.82660i −0.390406 + 0.283646i
\(183\) −5.68784 17.5054i −0.420457 1.29403i
\(184\) 2.90474 8.93987i 0.214140 0.659056i
\(185\) −0.815547 0.592530i −0.0599602 0.0435636i
\(186\) 3.72822 0.273366
\(187\) −21.8540 + 8.57485i −1.59813 + 0.627055i
\(188\) −11.3915 −0.830807
\(189\) −5.72812 4.16172i −0.416659 0.302721i
\(190\) −1.22828 + 3.78025i −0.0891086 + 0.274248i
\(191\) 2.35315 + 7.24226i 0.170268 + 0.524032i 0.999386 0.0350426i \(-0.0111567\pi\)
−0.829118 + 0.559074i \(0.811157\pi\)
\(192\) 2.34998 1.70736i 0.169595 0.123218i
\(193\) 6.92116 5.02852i 0.498196 0.361961i −0.310131 0.950694i \(-0.600373\pi\)
0.808328 + 0.588733i \(0.200373\pi\)
\(194\) −2.65969 8.18569i −0.190955 0.587699i
\(195\) −5.84365 + 17.9849i −0.418472 + 1.28792i
\(196\) −0.809017 0.587785i −0.0577869 0.0419847i
\(197\) 5.30318 0.377836 0.188918 0.981993i \(-0.439502\pi\)
0.188918 + 0.981993i \(0.439502\pi\)
\(198\) 1.07693 + 18.0020i 0.0765340 + 1.27935i
\(199\) 27.8463 1.97397 0.986987 0.160798i \(-0.0514068\pi\)
0.986987 + 0.160798i \(0.0514068\pi\)
\(200\) −0.809017 0.587785i −0.0572061 0.0415627i
\(201\) −3.48383 + 10.7221i −0.245731 + 0.756281i
\(202\) −2.20717 6.79297i −0.155296 0.477952i
\(203\) 0.954016 0.693133i 0.0669588 0.0486484i
\(204\) 16.6339 12.0852i 1.16461 0.846136i
\(205\) 1.67841 + 5.16560i 0.117225 + 0.360781i
\(206\) 0.964531 2.96852i 0.0672021 0.206827i
\(207\) −41.3507 30.0430i −2.87407 2.08814i
\(208\) −6.51020 −0.451401
\(209\) 7.09800 11.1089i 0.490979 0.768417i
\(210\) −2.90474 −0.200446
\(211\) −7.49743 5.44720i −0.516144 0.375001i 0.299005 0.954251i \(-0.403345\pi\)
−0.815149 + 0.579251i \(0.803345\pi\)
\(212\) −2.39675 + 7.37645i −0.164610 + 0.506617i
\(213\) 0.233313 + 0.718064i 0.0159864 + 0.0492009i
\(214\) 2.66319 1.93492i 0.182052 0.132268i
\(215\) −9.06122 + 6.58336i −0.617970 + 0.448981i
\(216\) −2.18795 6.73381i −0.148871 0.458177i
\(217\) 0.396621 1.22068i 0.0269244 0.0828648i
\(218\) −10.1819 7.39757i −0.689604 0.501026i
\(219\) −14.0150 −0.947044
\(220\) 2.10621 + 2.56200i 0.142001 + 0.172730i
\(221\) −46.0812 −3.09976
\(222\) −2.36895 1.72114i −0.158994 0.115516i
\(223\) 8.03858 24.7402i 0.538303 1.65673i −0.198099 0.980182i \(-0.563477\pi\)
0.736402 0.676544i \(-0.236523\pi\)
\(224\) −0.309017 0.951057i −0.0206471 0.0635451i
\(225\) −4.39904 + 3.19609i −0.293269 + 0.213073i
\(226\) −0.974784 + 0.708222i −0.0648417 + 0.0471102i
\(227\) −0.0905788 0.278773i −0.00601193 0.0185028i 0.948006 0.318254i \(-0.103096\pi\)
−0.954017 + 0.299751i \(0.903096\pi\)
\(228\) −3.56783 + 10.9806i −0.236285 + 0.727211i
\(229\) 16.1441 + 11.7294i 1.06683 + 0.775097i 0.975340 0.220709i \(-0.0708370\pi\)
0.0914901 + 0.995806i \(0.470837\pi\)
\(230\) −9.39994 −0.619813
\(231\) 9.32384 + 2.42459i 0.613464 + 0.159527i
\(232\) 1.17923 0.0774202
\(233\) −0.163064 0.118473i −0.0106827 0.00776141i 0.582431 0.812880i \(-0.302102\pi\)
−0.593114 + 0.805119i \(0.702102\pi\)
\(234\) −10.9390 + 33.6667i −0.715104 + 2.20086i
\(235\) 3.52015 + 10.8339i 0.229629 + 0.706727i
\(236\) 4.56768 3.31862i 0.297331 0.216023i
\(237\) 33.7053 24.4883i 2.18939 1.59069i
\(238\) −2.18732 6.73187i −0.141783 0.436362i
\(239\) 7.39146 22.7486i 0.478114 1.47148i −0.363599 0.931556i \(-0.618452\pi\)
0.841712 0.539927i \(-0.181548\pi\)
\(240\) −2.34998 1.70736i −0.151691 0.110210i
\(241\) −18.5851 −1.19717 −0.598586 0.801059i \(-0.704270\pi\)
−0.598586 + 0.801059i \(0.704270\pi\)
\(242\) −4.62217 9.98176i −0.297124 0.641652i
\(243\) 8.88423 0.569924
\(244\) −5.12643 3.72457i −0.328186 0.238441i
\(245\) −0.309017 + 0.951057i −0.0197424 + 0.0607608i
\(246\) 4.87533 + 15.0047i 0.310840 + 0.956667i
\(247\) 20.9347 15.2099i 1.33204 0.967785i
\(248\) 1.03837 0.754419i 0.0659365 0.0479056i
\(249\) −4.12455 12.6941i −0.261383 0.804453i
\(250\) −0.309017 + 0.951057i −0.0195440 + 0.0601501i
\(251\) 8.16682 + 5.93354i 0.515485 + 0.374522i 0.814900 0.579601i \(-0.196792\pi\)
−0.299415 + 0.954123i \(0.596792\pi\)
\(252\) −5.43751 −0.342531
\(253\) 30.1726 + 7.84615i 1.89693 + 0.493283i
\(254\) −16.0026 −1.00409
