Properties

Label 770.2.n.k.421.3
Level $770$
Weight $2$
Character 770.421
Analytic conductor $6.148$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 5 x^{15} + 18 x^{14} - 35 x^{13} + 89 x^{12} - 185 x^{11} + 837 x^{10} - 1660 x^{9} + 4196 x^{8} - 8420 x^{7} + 13485 x^{6} - 14630 x^{5} + 11615 x^{4} - 5200 x^{3} + 1425 x^{2} - 225 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 421.3
Root \(0.0652271 - 0.200748i\) of defining polynomial
Character \(\chi\) \(=\) 770.421
Dual form 770.2.n.k.631.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.0652271 - 0.200748i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(0.170767 + 0.124069i) q^{6} +(-0.309017 + 0.951057i) q^{7} +(0.309017 + 0.951057i) q^{8} +(2.39101 - 1.73717i) q^{9} +O(q^{10})\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.0652271 - 0.200748i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(0.170767 + 0.124069i) q^{6} +(-0.309017 + 0.951057i) q^{7} +(0.309017 + 0.951057i) q^{8} +(2.39101 - 1.73717i) q^{9} -1.00000 q^{10} +(-0.544486 - 3.27163i) q^{11} -0.211079 q^{12} +(0.310705 - 0.225740i) q^{13} +(-0.309017 - 0.951057i) q^{14} +(0.0652271 - 0.200748i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(2.71143 + 1.96997i) q^{17} +(-0.913283 + 2.81080i) q^{18} +(-1.48947 - 4.58411i) q^{19} +(0.809017 - 0.587785i) q^{20} +0.211079 q^{21} +(2.36351 + 2.32676i) q^{22} +0.683067 q^{23} +(0.170767 - 0.124069i) q^{24} +(0.309017 + 0.951057i) q^{25} +(-0.118679 + 0.365256i) q^{26} +(-1.01699 - 0.738888i) q^{27} +(0.809017 + 0.587785i) q^{28} +(0.496545 - 1.52821i) q^{29} +(0.0652271 + 0.200748i) q^{30} +(1.01752 - 0.739269i) q^{31} +1.00000 q^{32} +(-0.621258 + 0.322703i) q^{33} -3.35151 q^{34} +(-0.809017 + 0.587785i) q^{35} +(-0.913283 - 2.81080i) q^{36} +(0.264793 - 0.814950i) q^{37} +(3.89948 + 2.83314i) q^{38} +(-0.0655834 - 0.0476491i) q^{39} +(-0.309017 + 0.951057i) q^{40} +(2.97308 + 9.15021i) q^{41} +(-0.170767 + 0.124069i) q^{42} +9.55155 q^{43} +(-3.27976 - 0.493151i) q^{44} +2.95545 q^{45} +(-0.552613 + 0.401497i) q^{46} +(-2.33324 - 7.18097i) q^{47} +(-0.0652271 + 0.200748i) q^{48} +(-0.809017 - 0.587785i) q^{49} +(-0.809017 - 0.587785i) q^{50} +(0.218609 - 0.672809i) q^{51} +(-0.118679 - 0.365256i) q^{52} +(10.9530 - 7.95781i) q^{53} +1.25707 q^{54} +(1.48251 - 2.96684i) q^{55} -1.00000 q^{56} +(-0.823099 + 0.598017i) q^{57} +(0.496545 + 1.52821i) q^{58} +(2.24632 - 6.91346i) q^{59} +(-0.170767 - 0.124069i) q^{60} +(-3.14814 - 2.28726i) q^{61} +(-0.388657 + 1.19616i) q^{62} +(0.913283 + 2.81080i) q^{63} +(-0.809017 + 0.587785i) q^{64} +0.384053 q^{65} +(0.312928 - 0.626239i) q^{66} +4.97372 q^{67} +(2.71143 - 1.96997i) q^{68} +(-0.0445545 - 0.137125i) q^{69} +(0.309017 - 0.951057i) q^{70} +(-0.679927 - 0.493996i) q^{71} +(2.39101 + 1.73717i) q^{72} +(-3.19787 + 9.84204i) q^{73} +(0.264793 + 0.814950i) q^{74} +(0.170767 - 0.124069i) q^{75} -4.82002 q^{76} +(3.27976 + 0.493151i) q^{77} +0.0810656 q^{78} +(-2.72454 + 1.97949i) q^{79} +(-0.309017 - 0.951057i) q^{80} +(2.65785 - 8.18003i) q^{81} +(-7.78363 - 5.65514i) q^{82} +(8.51048 + 6.18323i) q^{83} +(0.0652271 - 0.200748i) q^{84} +(1.03567 + 3.18747i) q^{85} +(-7.72737 + 5.61426i) q^{86} -0.339174 q^{87} +(2.94325 - 1.52882i) q^{88} +15.0365 q^{89} +(-2.39101 + 1.73717i) q^{90} +(0.118679 + 0.365256i) q^{91} +(0.211079 - 0.649635i) q^{92} +(-0.214777 - 0.156044i) q^{93} +(6.10850 + 4.43808i) q^{94} +(1.48947 - 4.58411i) q^{95} +(-0.0652271 - 0.200748i) q^{96} +(-9.11528 + 6.62264i) q^{97} +1.00000 q^{98} +(-6.98523 - 6.87661i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} + O(q^{10}) \) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} - 16q^{10} - 2q^{11} + 8q^{13} + 4q^{14} + 5q^{15} - 4q^{16} - 13q^{17} - 9q^{18} + 15q^{19} + 4q^{20} - 2q^{22} + 20q^{23} + 5q^{24} - 4q^{25} - 7q^{26} + 10q^{27} + 4q^{28} - 14q^{29} + 5q^{30} - 6q^{31} + 16q^{32} - 25q^{33} + 12q^{34} - 4q^{35} - 9q^{36} + 28q^{37} - 20q^{38} + 15q^{39} + 4q^{40} + 2q^{41} - 5q^{42} - 10q^{43} + 3q^{44} - 16q^{45} - 10q^{46} - 10q^{47} - 5q^{48} - 4q^{49} - 4q^{50} - 42q^{51} - 7q^{52} - 2q^{53} - 3q^{55} - 16q^{56} + 21q^{57} - 14q^{58} + 7q^{59} - 5q^{60} + 4q^{61} + 14q^{62} + 9q^{63} - 4q^{64} + 2q^{65} - 10q^{66} + 66q^{67} - 13q^{68} - 64q^{69} - 4q^{70} + 2q^{71} + q^{72} + 12q^{73} + 28q^{74} + 5q^{75} + 10q^{76} - 3q^{77} + 70q^{78} + 2q^{79} + 4q^{80} - 30q^{81} - 13q^{82} - 5q^{83} + 5q^{84} - 7q^{85} + 5q^{86} - 24q^{87} - 2q^{88} + 2q^{89} - q^{90} + 7q^{91} - 38q^{93} + 25q^{94} - 15q^{95} - 5q^{96} + 22q^{97} + 16q^{98} - 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −0.0652271 0.200748i −0.0376589 0.115902i 0.930460 0.366394i \(-0.119408\pi\)
−0.968119 + 0.250492i \(0.919408\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0.170767 + 0.124069i 0.0697152 + 0.0506511i
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 2.39101 1.73717i 0.797002 0.579056i
\(10\) −1.00000 −0.316228
\(11\) −0.544486 3.27163i −0.164169 0.986432i
\(12\) −0.211079 −0.0609333
\(13\) 0.310705 0.225740i 0.0861741 0.0626091i −0.543864 0.839173i \(-0.683039\pi\)
0.630038 + 0.776564i \(0.283039\pi\)
\(14\) −0.309017 0.951057i −0.0825883 0.254181i
\(15\) 0.0652271 0.200748i 0.0168416 0.0518330i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 2.71143 + 1.96997i 0.657617 + 0.477787i 0.865857 0.500291i \(-0.166774\pi\)
−0.208240 + 0.978078i \(0.566774\pi\)
\(18\) −0.913283 + 2.81080i −0.215263 + 0.662511i
\(19\) −1.48947 4.58411i −0.341707 1.05167i −0.963323 0.268345i \(-0.913523\pi\)
0.621615 0.783323i \(-0.286477\pi\)
\(20\) 0.809017 0.587785i 0.180902 0.131433i
\(21\) 0.211079 0.0460613
\(22\) 2.36351 + 2.32676i 0.503902 + 0.496067i
\(23\) 0.683067 0.142429 0.0712147 0.997461i \(-0.477312\pi\)
0.0712147 + 0.997461i \(0.477312\pi\)
\(24\) 0.170767 0.124069i 0.0348576 0.0253255i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) −0.118679 + 0.365256i −0.0232748 + 0.0716325i
\(27\) −1.01699 0.738888i −0.195720 0.142199i
\(28\) 0.809017 + 0.587785i 0.152890 + 0.111081i
\(29\) 0.496545 1.52821i 0.0922062 0.283781i −0.894309 0.447449i \(-0.852333\pi\)
0.986516 + 0.163668i \(0.0523325\pi\)
\(30\) 0.0652271 + 0.200748i 0.0119088 + 0.0366515i
\(31\) 1.01752 0.739269i 0.182751 0.132777i −0.492648 0.870228i \(-0.663971\pi\)
0.675400 + 0.737452i \(0.263971\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.621258 + 0.322703i −0.108147 + 0.0561754i
\(34\) −3.35151 −0.574779
\(35\) −0.809017 + 0.587785i −0.136749 + 0.0993538i
\(36\) −0.913283 2.81080i −0.152214 0.468466i
\(37\) 0.264793 0.814950i 0.0435318 0.133977i −0.926929 0.375238i \(-0.877561\pi\)
0.970460 + 0.241261i \(0.0775610\pi\)
\(38\) 3.89948 + 2.83314i 0.632579 + 0.459595i
\(39\) −0.0655834 0.0476491i −0.0105018 0.00762997i
\(40\) −0.309017 + 0.951057i −0.0488599 + 0.150375i
\(41\) 2.97308 + 9.15021i 0.464317 + 1.42902i 0.859839 + 0.510566i \(0.170564\pi\)
−0.395521 + 0.918457i \(0.629436\pi\)
\(42\) −0.170767 + 0.124069i −0.0263499 + 0.0191443i
\(43\) 9.55155 1.45660 0.728299 0.685259i \(-0.240311\pi\)
0.728299 + 0.685259i \(0.240311\pi\)
\(44\) −3.27976 0.493151i −0.494442 0.0743453i
\(45\) 2.95545 0.440572
\(46\) −0.552613 + 0.401497i −0.0814783 + 0.0591975i
\(47\) −2.33324 7.18097i −0.340338 1.04745i −0.964033 0.265784i \(-0.914369\pi\)
0.623695 0.781668i \(-0.285631\pi\)
\(48\) −0.0652271 + 0.200748i −0.00941472 + 0.0289755i
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) −0.809017 0.587785i −0.114412 0.0831254i
\(51\) 0.218609 0.672809i 0.0306114 0.0942121i
\(52\) −0.118679 0.365256i −0.0164578 0.0506519i
\(53\) 10.9530 7.95781i 1.50451 1.09309i 0.535967 0.844239i \(-0.319947\pi\)
0.968542 0.248850i \(-0.0800527\pi\)
\(54\) 1.25707 0.171066
\(55\) 1.48251 2.96684i 0.199902 0.400049i
\(56\) −1.00000 −0.133631
\(57\) −0.823099 + 0.598017i −0.109022 + 0.0792092i
\(58\) 0.496545 + 1.52821i 0.0651996 + 0.200664i
\(59\) 2.24632 6.91346i 0.292446 0.900056i −0.691621 0.722260i \(-0.743103\pi\)
0.984067 0.177796i \(-0.0568967\pi\)
\(60\) −0.170767 0.124069i −0.0220459 0.0160173i
\(61\) −3.14814 2.28726i −0.403078 0.292853i 0.367716 0.929938i \(-0.380140\pi\)
−0.770794 + 0.637085i \(0.780140\pi\)
\(62\) −0.388657 + 1.19616i −0.0493595 + 0.151913i
\(63\) 0.913283 + 2.81080i 0.115063 + 0.354127i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 0.384053 0.0476359
\(66\) 0.312928 0.626239i 0.0385188 0.0770847i
\(67\) 4.97372 0.607637 0.303818 0.952730i \(-0.401738\pi\)
0.303818 + 0.952730i \(0.401738\pi\)
\(68\) 2.71143 1.96997i 0.328809 0.238893i
\(69\) −0.0445545 0.137125i −0.00536373 0.0165079i
\(70\) 0.309017 0.951057i 0.0369346 0.113673i
\(71\) −0.679927 0.493996i −0.0806924 0.0586265i 0.546708 0.837324i \(-0.315881\pi\)
−0.627400 + 0.778697i \(0.715881\pi\)
\(72\) 2.39101 + 1.73717i 0.281783 + 0.204727i
\(73\) −3.19787 + 9.84204i −0.374283 + 1.15192i 0.569679 + 0.821867i \(0.307068\pi\)
−0.943961 + 0.330056i \(0.892932\pi\)
\(74\) 0.264793 + 0.814950i 0.0307816 + 0.0947360i
\(75\) 0.170767 0.124069i 0.0197184 0.0143263i
\(76\) −4.82002 −0.552894