\(255\) −16.6339 12.0852i −1.04166 0.756807i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −1.69131 5.20532i −0.105501 0.324699i 0.884347 0.466831i \(-0.154604\pi\)
−0.989848 + 0.142132i \(0.954604\pi\)
\(258\) −26.3205 + 19.1229i −1.63864 + 1.19054i
\(259\) −0.815547 + 0.592530i −0.0506756 + 0.0368180i
\(260\) 2.01176 + 6.19157i 0.124764 + 0.383985i
\(261\) 1.98144 6.09824i 0.122648 0.377472i
\(262\) −11.8132 8.58278i −0.729821 0.530246i
\(263\) −12.8440 −0.791998 −0.395999 0.918251i \(-0.629602\pi\)
−0.395999 + 0.918251i \(0.629602\pi\)
\(264\) 6.11800 + 7.44195i 0.376537 + 0.458021i
\(265\) 7.75606 0.476451
\(266\) 3.21567 + 2.33632i 0.197166 + 0.143249i
\(267\) 1.28438 3.95291i 0.0786027 0.241914i
\(268\) 1.19936 + 3.69126i 0.0732627 + 0.225479i
\(269\) −6.37134 + 4.62905i −0.388468 + 0.282238i −0.764827 0.644235i \(-0.777176\pi\)
0.376360 + 0.926474i \(0.377176\pi\)
\(270\) −5.72812 + 4.16172i −0.348602 + 0.253274i
\(271\) 3.05292 + 9.39594i 0.185452 + 0.570762i 0.999956 0.00939561i \(-0.00299076\pi\)
−0.814504 + 0.580158i \(0.802991\pi\)
\(272\) 2.18732 6.73187i 0.132626 0.408180i
\(273\) 15.2989 + 11.1153i 0.925929 + 0.672727i
\(274\) 10.0996 0.610142
\(275\) 1.78575 2.79483i 0.107685 0.168535i
\(276\) −27.3044 −1.64353
\(277\) −21.8669 15.8872i −1.31385 0.954570i −0.999987 0.00510267i \(-0.998376\pi\)
−0.313866 0.949467i \(-0.601624\pi\)
\(278\) −5.72022 + 17.6050i −0.343076 + 1.05588i
\(279\) −2.15663 6.63744i −0.129114 0.397373i
\(280\) −0.809017 + 0.587785i −0.0483480 + 0.0351269i
\(281\) −11.0365 + 8.01850i −0.658383 + 0.478343i −0.866117 0.499842i \(-0.833391\pi\)
0.207733 + 0.978185i \(0.433391\pi\)
\(282\) 10.2251 + 31.4697i 0.608897 + 1.87399i
\(283\) 5.68127 17.4852i 0.337717 1.03938i −0.627652 0.778494i \(-0.715984\pi\)
0.965368 0.260891i \(-0.0840162\pi\)
\(284\) 0.210285 + 0.152781i 0.0124781 + 0.00906586i
\(285\) 11.5457 0.683910
\(286\) −1.28938 21.5534i −0.0762427 1.27448i
\(287\) 5.43144 0.320608
\(288\) −4.39904 3.19609i −0.259216 0.188331i
\(289\) 10.2292 31.4823i 0.601719 1.85190i
\(290\) −0.364402 1.12151i −0.0213984 0.0658575i
\(291\) −20.2262 + 14.6952i −1.18568 + 0.861447i
\(292\) −3.90339 + 2.83598i −0.228429 + 0.165963i
\(293\) 3.05137 + 9.39116i 0.178263 + 0.548637i 0.999767 0.0215649i \(-0.00686485\pi\)
−0.821504 + 0.570202i \(0.806865\pi\)
\(294\) −0.897614 + 2.76257i −0.0523499 + 0.161116i
\(295\) −4.56768 3.31862i −0.265941 0.193217i
\(296\) −1.00807 −0.0585930
\(297\) 21.8603 8.57731i 1.26846 0.497706i
\(298\) 11.5126 0.666909
\(299\) 49.5082 + 35.9698i 2.86313 + 2.08019i
\(300\) −0.897614 + 2.76257i −0.0518238 + 0.159497i
\(301\) 3.46108 + 10.6521i 0.199493 + 0.613977i
\(302\) −4.39625 + 3.19407i −0.252976 + 0.183798i
\(303\) −16.7849 + 12.1949i −0.964266 + 0.700580i
\(304\) 1.22828 + 3.78025i 0.0704466 + 0.216812i
\(305\) −1.95812 + 6.02648i −0.112122 + 0.345075i
\(306\) −31.1378 22.6229i −1.78003 1.29327i
\(307\) 6.50344 0.371171 0.185585 0.982628i \(-0.440582\pi\)
0.185585 + 0.982628i \(0.440582\pi\)
\(308\) 3.08747 1.21143i 0.175925 0.0690274i
\(309\) −9.06653 −0.515777
\(310\) −1.03837 0.754419i −0.0589754 0.0428481i
\(311\) 1.04137 3.20502i 0.0590509 0.181740i −0.917180 0.398473i \(-0.869540\pi\)
0.976231 + 0.216733i \(0.0695402\pi\)
\(312\) 5.84365 + 17.9849i 0.330831 + 1.01819i
\(313\) 4.38665 3.18709i 0.247948 0.180145i −0.456869 0.889534i \(-0.651029\pi\)
0.704817 + 0.709389i \(0.251029\pi\)
\(314\) −6.45313 + 4.68848i −0.364171 + 0.264586i
\(315\) 1.68028 + 5.17138i 0.0946733 + 0.291374i
\(316\) 4.43216 13.6408i 0.249328 0.767354i
\(317\) 5.79255 + 4.20853i 0.325342 + 0.236375i 0.738451 0.674307i \(-0.235557\pi\)
−0.413110 + 0.910681i \(0.635557\pi\)
\(318\) 22.5293 1.26338
\(319\) 0.233553 + 3.90408i 0.0130764 + 0.218587i
\(320\) −1.00000 −0.0559017
\(321\) −7.73586 5.62043i −0.431774 0.313702i
\(322\) −2.90474 + 8.93987i −0.161875 + 0.498199i
\(323\) 8.69413 + 26.7578i 0.483754 + 1.48884i
\(324\) −3.44157 + 2.50045i −0.191198 + 0.138914i
\(325\) 5.26686 3.82660i 0.292153 0.212262i
\(326\) 4.43229 + 13.6412i 0.245482 + 0.755515i
\(327\) −11.2969 + 34.7683i −0.624721 + 1.92269i
\(328\) 4.39413 + 3.19252i 0.242625 + 0.176277i