\(77\) 3.27976 + 0.493151i 0.373763 + 0.0561998i
\(78\) 0.0810656 0.00917887
\(79\) −2.72454 + 1.97949i −0.306535 + 0.222710i −0.730408 0.683011i \(-0.760670\pi\)
0.423874 + 0.905721i \(0.360670\pi\)
\(80\) −0.309017 0.951057i −0.0345492 0.106331i
\(81\) 2.65785 8.18003i 0.295317 0.908892i
\(82\) −7.78363 5.65514i −0.859558 0.624506i
\(83\) 8.51048 + 6.18323i 0.934147 + 0.678697i 0.947005 0.321220i \(-0.104093\pi\)
−0.0128580 + 0.999917i \(0.504093\pi\)
\(84\) 0.0652271 0.200748i 0.00711686 0.0219034i
\(85\) 1.03567 + 3.18747i 0.112334 + 0.345730i
\(86\) −7.72737 + 5.61426i −0.833264 + 0.605402i
\(87\) −0.339174 −0.0363632
\(88\) 2.94325 1.52882i 0.313751 0.162973i
\(89\) 15.0365 1.59386 0.796931 0.604070i \(-0.206455\pi\)
0.796931 + 0.604070i \(0.206455\pi\)
\(90\) −2.39101 + 1.73717i −0.252034 + 0.183114i
\(91\) 0.118679 + 0.365256i 0.0124409 + 0.0382892i
\(92\) 0.211079 0.649635i 0.0220065 0.0677292i
\(93\) −0.214777 0.156044i −0.0222713 0.0161811i
\(94\) 6.10850 + 4.43808i 0.630043 + 0.457753i
\(95\) 1.48947 4.58411i 0.152816 0.470320i
\(96\) −0.0652271 0.200748i −0.00665721 0.0204888i
\(97\) −9.11528 + 6.62264i −0.925517 + 0.672427i −0.944891 0.327385i \(-0.893833\pi\)
0.0193744 + 0.999812i \(0.493833\pi\)
\(98\) 1.00000 0.101015
\(99\) −6.98523 6.87661i −0.702042 0.691126i
\(100\) 1.00000 0.100000
\(101\) −0.572777 + 0.416147i −0.0569935 + 0.0414082i −0.615917 0.787811i \(-0.711214\pi\)
0.558924 + 0.829219i \(0.311214\pi\)
\(102\) 0.218609 + 0.672809i 0.0216455 + 0.0666180i
\(103\) 0.186041 0.572575i 0.0183312 0.0564175i −0.941473 0.337090i \(-0.890557\pi\)
0.959804 + 0.280672i \(0.0905574\pi\)
\(104\) 0.310705 + 0.225740i 0.0304671 + 0.0221357i
\(105\) 0.170767 + 0.124069i 0.0166651 + 0.0121079i
\(106\) −4.18367 + 12.8760i −0.406354 + 1.25063i
\(107\) 3.17674 + 9.77699i 0.307107 + 0.945178i 0.978883 + 0.204423i \(0.0655319\pi\)
−0.671776 + 0.740755i \(0.734468\pi\)
\(108\) −1.01699 + 0.738888i −0.0978601 + 0.0710995i
\(109\) −2.65530 −0.254331 −0.127166 0.991881i \(-0.540588\pi\)
−0.127166 + 0.991881i \(0.540588\pi\)
\(110\) 0.544486 + 3.27163i 0.0519147 + 0.311937i
\(111\) −0.180872 −0.0171676
\(112\) 0.809017 0.587785i 0.0764449 0.0555405i
\(113\) 3.16012 + 9.72586i 0.297279 + 0.914932i 0.982446 + 0.186546i \(0.0597292\pi\)
−0.685167 + 0.728386i \(0.740271\pi\)
\(114\) 0.314396 0.967611i 0.0294459 0.0906251i
\(115\) 0.552613 + 0.401497i 0.0515314 + 0.0374398i
\(116\) −1.29997 0.944486i −0.120699 0.0876933i
\(117\) 0.350749 1.07949i 0.0324267 0.0997992i
\(118\) 2.24632 + 6.91346i 0.206791 + 0.636436i
\(119\) −2.71143 + 1.96997i −0.248556 + 0.180586i
\(120\) 0.211079 0.0192688
\(121\) −10.4071 + 3.56271i −0.946097 + 0.323883i
\(122\) 3.89131 0.352303
\(123\) 1.64296 1.19368i 0.148141 0.107631i
\(124\) −0.388657 1.19616i −0.0349024 0.107419i
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) −2.39101 1.73717i −0.213008 0.154759i
\(127\) −17.0297 12.3728i −1.51114 1.09791i −0.965666 0.259785i \(-0.916348\pi\)
−0.545478 0.838125i \(-0.683652\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) −0.623020 1.91746i −0.0548539 0.168823i
\(130\) −0.310705 + 0.225740i −0.0272506 + 0.0197987i
\(131\) 12.9629 1.13257 0.566287 0.824208i \(-0.308379\pi\)
0.566287 + 0.824208i \(0.308379\pi\)
\(132\) 0.114930 + 0.690572i 0.0100033 + 0.0601066i
\(133\) 4.82002 0.417949
\(134\) −4.02383 + 2.92348i −0.347606 + 0.252550i
\(135\) −0.388456 1.19555i −0.0334330 0.102896i
\(136\) −1.03567 + 3.18747i −0.0888082 + 0.273323i
\(137\) −10.0697 7.31608i −0.860315 0.625055i 0.0676558 0.997709i \(-0.478448\pi\)
−0.927971 + 0.372653i \(0.878448\pi\)
\(138\) 0.116645 + 0.0847476i 0.00992949 + 0.00721420i
\(139\) −3.71455 + 11.4322i −0.315064 + 0.969667i 0.660664 + 0.750682i \(0.270275\pi\)
−0.975728 + 0.218986i \(0.929725\pi\)
\(140\) 0.309017 + 0.951057i 0.0261167 + 0.0803789i
\(141\) −1.28938 + 0.936787i −0.108585 + 0.0788917i
\(142\) 0.840435 0.0705278
\(143\) −0.907713 0.893598i −0.0759068 0.0747264i
\(144\) −2.95545 −0.246287
\(145\) 1.29997 0.944486i 0.107957 0.0784353i
\(146\) −3.19787 9.84204i −0.264658 0.814533i
\(147\) −0.0652271 + 0.200748i −0.00537984 + 0.0165574i
\(148\) −0.693238 0.503667i −0.0569838 0.0414012i
\(149\) −9.83995 7.14914i −0.806120 0.585680i 0.106583 0.994304i \(-0.466009\pi\)
−0.912703 + 0.408623i \(0.866009\pi\)
\(150\) −0.0652271 + 0.200748i −0.00532577 + 0.0163910i
\(151\) −6.26155 19.2711i −0.509557 1.56826i −0.792971 0.609259i \(-0.791467\pi\)
0.283414 0.958998i \(-0.408533\pi\)
\(152\) 3.89948 2.83314i 0.316289 0.229798i
\(153\) 9.90519 0.800787
\(154\) −2.94325 + 1.52882i −0.237173 + 0.123196i
\(155\) 1.25772 0.101023
\(156\) −0.0655834 + 0.0476491i −0.00525088 + 0.00381498i
\(157\) −3.12070 9.60453i −0.249059 0.766525i −0.994942 0.100448i \(-0.967972\pi\)
0.745883 0.666077i \(-0.232028\pi\)
\(158\) 1.04068 3.20289i 0.0827921 0.254808i
\(159\) −2.31195 1.67973i −0.183349 0.133211i
\(160\) 0.809017 + 0.587785i 0.0639584 + 0.0464685i
\(161\) −0.211079 + 0.649635i −0.0166354 + 0.0511984i
\(162\) 2.65785 + 8.18003i 0.208821 + 0.642684i
\(163\) −16.9786 + 12.3357i −1.32987 + 0.966207i −0.330118 + 0.943940i \(0.607089\pi\)
−0.999752 + 0.0222674i \(0.992911\pi\)
\(164\) 9.62110 0.751281
\(165\) −0.692289 0.104094i −0.0538946 0.00810370i
\(166\) −10.5195 −0.816474
\(167\) −17.6974 + 12.8579i −1.36947 + 0.994977i −0.371691 + 0.928357i \(0.621222\pi\)
−0.997778 + 0.0666208i \(0.978778\pi\)
\(168\) 0.0652271 + 0.200748i 0.00503238 + 0.0154881i
\(169\) −3.97164 + 12.2235i −0.305511 + 0.940266i
\(170\) −2.71143 1.96997i −0.207957 0.151089i
\(171\) −11.5247 8.37318i −0.881316 0.640313i
\(172\) 2.95159 9.08407i 0.225057 0.692654i
\(173\) 0.0669312 + 0.205993i 0.00508868 + 0.0156614i 0.953569 0.301176i \(-0.0973791\pi\)
−0.948480 + 0.316837i \(0.897379\pi\)
\(174\) 0.274397 0.199361i 0.0208020 0.0151135i
\(175\) −1.00000 −0.0755929
\(176\) −1.48251 + 2.96684i −0.111749 + 0.223634i
\(177\) −1.53439 −0.115332
\(178\) −12.1648 + 8.83821i −0.911787 + 0.662452i
\(179\) −5.27160 16.2243i −0.394018 1.21266i −0.929724 0.368257i \(-0.879955\pi\)
0.535706 0.844404i \(-0.320045\pi\)
\(180\) 0.913283 2.81080i 0.0680721 0.209504i
\(181\) −2.79721 2.03229i −0.207915 0.151059i 0.478955 0.877839i \(-0.341016\pi\)
−0.686870 + 0.726781i \(0.741016\pi\)
\(182\) −0.310705 0.225740i −0.0230310 0.0167330i
\(183\) −0.253819 + 0.781175i −0.0187628 + 0.0577461i
\(184\) 0.211079 + 0.649635i 0.0155610 + 0.0478917i
\(185\) 0.693238 0.503667i 0.0509679 0.0370303i
\(186\) 0.265479 0.0194658
\(187\) 4.96866 9.94339i 0.363344 0.727132i
\(188\) −7.55052 −0.550678
\(189\) 1.01699 0.738888i 0.0739753 0.0537462i
\(190\) 1.48947 + 4.58411i 0.108057 + 0.332566i
\(191\) 0.914194 2.81360i 0.0661488 0.203585i −0.912519 0.409034i \(-0.865866\pi\)
0.978668 + 0.205449i \(0.0658656\pi\)
\(192\) 0.170767 + 0.124069i 0.0123240 + 0.00895393i
\(193\) 7.66634 + 5.56992i 0.551835 + 0.400932i 0.828462 0.560046i \(-0.189216\pi\)
−0.276626 + 0.960978i \(0.589216\pi\)
\(194\) 3.48173 10.7157i 0.249973 0.769339i
\(195\) −0.0250506 0.0770979i −0.00179391 0.00552110i
\(196\) −0.809017 + 0.587785i −0.0577869 + 0.0419847i
\(197\) 5.06389 0.360787 0.180394 0.983594i \(-0.442263\pi\)
0.180394 + 0.983594i \(0.442263\pi\)
\(198\) 9.69314 + 1.45748i 0.688862 + 0.103579i
\(199\) −21.7104 −1.53901 −0.769506 0.638639i \(-0.779498\pi\)
−0.769506 + 0.638639i \(0.779498\pi\)
\(200\) −0.809017 + 0.587785i −0.0572061 + 0.0415627i
\(201\) −0.324421 0.998466i −0.0228829 0.0704264i
\(202\) 0.218782 0.673340i 0.0153934 0.0473761i
\(203\) 1.29997 + 0.944486i 0.0912402 + 0.0662899i
\(204\) −0.572326 0.415819i −0.0400708 0.0291132i
\(205\) −2.97308 + 9.15021i −0.207649 + 0.639078i
\(206\) 0.186041 + 0.572575i 0.0129621 + 0.0398932i
\(207\) 1.63322 1.18660i 0.113516 0.0824745i
\(208\) −0.384053 −0.0266293
\(209\) −14.1865 + 7.36897i −0.981301 + 0.509722i
\(210\) −0.211079 −0.0145659
\(211\) −12.9426 + 9.40333i −0.891004 + 0.647352i −0.936140 0.351629i \(-0.885628\pi\)
0.0451358 + 0.998981i \(0.485628\pi\)
\(212\) −4.18367 12.8760i −0.287336 0.884328i
\(213\) −0.0548192 + 0.168716i −0.00375615 + 0.0115602i
\(214\) −8.31681 6.04252i −0.568525 0.413058i
\(215\) 7.72737 + 5.61426i 0.527002 + 0.382890i
\(216\) 0.388456 1.19555i 0.0264311 0.0813466i
\(217\) 0.388657 + 1.19616i 0.0263837 + 0.0812008i
\(218\) 2.14818 1.56074i 0.145493 0.105707i
\(219\) 2.18436 0.147605
\(220\) −2.36351 2.32676i −0.159348 0.156870i
\(221\) 1.28715 0.0865834
\(222\) 0.146328 0.106314i 0.00982091 0.00713531i
\(223\) 0.860263 + 2.64762i 0.0576075 + 0.177298i 0.975720 0.219023i \(-0.0702869\pi\)
−0.918112 + 0.396320i \(0.870287\pi\)
\(224\) −0.309017 + 0.951057i −0.0206471 + 0.0635451i
\(225\) 2.39101 + 1.73717i 0.159400 + 0.115811i
\(226\) −8.27331 6.01091i −0.550332 0.399840i
\(227\) −4.85579 + 14.9446i −0.322290 + 0.991906i 0.650359 + 0.759627i \(0.274618\pi\)
−0.972649 + 0.232280i \(0.925382\pi\)
\(228\) 0.314396 + 0.967611i 0.0208214 + 0.0640816i
\(229\) −13.8112 + 10.0344i −0.912668 + 0.663092i −0.941688 0.336486i \(-0.890761\pi\)