\(329\) 11.3915 0.628031
\(330\) 5.18715 8.11826i 0.285543 0.446895i
\(331\) 20.6983 1.13768 0.568842 0.822447i \(-0.307392\pi\)
0.568842 + 0.822447i \(0.307392\pi\)
\(332\) −3.71745 2.70088i −0.204021 0.148230i
\(333\) −1.69385 + 5.21312i −0.0928222 + 0.285677i
\(334\) −0.590345 1.81690i −0.0323023 0.0994161i
\(335\) 3.13997 2.28132i 0.171555 0.124642i
\(336\) −2.34998 + 1.70736i −0.128202 + 0.0931443i
\(337\) −2.41371 7.42863i −0.131483 0.404663i 0.863543 0.504275i \(-0.168240\pi\)
−0.995026 + 0.0996113i \(0.968240\pi\)
\(338\) 9.07975 27.9446i 0.493873 1.51999i
\(339\) 2.83149 + 2.05720i 0.153786 + 0.111732i
\(340\) −7.07831 −0.383875
\(341\) 2.70331 + 3.28832i 0.146393 + 0.178072i
\(342\) 21.6130 1.16870
\(343\) 0.809017 + 0.587785i 0.0436828 + 0.0317374i
\(344\) −3.46108 + 10.6521i −0.186609 + 0.574323i
\(345\) 8.43751 + 25.9680i 0.454260 + 1.39807i
\(346\) 11.8056 8.57730i 0.634675 0.461118i
\(347\) 22.5894 16.4121i 1.21266 0.881049i 0.217190 0.976129i \(-0.430311\pi\)
0.995470 + 0.0950802i \(0.0303108\pi\)
\(348\) −1.05849 3.25770i −0.0567411 0.174631i
\(349\) 6.36381 19.5858i 0.340647 1.04840i −0.623226 0.782042i \(-0.714178\pi\)
0.963873 0.266362i \(-0.0858216\pi\)
\(350\) 0.809017 + 0.587785i 0.0432438 + 0.0314184i
\(351\) 46.0944 2.46034
\(352\) 3.20987 + 0.834702i 0.171087 + 0.0444898i
\(353\) −5.61133 −0.298661 −0.149330 0.988787i \(-0.547712\pi\)
−0.149330 + 0.988787i \(0.547712\pi\)
\(354\) −13.2679 9.63971i −0.705182 0.512345i
\(355\) 0.0803215 0.247204i 0.00426302 0.0131202i
\(356\) −0.442167 1.36085i −0.0234348 0.0721249i
\(357\) −16.6339 + 12.0852i −0.880360 + 0.639619i
\(358\) 2.55401 1.85560i 0.134983 0.0980712i
\(359\) 2.54712 + 7.83922i 0.134432 + 0.413738i 0.995501 0.0947492i \(-0.0302049\pi\)
−0.861070 + 0.508487i \(0.830205\pi\)
\(360\) −1.68028 + 5.17138i −0.0885587 + 0.272556i
\(361\) 2.58970 + 1.88153i 0.136300 + 0.0990276i
\(362\) −7.09045 −0.372666
\(363\) −23.4264 + 21.7288i −1.22957 + 1.14047i
\(364\) 6.51020 0.341227
\(365\) 3.90339 + 2.83598i 0.204313 + 0.148442i
\(366\) −5.68784 + 17.5054i −0.297308 + 0.915020i
\(367\) −1.26950 3.90711i −0.0662672 0.203949i 0.912440 0.409210i \(-0.134196\pi\)
−0.978707 + 0.205261i \(0.934196\pi\)
\(368\) −7.60471 + 5.52514i −0.396423 + 0.288018i
\(369\) 23.8931 17.3594i 1.24383 0.903692i
\(370\) 0.311511 + 0.958733i 0.0161947 + 0.0498422i
\(371\) 2.39675 7.37645i 0.124433 0.382966i
\(372\) −3.01619 2.19139i −0.156382 0.113618i
\(373\) −26.2182 −1.35753 −0.678764 0.734356i \(-0.737484\pi\)
−0.678764 + 0.734356i \(0.737484\pi\)
\(374\) 22.7205 + 5.90828i 1.17485 + 0.305510i
\(375\) 2.90474 0.150000
\(376\) 9.21588 + 6.69573i 0.475273 + 0.345306i
\(377\) −2.37233 + 7.30128i −0.122181 + 0.376035i
\(378\) 2.18795 + 6.73381i 0.112536 + 0.346350i
\(379\) −15.9698 + 11.6028i −0.820316 + 0.595994i −0.916803 0.399340i \(-0.869239\pi\)
0.0964872 + 0.995334i \(0.469239\pi\)
\(380\) 3.21567 2.33632i 0.164961 0.119851i
\(381\) 14.3641 + 44.2083i 0.735898 + 2.26486i
\(382\) 2.35315 7.24226i 0.120398 0.370546i
\(383\) −28.9660 21.0451i −1.48010 1.07535i −0.977526 0.210815i \(-0.932388\pi\)
−0.502569 0.864537i \(-0.667612\pi\)
\(384\) −2.90474 −0.148232
\(385\) −2.10621 2.56200i −0.107343 0.130572i
\(386\) −8.55503 −0.435439
\(387\) 49.2705 + 35.7971i 2.50456 + 1.81967i
\(388\) −2.65969 + 8.18569i −0.135025 + 0.415566i
\(389\) −8.92549 27.4698i −0.452541 1.39278i −0.873999 0.485929i \(-0.838482\pi\)
0.421458 0.906848i \(-0.361518\pi\)
\(390\) 15.2989 11.1153i 0.774688 0.562844i
\(391\) −53.8285 + 39.1087i −2.72222 + 1.97781i
\(392\) 0.309017 + 0.951057i 0.0156077 + 0.0480356i
\(393\) −13.1069 + 40.3388i −0.661154 + 2.03482i
\(394\) −4.29037 3.11713i −0.216146 0.157039i
\(395\) −14.3428 −0.721663
\(396\) 9.71006 15.1969i 0.487949 0.763675i
\(397\) −31.7117 −1.59156 −0.795782 0.605583i \(-0.792940\pi\)
−0.795782 + 0.605583i \(0.792940\pi\)
\(398\) −22.5282 16.3677i −1.12923 0.820437i
\(399\) 3.56783 10.9806i 0.178615 0.549720i
\(400\) 0.309017 + 0.951057i 0.0154508 + 0.0475528i
\(401\) 20.0994 14.6031i 1.00372 0.729243i 0.0408351 0.999166i \(-0.486998\pi\)
0.962882 + 0.269923i \(0.0869982\pi\)