0.0290199 + 0.999579i \(0.490761\pi\)
\(230\) −0.683067 −0.0450401
\(231\) −0.114930 0.690572i −0.00756182 0.0454363i
\(232\) 1.60685 0.105495
\(233\) 5.83788 4.24147i 0.382452 0.277868i −0.379903 0.925026i \(-0.624043\pi\)
0.762356 + 0.647158i \(0.224043\pi\)
\(234\) 0.350749 + 1.07949i 0.0229292 + 0.0705687i
\(235\) 2.33324 7.18097i 0.152204 0.468435i
\(236\) −5.88094 4.27276i −0.382817 0.278133i
\(237\) 0.575094 + 0.417830i 0.0373563 + 0.0271410i
\(238\) 1.03567 3.18747i 0.0671327 0.206613i
\(239\) −1.51595 4.66560i −0.0980584 0.301793i 0.889980 0.455999i \(-0.150718\pi\)
−0.988039 + 0.154206i \(0.950718\pi\)
\(240\) −0.170767 + 0.124069i −0.0110229 + 0.00800864i
\(241\) 23.5063 1.51417 0.757086 0.653315i \(-0.226622\pi\)
0.757086 + 0.653315i \(0.226622\pi\)
\(242\) 6.32539 8.99941i 0.406611 0.578504i
\(243\) −5.58671 −0.358387
\(244\) −3.14814 + 2.28726i −0.201539 + 0.146427i
\(245\) −0.309017 0.951057i −0.0197424 0.0607608i
\(246\) −0.627556 + 1.93142i −0.0400115 + 0.123143i
\(247\) −1.49760 1.08807i −0.0952903 0.0692325i
\(248\) 1.01752 + 0.739269i 0.0646124 + 0.0469436i
\(249\) 0.686158 2.11178i 0.0434835 0.133829i
\(250\) −0.309017 0.951057i −0.0195440 0.0601501i
\(251\) 4.92399 3.57749i 0.310800 0.225809i −0.421440 0.906856i \(-0.638475\pi\)
0.732240 + 0.681047i \(0.238475\pi\)
\(252\) 2.95545 0.186176
\(253\) −0.371920 2.23474i −0.0233824 0.140497i
\(254\) 21.0499 1.32079
\(255\) 0.572326 0.415819i 0.0358404 0.0260396i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 0.546725 1.68265i 0.0341038 0.104961i −0.932556 0.361026i \(-0.882426\pi\)
0.966659 + 0.256066i \(0.0824264\pi\)
\(258\) 1.63109 + 1.18505i 0.101547 + 0.0737783i
\(259\) 0.693238 + 0.503667i 0.0430757 + 0.0312963i
\(260\) 0.118679 0.365256i 0.00736015 0.0226522i
\(261\) −1.46751 4.51654i −0.0908368 0.279567i
\(262\) −10.4872 + 7.61940i −0.647902 + 0.470728i
\(263\) 20.9446 1.29150 0.645750 0.763549i \(-0.276545\pi\)
0.645750 + 0.763549i \(0.276545\pi\)
\(264\) −0.498888 0.491131i −0.0307045 0.0302270i
\(265\) 13.5386 0.831672
\(266\) −3.89948 + 2.83314i −0.239092 + 0.173711i
\(267\) −0.980785 3.01854i −0.0600230 0.184732i
\(268\) 1.53696 4.73029i 0.0938851 0.288948i
\(269\) 23.2403 + 16.8851i 1.41699 + 1.02950i 0.992260 + 0.124178i \(0.0396293\pi\)
0.424725 + 0.905322i \(0.360371\pi\)
\(270\) 1.01699 + 0.738888i 0.0618922 + 0.0449673i
\(271\) −1.42127 + 4.37421i −0.0863358 + 0.265714i −0.984899 0.173130i \(-0.944612\pi\)
0.898563 + 0.438844i \(0.144612\pi\)
\(272\) −1.03567 3.18747i −0.0627969 0.193269i
\(273\) 0.0655834 0.0476491i 0.00396929 0.00288386i
\(274\) 12.4469 0.751943
\(275\) 2.94325 1.52882i 0.177484 0.0921916i
\(276\) −0.144181 −0.00867869
\(277\) −19.3497 + 14.0584i −1.16261 + 0.844686i −0.990106 0.140323i \(-0.955186\pi\)
−0.172505 + 0.985009i \(0.555186\pi\)
\(278\) −3.71455 11.4322i −0.222784 0.685658i
\(279\) 1.14865 3.53519i 0.0687681 0.211647i
\(280\) −0.809017 0.587785i −0.0483480 0.0351269i
\(281\) −19.6116 14.2486i −1.16993 0.850003i −0.178929 0.983862i \(-0.557263\pi\)
−0.991000 + 0.133859i \(0.957263\pi\)
\(282\) 0.492498 1.51575i 0.0293278 0.0902618i
\(283\) 0.682418 + 2.10027i 0.0405655 + 0.124848i 0.969288 0.245927i \(-0.0790923\pi\)
−0.928723 + 0.370775i \(0.879092\pi\)
\(284\) −0.679927 + 0.493996i −0.0403462 + 0.0293132i
\(285\) −1.01741 −0.0602660
\(286\) 1.25960 + 0.189396i 0.0744816 + 0.0111992i
\(287\) −9.62110 −0.567915
\(288\) 2.39101 1.73717i 0.140891 0.102364i
\(289\) −1.78223 5.48513i −0.104837 0.322655i
\(290\) −0.496545 + 1.52821i −0.0291582 + 0.0897396i
\(291\) 1.92405 + 1.39790i 0.112790 + 0.0819465i
\(292\) 8.37214 + 6.08271i 0.489942 + 0.355964i
\(293\) −6.75948 + 20.8035i −0.394893 + 1.21536i 0.534152 + 0.845388i \(0.320631\pi\)
−0.929045 + 0.369967i \(0.879369\pi\)
\(294\) −0.0652271 0.200748i −0.00380412 0.0117079i
\(295\) 5.88094 4.27276i 0.342402 0.248769i
\(296\) 0.856889 0.0498057
\(297\) −1.86363 + 3.72953i −0.108139 + 0.216409i
\(298\) 12.1628 0.704575
\(299\) 0.212232 0.154196i 0.0122737 0.00891738i
\(300\) −0.0652271 0.200748i −0.00376589 0.0115902i
\(301\) −2.95159 + 9.08407i −0.170127 + 0.523597i
\(302\) 16.3929 + 11.9102i 0.943308 + 0.685353i
\(303\) 0.120901 + 0.0878401i 0.00694561 + 0.00504628i
\(304\) −1.48947 + 4.58411i −0.0854269 + 0.262917i
\(305\) −1.20248 3.70086i −0.0688539 0.211911i
\(306\) −8.01347 + 5.82213i −0.458100 + 0.332829i
\(307\) −0.917520 −0.0523656 −0.0261828 0.999657i \(-0.508335\pi\)
−0.0261828 + 0.999657i \(0.508335\pi\)
\(308\) 1.48251 2.96684i 0.0844741 0.169051i
\(309\) −0.127078 −0.00722924
\(310\) −1.01752 + 0.739269i −0.0577911 + 0.0419877i
\(311\) 0.917652 + 2.82424i 0.0520353 + 0.160148i 0.973697 0.227846i \(-0.0731682\pi\)
−0.921662 + 0.387994i \(0.873168\pi\)
\(312\) 0.0250506 0.0770979i 0.00141821 0.00436481i
\(313\) 0.815491 + 0.592489i 0.0460943 + 0.0334895i 0.610594 0.791944i \(-0.290931\pi\)
−0.564500 + 0.825433i \(0.690931\pi\)
\(314\) 8.17010 + 5.93593i 0.461066 + 0.334984i
\(315\) −0.913283 + 2.81080i −0.0514577 + 0.158370i
\(316\) 1.04068 + 3.20289i 0.0585429 + 0.180176i
\(317\) 2.81258 2.04346i 0.157970 0.114772i −0.505992 0.862538i \(-0.668874\pi\)
0.663962 + 0.747766i \(0.268874\pi\)
\(318\) 2.85773 0.160253
\(319\) −5.27009 0.792422i −0.295069 0.0443671i
\(320\) −1.00000 −0.0559017
\(321\) 1.75551 1.27545i 0.0979828 0.0711887i
\(322\) −0.211079 0.649635i −0.0117630 0.0362028i
\(323\) 4.99196 15.3637i 0.277760 0.854858i
\(324\) −6.95835 5.05554i −0.386575 0.280863i
\(325\) 0.310705 + 0.225740i 0.0172348 + 0.0125218i
\(326\) 6.48526 19.9596i 0.359186 1.10546i
\(327\) 0.173197 + 0.533046i 0.00957783 + 0.0294775i
\(328\) −7.78363 + 5.65514i −0.429779 + 0.312253i
\(329\) 7.55052 0.416274
\(330\) 0.621258 0.322703i 0.0341991 0.0177642i
\(331\) 17.3885 0.955758 0.477879 0.878426i \(-0.341406\pi\)
0.477879 + 0.878426i \(0.341406\pi\)
\(332\) 8.51048 6.18323i 0.467073 0.339349i
\(333\) −0.782582 2.40854i −0.0428853 0.131987i
\(334\) 6.75982 20.8046i 0.369881 1.13838i
\(335\) 4.02383 + 2.92348i 0.219845 + 0.159727i
\(336\) −0.170767 0.124069i −0.00931609 0.00676854i
\(337\) −5.07777 + 15.6278i −0.276604 + 0.851300i 0.712187 + 0.701990i \(0.247705\pi\)
−0.988791 + 0.149309i \(0.952295\pi\)
\(338\) −3.97164 12.2235i −0.216029 0.664868i
\(339\) 1.74632 1.26878i 0.0948473 0.0689106i
\(340\) 3.35151 0.181761
\(341\) −2.97264 2.92641i −0.160977 0.158474i
\(342\) 14.2453 0.770298
\(343\) 0.809017 0.587785i 0.0436828 0.0317374i
\(344\) 2.95159 + 9.08407i 0.159139 + 0.489780i
\(345\) 0.0445545 0.137125i 0.00239873 0.00738254i
\(346\) −0.175228 0.127311i −0.00942032 0.00684426i
\(347\) −25.9187 18.8310i −1.39139 1.01090i −0.995712 0.0925115i \(-0.970511\pi\)
−0.395675 0.918390i \(-0.629489\pi\)
\(348\) −0.104810 + 0.322573i −0.00561843 + 0.0172918i
\(349\) 11.0645 + 34.0530i 0.592268 + 1.82281i 0.567882 + 0.823110i \(0.307763\pi\)
0.0243859 + 0.999703i \(0.492237\pi\)
\(350\) 0.809017 0.587785i 0.0432438 0.0314184i
\(351\) −0.482781 −0.0257690
\(352\) −0.544486 3.27163i −0.0290212 0.174378i
\(353\) −15.4312 −0.821322 −0.410661 0.911788i \(-0.634702\pi\)
−0.410661 + 0.911788i \(0.634702\pi\)
\(354\) 1.24135 0.901890i 0.0659768 0.0479349i
\(355\) −0.259709 0.799302i −0.0137839 0.0424225i
\(356\) 4.64652 14.3005i 0.246265 0.757926i
\(357\) 0.572326 + 0.415819i 0.0302907 + 0.0220075i
\(358\) 13.8012 + 10.0272i 0.729417 + 0.529952i
\(359\) 5.21751 16.0578i 0.275370 0.847501i −0.713752 0.700399i \(-0.753005\pi\)
0.989121 0.147102i \(-0.0469945\pi\)
\(360\) 0.913283 + 2.81080i 0.0481342 + 0.148142i
\(361\) −3.42424 + 2.48786i −0.180223 + 0.130940i
\(362\) 3.45754 0.181724
\(363\) 1.39403 + 1.85682i 0.0731676 + 0.0974576i
\(364\) 0.384053 0.0201298
\(365\) −8.37214 + 6.08271i −0.438218 + 0.318384i
\(366\) −0.253819 0.781175i −0.0132673 0.0408327i
\(367\) −2.76463 + 8.50867i −0.144313 + 0.444149i −0.996922 0.0784002i \(-0.975019\pi\)
0.852609 + 0.522549i \(0.175019\pi\)
\(368\) −0.552613 0.401497i −0.0288069 0.0209295i
\(369\) 23.0041 + 16.7135i 1.19755 + 0.870068i
\(370\) −0.264793 + 0.814950i −0.0137660 + 0.0423672i
\(371\) 4.18367 + 12.8760i 0.217205 + 0.668489i
\(372\) −0.214777 + 0.156044i −0.0111357 + 0.00809053i
\(373\) 13.2408 0.685583 0.342792 0.939411i \(-0.388627\pi\)
0.342792 + 0.939411i \(0.388627\pi\)
\(374\) 1.82485 + 10.9649i 0.0943606 + 0.566980i
\(375\) 0.211079 0.0109001
\(376\) 6.10850 4.43808i 0.315022 0.228877i
\(377\) −0.190700 0.586913i −0.00982153 0.0302276i
\(378\) −0.388456 + 1.19555i −0.0199800 + 0.0614922i
\(379\) 12.8158 + 9.31122i 0.658303 + 0.478285i 0.866090 0.499889i \(-0.166626\pi\)
−0.207786 + 0.978174i \(0.566626\pi\)
\(380\) −3.89948 2.83314i −0.200039 0.145337i
\(381\) −1.37302 + 4.22573i −0.0703422 + 0.216491i
\(382\) 0.914194 + 2.81360i 0.0467742 + 0.143956i
\(383\) 0.102856 0.0747289i 0.00525567 0.00381847i −0.585154 0.810922i \(-0.698966\pi\)
0.590410 + 0.807103i \(0.298966\pi\)
\(384\) −0.211079 −0.0107716
\(385\) 2.36351 + 2.32676i 0.120456 + 0.118583i
\(386\) −9.47612 −0.482322
\(387\) 22.8378 16.5926i 1.16091 0.843452i
\(388\) 3.48173 + 10.7157i 0.176758 + 0.544005i