\(402\) 9.12079 6.62664i 0.454904 0.330507i
\(403\) 2.58208 + 7.94684i 0.128623 + 0.395860i
\(404\) −2.20717 + 6.79297i −0.109811 + 0.337963i
\(405\) 3.44157 + 2.50045i 0.171013 + 0.124248i
\(406\) −1.17923 −0.0585242
\(407\) −0.199654 3.33743i −0.00989649 0.165430i
\(408\) −20.5606 −1.01790
\(409\) −14.2689 10.3669i −0.705550 0.512612i 0.176185 0.984357i \(-0.443624\pi\)
−0.881735 + 0.471745i \(0.843624\pi\)
\(410\) 1.67841 5.16560i 0.0828906 0.255111i
\(411\) −9.06558 27.9010i −0.447172 1.37625i
\(412\) −2.52518 + 1.83465i −0.124406 + 0.0903866i
\(413\) −4.56768 + 3.31862i −0.224761 + 0.163298i
\(414\) 15.7946 + 48.6107i 0.776260 + 2.38908i
\(415\) −1.41994 + 4.37012i −0.0697020 + 0.214521i
\(416\) 5.26686 + 3.82660i 0.258229 + 0.187614i
\(417\) 53.7697 2.63312
\(418\) −12.2720 + 4.81517i −0.600245 + 0.235517i
\(419\) 6.70771 0.327693 0.163847 0.986486i \(-0.447610\pi\)
0.163847 + 0.986486i \(0.447610\pi\)
\(420\) 2.34998 + 1.70736i 0.114667 + 0.0833108i
\(421\) 4.95779 15.2585i 0.241628 0.743655i −0.754545 0.656249i \(-0.772142\pi\)
0.996173 0.0874061i \(-0.0278578\pi\)
\(422\) 2.86376 + 8.81375i 0.139406 + 0.429047i
\(423\) 50.1115 36.4081i 2.43650 1.77022i
\(424\) 6.27479 4.55890i 0.304731 0.221400i
\(425\) 2.18732 + 6.73187i 0.106100 + 0.326544i
\(426\) 0.233313 0.718064i 0.0113041 0.0347903i
\(427\) 5.12643 + 3.72457i 0.248085 + 0.180245i
\(428\) −3.29188 −0.159119
\(429\) −58.3853 + 22.9086i −2.81887 + 1.10604i
\(430\) 11.2003 0.540125
\(431\) −25.5229 18.5435i −1.22939 0.893207i −0.232549 0.972585i \(-0.574707\pi\)
−0.996845 + 0.0793776i \(0.974707\pi\)
\(432\) −2.18795 + 6.73381i −0.105268 + 0.323980i
\(433\) −2.55529 7.86439i −0.122800 0.377938i 0.870694 0.491825i \(-0.163670\pi\)
−0.993494 + 0.113887i \(0.963670\pi\)
\(434\) −1.03837 + 0.754419i −0.0498433 + 0.0362133i
\(435\) −2.77117 + 2.01337i −0.132867 + 0.0965338i
\(436\) 3.88913 + 11.9695i 0.186256 + 0.573236i
\(437\) 11.5457 35.5341i 0.552307 1.69983i
\(438\) 11.3383 + 8.23779i 0.541767 + 0.393617i
\(439\) 11.1008 0.529814 0.264907 0.964274i \(-0.414659\pi\)
0.264907 + 0.964274i \(0.414659\pi\)
\(440\) −0.198055 3.31071i −0.00944193 0.157832i
\(441\) 5.43751 0.258929
\(442\) 37.2805 + 27.0858i 1.77325 + 1.28834i
\(443\) 1.40254 4.31657i 0.0666366 0.205086i −0.912194 0.409759i \(-0.865613\pi\)
0.978831 + 0.204672i \(0.0656129\pi\)
\(444\) 0.904859 + 2.78487i 0.0429427 + 0.132164i
\(445\) −1.15761 + 0.841051i −0.0548758 + 0.0398696i
\(446\) −21.0453 + 15.2903i −0.996522 + 0.724016i
\(447\) −10.3339 31.8045i −0.488777 1.50430i
\(448\) −0.309017 + 0.951057i −0.0145997 + 0.0449332i
\(449\) 7.86344 + 5.71313i 0.371099 + 0.269619i 0.757666 0.652642i \(-0.226339\pi\)
−0.386568 + 0.922261i \(0.626339\pi\)
\(450\) 5.43751 0.256327
\(451\) −9.69921 + 15.1800i −0.456718 + 0.714796i
\(452\) 1.20490 0.0566737
\(453\) 12.7700 + 9.27793i 0.599986 + 0.435915i
\(454\) −0.0905788 + 0.278773i −0.00425107 + 0.0130835i
\(455\) −2.01176 6.19157i −0.0943129 0.290265i
\(456\) 9.34069 6.78641i 0.437418 0.317803i
\(457\) −17.1089 + 12.4303i −0.800321 + 0.581467i −0.911008 0.412388i \(-0.864695\pi\)
0.110687 + 0.993855i \(0.464695\pi\)
\(458\) −6.16648 18.9785i −0.288141 0.886806i
\(459\) −15.4870 + 47.6639i −0.722869 + 2.22476i
\(460\) 7.60471 + 5.52514i 0.354571 + 0.257611i
\(461\) 20.5158 0.955516 0.477758 0.878492i \(-0.341450\pi\)
0.477758 + 0.878492i \(0.341450\pi\)
\(462\) −6.11800 7.44195i −0.284635 0.346231i
\(463\) −5.06175 −0.235239 −0.117620 0.993059i \(-0.537526\pi\)
−0.117620 + 0.993059i \(0.537526\pi\)
\(464\) −0.954016 0.693133i −0.0442891 0.0321779i
\(465\) −1.15208 + 3.54574i −0.0534265 + 0.164430i
\(466\) 0.0622848 + 0.191693i 0.00288529 + 0.00888000i
\(467\) 6.05746 4.40100i 0.280306 0.203654i −0.438745 0.898612i \(-0.644577\pi\)
0.719051 + 0.694958i \(0.244577\pi\)
\(468\) 28.6386 20.8072i 1.32382 0.961812i
\(469\) −1.19936 3.69126i −0.0553814 0.170446i
\(470\) 3.52015 10.8339i 0.162373 0.499731i
\(471\) 18.7447 + 13.6188i 0.863709 + 0.627521i
\(472\) −5.64597 −0.259877
\(473\) −35.9515 9.34890i −1.65305 0.429863i
\(474\) −41.6620 −1.91360