\(389\) 3.11376 9.58318i 0.157874 0.485886i −0.840567 0.541708i \(-0.817778\pi\)
0.998441 + 0.0558216i \(0.0177778\pi\)
\(390\) 0.0655834 + 0.0476491i 0.00332095 + 0.00241281i
\(391\) 1.85208 + 1.34562i 0.0936640 + 0.0680509i
\(392\) 0.309017 0.951057i 0.0156077 0.0480356i
\(393\) −0.845533 2.60228i −0.0426515 0.131268i
\(394\) −4.09678 + 2.97648i −0.206393 + 0.149953i
\(395\) −3.36771 −0.169448
\(396\) −8.69860 + 4.51836i −0.437121 + 0.227056i
\(397\) 8.42050 0.422613 0.211306 0.977420i \(-0.432228\pi\)
0.211306 + 0.977420i \(0.432228\pi\)
\(398\) 17.5641 12.7611i 0.880410 0.639655i
\(399\) −0.314396 0.967611i −0.0157395 0.0484411i
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) 15.3560 + 11.1568i 0.766840 + 0.557142i 0.901001 0.433818i \(-0.142834\pi\)
−0.134161 + 0.990960i \(0.542834\pi\)
\(402\) 0.849346 + 0.617086i 0.0423615 + 0.0307775i
\(403\) 0.149265 0.459389i 0.00743540 0.0228838i
\(404\) 0.218782 + 0.673340i 0.0108848 + 0.0334999i
\(405\) 6.95835 5.05554i 0.345763 0.251212i
\(406\) −1.60685 −0.0797469
\(407\) −2.81039 0.422576i −0.139306 0.0209463i
\(408\) 0.707434 0.0350232
\(409\) −19.1681 + 13.9265i −0.947803 + 0.688620i −0.950286 0.311377i \(-0.899210\pi\)
0.00248286 + 0.999997i \(0.499210\pi\)
\(410\) −2.97308 9.15021i −0.146830 0.451897i
\(411\) −0.811873 + 2.49869i −0.0400467 + 0.123251i
\(412\) −0.487061 0.353871i −0.0239958 0.0174340i
\(413\) 5.88094 + 4.27276i 0.289382 + 0.210249i
\(414\) −0.623833 + 1.91996i −0.0306597 + 0.0943610i
\(415\) 3.25071 + 10.0047i 0.159571 + 0.491110i
\(416\) 0.310705 0.225740i 0.0152336 0.0110678i
\(417\) 2.53729 0.124251
\(418\) 7.14575 14.3002i 0.349510 0.699447i
\(419\) −2.81468 −0.137506 −0.0687531 0.997634i \(-0.521902\pi\)
−0.0687531 + 0.997634i \(0.521902\pi\)
\(420\) 0.170767 0.124069i 0.00833256 0.00605396i
\(421\) −0.861968 2.65287i −0.0420098 0.129293i 0.927852 0.372949i \(-0.121653\pi\)
−0.969862 + 0.243656i \(0.921653\pi\)
\(422\) 4.94362 15.2149i 0.240652 0.740650i
\(423\) −18.0533 13.1165i −0.877783 0.637747i
\(424\) 10.9530 + 7.95781i 0.531924 + 0.386465i
\(425\) −1.03567 + 3.18747i −0.0502375 + 0.154615i
\(426\) −0.0548192 0.168716i −0.00265600 0.00817432i
\(427\) 3.14814 2.28726i 0.152349 0.110688i
\(428\) 10.2801 0.496909
\(429\) −0.120181 + 0.240509i −0.00580239 + 0.0116119i
\(430\) −9.55155 −0.460617
\(431\) 5.07723 3.68882i 0.244561 0.177684i −0.458752 0.888565i \(-0.651703\pi\)
0.703313 + 0.710880i \(0.251703\pi\)
\(432\) 0.388456 + 1.19555i 0.0186896 + 0.0575207i
\(433\) 7.83985 24.1286i 0.376759 1.15955i −0.565525 0.824731i \(-0.691326\pi\)
0.942284 0.334815i \(-0.108674\pi\)
\(434\) −1.01752 0.739269i −0.0488424 0.0354861i
\(435\) −0.274397 0.199361i −0.0131563 0.00955864i
\(436\) −0.820532 + 2.52534i −0.0392963 + 0.120942i
\(437\) −1.01741 3.13126i −0.0486692 0.149788i
\(438\) −1.76718 + 1.28393i −0.0844394 + 0.0613488i
\(439\) 14.4302 0.688715 0.344357 0.938839i \(-0.388097\pi\)
0.344357 + 0.938839i \(0.388097\pi\)
\(440\) 3.27976 + 0.493151i 0.156356 + 0.0235101i
\(441\) −2.95545 −0.140736
\(442\) −1.04133 + 0.756570i −0.0495310 + 0.0359864i
\(443\) 7.26629 + 22.3633i 0.345232 + 1.06251i 0.961460 + 0.274946i \(0.0886600\pi\)
−0.616228 + 0.787568i \(0.711340\pi\)
\(444\) −0.0558924 + 0.172019i −0.00265254 + 0.00816367i
\(445\) 12.1648 + 8.83821i 0.576665 + 0.418971i
\(446\) −2.25220 1.63632i −0.106645 0.0774819i
\(447\) −0.793347 + 2.44167i −0.0375240 + 0.115487i
\(448\) −0.309017 0.951057i −0.0145997 0.0449332i
\(449\) 5.12808 3.72577i 0.242009 0.175830i −0.460169 0.887831i \(-0.652211\pi\)
0.702178 + 0.712002i \(0.252211\pi\)
\(450\) −2.95545 −0.139321
\(451\) 28.3173 14.7090i 1.33341 0.692618i
\(452\) 10.2264 0.481008
\(453\) −3.46021 + 2.51399i −0.162575 + 0.118118i
\(454\) −4.85579 14.9446i −0.227893 0.701384i
\(455\) −0.118679 + 0.365256i −0.00556375 + 0.0171235i
\(456\) −0.823099 0.598017i −0.0385451 0.0280047i
\(457\) 3.30350 + 2.40013i 0.154531 + 0.112274i 0.662364 0.749182i \(-0.269553\pi\)
−0.507833 + 0.861456i \(0.669553\pi\)
\(458\) 5.27540 16.2360i 0.246503 0.758659i
\(459\) −1.30191 4.00688i −0.0607681 0.187025i
\(460\) 0.552613 0.401497i 0.0257657 0.0187199i
\(461\) 27.7053 1.29037 0.645183 0.764028i \(-0.276781\pi\)
0.645183 + 0.764028i \(0.276781\pi\)
\(462\) 0.498888 + 0.491131i 0.0232104 + 0.0228495i
\(463\) −30.6895 −1.42626 −0.713131 0.701030i \(-0.752724\pi\)
−0.713131 + 0.701030i \(0.752724\pi\)
\(464\) −1.29997 + 0.944486i −0.0603497 + 0.0438466i
\(465\) −0.0820374 0.252485i −0.00380439 0.0117087i