\(475\) −3.21567 2.33632i −0.147545 0.107198i
\(476\) −2.18732 + 6.73187i −0.100256 + 0.308555i
\(477\) −13.0324 40.1096i −0.596712 1.83649i
\(478\) −19.3511 + 14.0594i −0.885098 + 0.643061i
\(479\) 0.335074 0.243446i 0.0153099 0.0111233i −0.580104 0.814542i \(-0.696988\pi\)
0.595414 + 0.803419i \(0.296988\pi\)
\(480\) 0.897614 + 2.76257i 0.0409703 + 0.126094i
\(481\) 2.02800 6.24154i 0.0924688 0.284590i
\(482\) 15.0357 + 10.9240i 0.684855 + 0.497577i
\(483\) 27.3044 1.24239
\(484\) −2.12772 + 10.7923i −0.0967146 + 0.490557i
\(485\) 8.60695 0.390821
\(486\) −7.18749 5.22202i −0.326031 0.236876i
\(487\) −7.33384 + 22.5712i −0.332328 + 1.02280i 0.635695 + 0.771940i \(0.280714\pi\)
−0.968023 + 0.250861i \(0.919286\pi\)
\(488\) 1.95812 + 6.02648i 0.0886400 + 0.272806i
\(489\) 33.7063 24.4890i 1.52425 1.10743i
\(490\) 0.809017 0.587785i 0.0365477 0.0265534i
\(491\) 9.95537 + 30.6395i 0.449279 + 1.38274i 0.877722 + 0.479171i \(0.159063\pi\)
−0.428442 + 0.903569i \(0.640937\pi\)
\(492\) 4.87533 15.0047i 0.219797 0.676466i
\(493\) −6.75282 4.90621i −0.304132 0.220965i
\(494\) −25.8767 −1.16425
\(495\) −17.4537 4.53871i −0.784486 0.204000i
\(496\) −1.28349 −0.0576306
\(497\) −0.210285 0.152781i −0.00943255 0.00685315i
\(498\) −4.12455 + 12.6941i −0.184826 + 0.568834i
\(499\) −1.38745 4.27013i −0.0621108 0.191157i 0.915186 0.403031i \(-0.132043\pi\)
−0.977297 + 0.211874i \(0.932043\pi\)
\(500\) 0.809017 0.587785i 0.0361803 0.0262866i
\(501\) −4.48940 + 3.26174i −0.200572 + 0.145724i
\(502\) −3.11945 9.60067i −0.139228 0.428499i
\(503\) 9.52697 29.3210i 0.424787 1.30736i −0.478412 0.878136i \(-0.658787\pi\)
0.903198 0.429223i \(-0.141213\pi\)
\(504\) 4.39904 + 3.19609i 0.195949 + 0.142365i
\(505\) 7.14255 0.317839
\(506\) −19.7983 24.0827i −0.880141 1.07061i
\(507\) −85.3491 −3.79049
\(508\) 12.9464 + 9.40609i 0.574402 + 0.417328i
\(509\) −0.821003 + 2.52679i −0.0363903 + 0.111998i −0.967602 0.252482i \(-0.918753\pi\)
0.931211 + 0.364480i \(0.118753\pi\)
\(510\) 6.35359 + 19.5543i 0.281342 + 0.865880i
\(511\) 3.90339 2.83598i 0.172676 0.125456i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) −8.69663 26.7655i −0.383965 1.18172i
\(514\) −1.69131 + 5.20532i −0.0746005 + 0.229597i
\(515\) 2.52518 + 1.83465i 0.111273 + 0.0808442i
\(516\) 32.5339 1.43222
\(517\) −20.3423 + 31.8372i −0.894655 + 1.40020i
\(518\) 1.00807 0.0442921
\(519\) −34.2923 24.9148i −1.50527 1.09364i
\(520\) 2.01176 6.19157i 0.0882216 0.271518i
\(521\) 1.84976 + 5.69297i 0.0810393 + 0.249413i 0.983365 0.181642i \(-0.0581413\pi\)
−0.902325 + 0.431056i \(0.858141\pi\)
\(522\) −5.18748 + 3.76892i −0.227050 + 0.164961i
\(523\) −0.782114 + 0.568239i −0.0341994 + 0.0248473i −0.604754 0.796413i \(-0.706728\pi\)
0.570554 + 0.821260i \(0.306728\pi\)
\(524\) 4.51224 + 13.8872i 0.197118 + 0.606667i
\(525\) 0.897614 2.76257i 0.0391751 0.120569i
\(526\) 10.3911 + 7.54954i 0.453071 + 0.329176i
\(527\) −9.08497 −0.395747
\(528\) −0.575300 9.61674i −0.0250367 0.418515i
\(529\) 65.3588 2.84169
\(530\) −6.27479 4.55890i −0.272559 0.198026i
\(531\) −9.48683 + 29.1975i −0.411693 + 1.26706i
\(532\) −1.22828 3.78025i −0.0532526 0.163895i
\(533\) −28.6066 + 20.7839i −1.23909 + 0.900252i
\(534\) −3.36255 + 2.44303i −0.145512 + 0.105720i
\(535\) 1.01725 + 3.13076i 0.0439794 + 0.135355i
\(536\) 1.19936 3.69126i 0.0518045 0.159438i
\(537\) −7.41873 5.39002i −0.320142 0.232597i
\(538\) 7.87541 0.339533
\(539\) −3.08747 + 1.21143i −0.132987 + 0.0521798i
\(540\) 7.08034 0.304689
\(541\) 1.26531 + 0.919302i 0.0543999 + 0.0395239i 0.614653 0.788798i \(-0.289296\pi\)
−0.560253 + 0.828322i \(0.689296\pi\)
\(542\) 3.05292 9.39594i 0.131134 0.403590i
\(543\) 6.36448 + 19.5879i 0.273126 + 0.840596i
\(544\) −5.72647 + 4.16052i −0.245520 + 0.178381i
\(545\) 10.1819 7.39757i 0.436144 0.316877i
\(546\) −5.84365 17.9849i −0.250085 0.769682i
\(547\) −4.49351 + 13.8296i −0.192128 + 0.591311i 0.807870 + 0.589361i \(0.200620\pi\)
−0.999998 + 0.00194934i \(0.999380\pi\)
\(548\) −8.17078 5.93642i −0.349038 0.253591i
\(549\) 34.4554 1.47052
\(550\) −3.08747 + 1.21143i −0.131650 + 0.0516554i
\(551\) 4.68719 0.199681
\(552\) 22.0897 + 16.0491i 0.940200 + 0.683095i
\(553\) −4.43216 + 13.6408i −0.188475 + 0.580065i
\(554\) 8.35240 + 25.7060i 0.354860 + 1.09215i
\(555\) 2.36895 1.72114i 0.100556 0.0730585i
\(556\) 14.9757 10.8805i 0.635113 0.461437i
\(557\) −11.4349 35.1929i −0.484511 1.49117i −0.832688 0.553743i \(-0.813199\pi\)
0.348176 0.937429i \(-0.386801\pi\)
\(558\) −2.15663 + 6.63744i −0.0912976 + 0.280985i
\(559\) −58.9903 42.8590i −2.49502 1.81274i
\(560\) 1.00000 0.0422577
\(561\) −4.07215 68.0702i −0.171926 2.87393i
\(562\) 13.6419 0.575448
\(563\) −19.3670 14.0709i −0.816221 0.593019i 0.0994065 0.995047i \(-0.468306\pi\)
−0.915628 + 0.402028i \(0.868306\pi\)
\(564\) 10.2251 31.4697i 0.430555 1.32511i
\(565\) −0.372334 1.14593i −0.0156642 0.0482095i
\(566\) −14.8738 + 10.8064i −0.625191 + 0.454228i
\(567\) 3.44157 2.50045i 0.144532 0.105009i
\(568\) −0.0803215 0.247204i −0.00337022 0.0103725i
\(569\) −8.22221 + 25.3054i −0.344693 + 1.06086i 0.617055 + 0.786920i \(0.288326\pi\)
−0.961748 + 0.273936i \(0.911674\pi\)
\(570\) −9.34069 6.78641i −0.391239 0.284251i
\(571\) 17.4823 0.731610 0.365805 0.930692i \(-0.380794\pi\)
0.365805 + 0.930692i \(0.380794\pi\)
\(572\) −11.6256 + 18.1949i −0.486091 + 0.760767i
\(573\) −22.1195 −0.924055
\(574\) −4.39413 3.19252i −0.183407 0.133253i
\(575\) 2.90474 8.93987i 0.121136 0.372818i
\(576\) 1.68028 + 5.17138i 0.0700118 + 0.215474i
\(577\) −25.3380 + 18.4091i −1.05483 + 0.766381i −0.973126 0.230275i \(-0.926037\pi\)
−0.0817076 + 0.996656i \(0.526037\pi\)
\(578\) −26.7804 + 19.4571i −1.11392 + 0.809310i
\(579\) 7.67911 + 23.6339i 0.319133 + 0.982190i
\(580\) −0.364402 + 1.12151i −0.0151310 + 0.0465683i
\(581\) 3.71745 + 2.70088i 0.154226 + 0.112051i
\(582\) 25.0009 1.03632
\(583\) 16.3359 + 19.8711i 0.676565 + 0.822975i
\(584\) 4.82486 0.199654
\(585\) −28.6386 20.8072i −1.18406 0.860271i
\(586\) 3.05137 9.39116i 0.126051 0.387945i
\(587\) 1.25046 + 3.84851i 0.0516118 + 0.158845i 0.973540 0.228515i \(-0.0733870\pi\)
−0.921929 + 0.387360i \(0.873387\pi\)
\(588\) 2.34998 1.70736i 0.0969117 0.0704105i
\(589\) 4.12730 2.99866i 0.170062 0.123558i
\(590\) 1.74470 + 5.36963i 0.0718281 + 0.221064i
\(591\) −4.76021 + 14.6504i −0.195809 + 0.602638i
\(592\) 0.815547 + 0.592530i 0.0335188 + 0.0243528i
\(593\) 23.7125 0.973756 0.486878 0.873470i \(-0.338136\pi\)
0.486878 + 0.873470i \(0.338136\pi\)
\(594\) −22.7270 5.90998i −0.932500 0.242489i
\(595\) 7.07831 0.290182
\(596\) −9.31392 6.76696i −0.381513 0.277185i
\(597\) −24.9953 + 76.9275i −1.02299 + 3.14843i
\(598\) −18.9104 58.2003i −0.773305 2.37999i
\(599\) 8.43294 6.12689i 0.344561 0.250338i −0.402023 0.915630i \(-0.631693\pi\)
0.746584 + 0.665292i \(0.231693\pi\)
\(600\) 2.34998 1.70736i 0.0959377 0.0697028i
\(601\) −4.81848 14.8298i −0.196550 0.604919i −0.999955 0.00948588i \(-0.996981\pi\)
0.803405 0.595433i \(-0.203019\pi\)
\(602\) 3.46108 10.6521i 0.141063 0.434147i
\(603\) −17.0736 12.4047i −0.695292 0.505159i
\(604\) 5.43407 0.221109
\(605\) 10.9215 1.31141i 0.444024 0.0533163i
\(606\) 20.7473 0.842799
\(607\) 2.48340 + 1.80430i 0.100798 + 0.0732342i 0.637043 0.770828i \(-0.280157\pi\)
−0.536244 + 0.844063i \(0.680157\pi\)
\(608\) 1.22828 3.78025i 0.0498132 0.153309i
\(609\) 1.05849 + 3.25770i 0.0428923 + 0.132009i
\(610\) 5.12643 3.72457i 0.207563 0.150803i
\(611\) −59.9972 + 43.5905i −2.42723 + 1.76348i
\(612\) 11.8936 + 36.6046i 0.480769 + 1.47965i
\(613\) 7.88838 24.2779i 0.318609 0.980577i −0.655635 0.755078i \(-0.727599\pi\)
0.974243 0.225499i \(-0.0724011\pi\)
\(614\) −5.26139 3.82262i −0.212332 0.154269i
\(615\) −15.7769 −0.636187
\(616\) −3.20987 0.834702i −0.129329 0.0336311i
\(617\) −14.4437 −0.581483 −0.290741 0.956802i \(-0.593902\pi\)
−0.290741 + 0.956802i \(0.593902\pi\)
\(618\) 7.33498 + 5.32917i 0.295056 + 0.214371i
\(619\) 0.546310 1.68137i 0.0219581 0.0675800i −0.939477 0.342612i \(-0.888688\pi\)
0.961435 + 0.275032i \(0.0886884\pi\)
\(620\) 0.396621 + 1.22068i 0.0159287 + 0.0490235i
\(621\) 53.8439 39.1199i 2.16068 1.56983i
\(622\) −2.72635 + 1.98081i −0.109317 + 0.0794233i
\(623\) 0.442167 + 1.36085i 0.0177150 + 0.0545213i
\(624\) 5.84365 17.9849i 0.233933 0.719972i
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) −5.42220 −0.216715
\(627\) 24.3178 + 29.5802i 0.971159 + 1.18132i
\(628\) 7.97651 0.318297
\(629\) 5.77269 + 4.19411i 0.230172 + 0.167230i
\(630\) 1.68028 5.17138i 0.0669441 0.206033i
\(631\) 6.59949 + 20.3111i 0.262722 + 0.808574i 0.992210 + 0.124580i \(0.0397584\pi\)
−0.729488 + 0.683994i \(0.760242\pi\)
\(632\) −11.6035 + 8.43046i −0.461564 + 0.335346i
\(633\) 21.7781 15.8227i 0.865601 0.628896i
\(634\) −2.21256 6.80955i −0.0878718 0.270442i
\(635\) 4.94507 15.2194i 0.196239 0.603962i
\(636\) −18.2266 13.2424i −0.722732 0.525096i
\(637\) −6.51020 −0.257943
\(638\) 2.10581 3.29575i 0.0833699 0.130480i
\(639\) −1.41335 −0.0559113
\(640\) 0.809017 + 0.587785i 0.0319792 + 0.0232343i
\(641\) 14.2580 43.8815i 0.563156 1.73322i −0.110212 0.993908i \(-0.535153\pi\)
0.673368 0.739308i \(-0.264847\pi\)
\(642\) 2.95484 + 9.09405i 0.116618 + 0.358914i
\(643\) −14.9425 + 10.8564i −0.589274 + 0.428133i −0.842056 0.539391i \(-0.818655\pi\)
0.252782 + 0.967523i \(0.418655\pi\)
\(644\) 7.60471 5.52514i 0.299667 0.217721i
\(645\) −10.0535 30.9416i −0.395857 1.21832i
\(646\) 8.69413 26.7578i 0.342066 1.05277i
\(647\) −29.4326 21.3841i −1.15712 0.840694i −0.167705 0.985837i \(-0.553636\pi\)
−0.989411 + 0.145143i \(0.953636\pi\)
\(648\) 4.25401 0.167113
\(649\) −1.11821 18.6921i −0.0438938 0.733730i
\(650\) −6.51020 −0.255351
\(651\) 3.01619 + 2.19139i 0.118214 + 0.0858874i
\(652\) 4.43229 13.6412i 0.173582 0.534230i
\(653\) −0.894337 2.75249i −0.0349981 0.107713i 0.932031 0.362378i \(-0.118035\pi\)
−0.967029 + 0.254665i \(0.918035\pi\)
\(654\) 29.5757 21.4880i 1.15650 0.840248i
\(655\) 11.8132 8.58278i 0.461579 0.335357i
\(656\) −1.67841 5.16560i −0.0655308 0.201683i
\(657\) 8.10714 24.9512i 0.316290 0.973439i
\(658\) −9.21588 6.69573i −0.359272 0.261027i
\(659\) 19.1764 0.747008 0.373504 0.927629i \(-0.378156\pi\)
0.373504 + 0.927629i \(0.378156\pi\)
\(660\) −8.96829 + 3.51888i −0.349090 + 0.136972i
\(661\) −24.9234 −0.969406 −0.484703 0.874679i \(-0.661072\pi\)
−0.484703 + 0.874679i \(0.661072\pi\)
\(662\) −16.7453 12.1662i −0.650825 0.472852i
\(663\) 41.3631 127.303i 1.60641 4.94402i
\(664\) 1.41994 + 4.37012i 0.0551043 + 0.169594i
\(665\) −3.21567 + 2.33632i −0.124698 + 0.0905987i
\(666\) 4.43455 3.22189i 0.171835 0.124846i
\(667\) 3.42535 + 10.5422i 0.132630 + 0.408194i
\(668\) −0.590345 + 1.81690i −0.0228411 + 0.0702978i
\(669\) 61.1310 + 44.4143i 2.36346 + 1.71716i
\(670\) −3.88122 −0.149944
\(671\) −19.5641 + 7.67634i −0.755263 + 0.296342i
\(672\) 2.90474 0.112053
\(673\) −10.7653 7.82142i −0.414970 0.301494i 0.360641 0.932705i \(-0.382558\pi\)
−0.775611 + 0.631211i \(0.782558\pi\)
\(674\) −2.41371 + 7.42863i −0.0929726 + 0.286140i
\(675\) −2.18795 6.73381i −0.0842141 0.259184i
\(676\) −23.7711 + 17.2707i −0.914273 + 0.664258i
\(677\) −22.8748 + 16.6195i −0.879149 + 0.638739i −0.933026 0.359809i \(-0.882842\pi\)
0.0538775 + 0.998548i \(0.482842\pi\)
\(678\) −1.08153 3.32862i −0.0415361 0.127835i
\(679\) 2.65969 8.18569i 0.102070 0.314138i
\(680\) 5.72647 + 4.16052i 0.219600 + 0.159549i
\(681\) 0.851435 0.0326271
\(682\) −0.254203 4.24927i −0.00973394 0.162713i
\(683\) −20.1040 −0.769259 −0.384629 0.923071i \(-0.625671\pi\)
−0.384629 + 0.923071i \(0.625671\pi\)
\(684\) −17.4853 12.7038i −0.668566 0.485741i
\(685\) −3.12096 + 9.60533i −0.119246 + 0.367001i
\(686\) −0.309017 0.951057i −0.0117983 0.0363115i
\(687\) −46.8943 + 34.0707i −1.78913 + 1.29988i
\(688\) 9.06122 6.58336i 0.345456 0.250988i
\(689\) 15.6033 + 48.0222i 0.594440 + 1.82950i
\(690\) 8.43751 25.9680i 0.321211 0.988585i
\(691\) 1.36612 + 0.992547i 0.0519698 + 0.0377583i 0.613467 0.789720i \(-0.289774\pi\)
−0.561497 + 0.827479i \(0.689774\pi\)
\(692\) −14.5926 −0.554726
\(693\) −9.71006 + 15.1969i −0.368855 + 0.577284i
\(694\) −27.9220 −1.05990
\(695\) −14.9757 10.8805i −0.568062 0.412721i
\(696\) −1.05849 + 3.25770i −0.0401221 + 0.123483i
\(697\) −11.8803 36.5637i −0.449998 1.38495i
\(698\) −16.6607 + 12.1047i −0.630616 + 0.458169i
\(699\) 0.473658 0.344133i 0.0179154 0.0130163i
\(700\) −0.309017 0.951057i −0.0116797 0.0359466i
\(701\) 0.630834 1.94151i 0.0238263 0.0733298i −0.938436 0.345452i \(-0.887726\pi\)
0.962263 + 0.272122i \(0.0877256\pi\)
\(702\) −37.2912 27.0936i −1.40747 1.02258i
\(703\) −4.00687 −0.151122
\(704\) −2.10621 2.56200i −0.0793809 0.0965591i
\(705\) −33.0892 −1.24621
\(706\) 4.53966 + 3.29826i 0.170852 + 0.124132i
\(707\) 2.20717 6.79297i 0.0830092 0.255476i
\(708\) 5.06790 + 15.5974i 0.190463 + 0.586186i
\(709\) −4.04013 + 2.93533i −0.151730 + 0.110239i −0.661060 0.750333i \(-0.729893\pi\)
0.509330 + 0.860571i \(0.329893\pi\)
\(710\) −0.210285 + 0.152781i −0.00789184 + 0.00573376i
\(711\) 24.0999 + 74.1719i 0.903817 + 2.78166i
\(712\) −0.442167 + 1.36085i −0.0165709 + 0.0510000i
\(713\) 9.76060 + 7.09149i 0.365537 + 0.265578i
\(714\) 20.5606 0.769463
\(715\) 20.8969 + 5.43408i 0.781500 + 0.203223i
\(716\) −3.15693 −0.117980
\(717\) 56.2099 + 40.8389i 2.09920 + 1.52516i
\(718\) 2.54712 7.83922i 0.0950575 0.292557i
\(719\) 10.6087 + 32.6502i 0.395638 + 1.21765i 0.928464 + 0.371424i \(0.121130\pi\)
−0.532826 + 0.846225i \(0.678870\pi\)
\(720\) 4.39904 3.19609i 0.163943 0.119111i
\(721\) 2.52518 1.83465i 0.0940424 0.0683258i
\(722\) −0.989176 3.04437i −0.0368133 0.113300i
\(723\) 16.6822 51.3427i 0.620419 1.90945i
\(724\) 5.73629 + 4.16766i 0.213188 + 0.154890i
\(725\) 1.17923 0.0437955
\(726\) 31.7243 3.80930i 1.17740 0.141376i
\(727\) 26.6447 0.988196 0.494098 0.869406i \(-0.335498\pi\)
0.494098 + 0.869406i \(0.335498\pi\)
\(728\) −5.26686 3.82660i −0.195203 0.141823i
\(729\) −11.9183 + 36.6807i −0.441418 + 1.35855i
\(730\) −1.49096 4.58872i −0.0551831 0.169836i
\(731\) 64.1381 46.5990i 2.37223 1.72353i
\(732\) 14.8909 10.8189i 0.550385 0.399878i
\(733\) 4.36749 + 13.4417i 0.161317 + 0.496482i 0.998746 0.0500637i \(-0.0159424\pi\)
−0.837429 + 0.546546i \(0.815942\pi\)
\(734\) −1.26950 + 3.90711i −0.0468580 + 0.144214i
\(735\) −2.34998 1.70736i −0.0866805 0.0629770i
\(736\) 9.39994 0.346486
\(737\) 12.4582 + 3.23966i 0.458904 + 0.119334i
\(738\) −29.5335 −1.08714
\(739\) −29.1989 21.2142i −1.07410 0.780378i −0.0974534 0.995240i \(-0.531070\pi\)
−0.976644 + 0.214862i \(0.931070\pi\)
\(740\) 0.311511 0.958733i 0.0114514 0.0352437i
\(741\) 23.2273 + 71.4862i 0.853275 + 2.62611i
\(742\) −6.27479 + 4.55890i −0.230355 + 0.167362i
\(743\) 23.7453 17.2520i 0.871131 0.632914i −0.0597589 0.998213i \(-0.519033\pi\)
0.930890 + 0.365299i \(0.119033\pi\)
\(744\) 1.15208 + 3.54574i 0.0422374 + 0.129993i
\(745\) −3.55760 + 10.9492i −0.130340 + 0.401146i
\(746\) 21.2110 + 15.4107i 0.776589 + 0.564225i
\(747\) 24.9855 0.914170
\(748\) −14.9084 18.1346i −0.545106 0.663068i
\(749\) 3.29188 0.120283
\(750\) −2.34998 1.70736i −0.0858093 0.0623441i
\(751\) 11.3847 35.0387i 0.415435 1.27858i −0.496425 0.868079i \(-0.665354\pi\)
0.911861 0.410499i \(-0.134646\pi\)
\(752\) −3.52015 10.8339i −0.128367 0.395072i
\(753\) −23.7225 + 17.2354i −0.864495 + 0.628093i
\(754\) 6.21084 4.51244i 0.226185 0.164333i
\(755\) −1.67922 5.16811i −0.0611131 0.188087i
\(756\) 2.18795 6.73381i 0.0795748 0.244906i
\(757\) 29.7452 + 21.6112i 1.08111 + 0.785471i 0.977876 0.209187i \(-0.0670816\pi\)
0.103232 + 0.994657i \(0.467082\pi\)
\(758\) 19.7398 0.716982
\(759\) −48.7589 + 76.3111i −1.76984 + 2.76992i
\(760\) −3.97479 −0.144181
\(761\) −28.8379 20.9519i −1.04537 0.759507i −0.0740451 0.997255i \(-0.523591\pi\)
−0.971327 + 0.237748i \(0.923591\pi\)
\(762\) 14.3641 44.2083i 0.520358 1.60150i
\(763\) −3.88913 11.9695i −0.140796 0.433326i
\(764\) −6.16064 + 4.47596i −0.222884 + 0.161935i
\(765\) 31.1378 22.6229i 1.12579 0.817933i
\(766\) 11.0640 + 34.0516i 0.399760 + 1.23033i
\(767\) 11.3583 34.9574i 0.410126 1.26224i
\(768\) 2.34998 + 1.70736i 0.0847977 + 0.0616092i
\(769\) 30.6264 1.10442 0.552209 0.833706i \(-0.313785\pi\)
0.552209 + 0.833706i \(0.313785\pi\)
\(770\) 0.198055 + 3.31071i 0.00713742 + 0.119310i
\(771\) 15.8982 0.572560
\(772\) 6.92116 + 5.02852i 0.249098 + 0.180980i
\(773\) −3.31663 + 10.2075i −0.119291 + 0.367139i −0.992818 0.119636i \(-0.961827\pi\)
0.873527 + 0.486776i \(0.161827\pi\)
\(774\) −18.8197 57.9209i