\(466\) −2.22987 + 6.86284i −0.103297 + 0.317915i
\(467\) 4.67950 + 3.39985i 0.216541 + 0.157326i 0.690768 0.723076i \(-0.257272\pi\)
−0.474227 + 0.880403i \(0.657272\pi\)
\(468\) −0.918272 0.667164i −0.0424471 0.0308396i
\(469\) −1.53696 + 4.73029i −0.0709704 + 0.218425i
\(470\) 2.33324 + 7.18097i 0.107624 + 0.331233i
\(471\) −1.72454 + 1.25295i −0.0794626 + 0.0577329i
\(472\) 7.26925 0.334594
\(473\) −5.20069 31.2491i −0.239128 1.43684i
\(474\) −0.710855 −0.0326506
\(475\) 3.89948 2.83314i 0.178920 0.129993i
\(476\) 1.03567 + 3.18747i 0.0474700 + 0.146098i
\(477\) 12.3646 38.0543i 0.566136 1.74239i
\(478\) 3.96880 + 2.88350i 0.181529 + 0.131888i
\(479\) −5.38508 3.91249i −0.246050 0.178766i 0.457924 0.888991i \(-0.348593\pi\)
−0.703975 + 0.710225i \(0.748593\pi\)
\(480\) 0.0652271 0.200748i 0.00297720 0.00916287i
\(481\) −0.101695 0.312984i −0.00463687 0.0142708i
\(482\) −19.0170 + 13.8166i −0.866200 + 0.629331i
\(483\) 0.144181 0.00656048
\(484\) 0.172376 + 10.9986i 0.00783527 + 0.499939i
\(485\) −11.2671 −0.511613
\(486\) 4.51974 3.28378i 0.205020 0.148955i
\(487\) −0.988197 3.04136i −0.0447795 0.137817i 0.926167 0.377113i \(-0.123083\pi\)
−0.970947 + 0.239296i \(0.923083\pi\)
\(488\) 1.20248 3.70086i 0.0544338 0.167530i
\(489\) 3.58384 + 2.60381i 0.162067 + 0.117748i
\(490\) 0.809017 + 0.587785i 0.0365477 + 0.0265534i
\(491\) 0.773552 2.38075i 0.0349099 0.107442i −0.932083 0.362244i \(-0.882011\pi\)
0.966993 + 0.254803i \(0.0820106\pi\)
\(492\) −0.627556 1.93142i −0.0282924 0.0870751i
\(493\) 4.35687 3.16545i 0.196223 0.142565i
\(494\) 1.85114 0.0832868
\(495\) −1.60920 9.66911i −0.0723281 0.434594i
\(496\) −1.25772 −0.0564733
\(497\) 0.679927 0.493996i 0.0304989 0.0221587i
\(498\) 0.686158 + 2.11178i 0.0307475 + 0.0946311i
\(499\) 6.70334 20.6307i 0.300083 0.923559i −0.681384 0.731926i \(-0.738622\pi\)
0.981467 0.191633i \(-0.0613784\pi\)
\(500\) 0.809017 + 0.587785i 0.0361803 + 0.0262866i
\(501\) 3.73556 + 2.71405i 0.166893 + 0.121255i
\(502\) −1.88080 + 5.78850i −0.0839441 + 0.258353i
\(503\) −0.465410 1.43238i −0.0207516 0.0638668i 0.940144 0.340776i \(-0.110690\pi\)
−0.960896 + 0.276909i \(0.910690\pi\)
\(504\) −2.39101 + 1.73717i −0.106504 + 0.0773796i
\(505\) −0.707992 −0.0315052
\(506\) 1.61444 + 1.58933i 0.0717705 + 0.0706545i
\(507\) 2.71290 0.120484
\(508\) −17.0297 + 12.3728i −0.755572 + 0.548955i
\(509\) 3.60984 + 11.1099i 0.160003 + 0.492439i 0.998633 0.0522620i \(-0.0166431\pi\)
−0.838630 + 0.544701i \(0.816643\pi\)
\(510\) −0.218609 + 0.672809i −0.00968017 + 0.0297925i
\(511\) −8.37214 6.08271i −0.370362 0.269083i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) −1.87237 + 5.76256i −0.0826671 + 0.254423i
\(514\) 0.546725 + 1.68265i 0.0241150 + 0.0742183i
\(515\) 0.487061 0.353871i 0.0214625 0.0155934i
\(516\) −2.01614 −0.0887554
\(517\) −22.2230 + 11.5434i −0.977368 + 0.507679i
\(518\) −0.856889 −0.0376496
\(519\) 0.0369870 0.0268726i 0.00162355 0.00117958i
\(520\) 0.118679 + 0.365256i 0.00520441 + 0.0160175i
\(521\) −1.88807 + 5.81087i −0.0827176 + 0.254579i −0.983859 0.178947i \(-0.942731\pi\)
0.901141 + 0.433526i \(0.142731\pi\)
\(522\) 3.84200 + 2.79138i 0.168160 + 0.122175i
\(523\) −4.74800 3.44963i −0.207616 0.150842i 0.479119 0.877750i \(-0.340956\pi\)
−0.686734 + 0.726909i \(0.740956\pi\)
\(524\) 4.00576 12.3285i 0.174992 0.538571i
\(525\) 0.0652271 + 0.200748i 0.00284674 + 0.00876138i
\(526\) −16.9445 + 12.3109i −0.738817 + 0.536782i
\(527\) 4.21526 0.183619
\(528\) 0.692289 + 0.104094i 0.0301280 + 0.00453011i
\(529\) −22.5334 −0.979714
\(530\) −10.9530 + 7.95781i −0.475767 + 0.345665i
\(531\) −6.63888 20.4324i −0.288103 0.886689i
\(532\) 1.48947 4.58411i 0.0645766 0.198746i
\(533\) 2.98932 + 2.17187i 0.129482 + 0.0940742i
\(534\) 2.56773 + 1.86556i 0.111116 + 0.0807308i
\(535\) −3.17674 + 9.77699i −0.137342 + 0.422696i
\(536\) 1.53696 + 4.73029i 0.0663868 + 0.204317i
\(537\) −2.91315 + 2.11653i −0.125712 + 0.0913349i
\(538\) −28.7266 −1.23849
\(539\) −1.48251 + 2.96684i −0.0638564 + 0.127791i
\(540\) −1.25707 −0.0540957
\(541\) 2.03352 1.47744i 0.0874278 0.0635200i −0.543213 0.839595i \(-0.682792\pi\)
0.630640 + 0.776075i \(0.282792\pi\)
\(542\) −1.42127 4.37421i −0.0610487 0.187888i
\(543\) −0.225525 + 0.694095i −0.00967820 + 0.0297865i
\(544\) 2.71143 + 1.96997i 0.116251 + 0.0844616i
\(545\) −2.14818 1.56074i −0.0920179 0.0668549i
\(546\) −0.0250506 + 0.0770979i −0.00107207 + 0.00329949i
\(547\) −4.53591 13.9601i −0.193941 0.596890i −0.999987 0.00503728i \(-0.998397\pi\)
0.806046 0.591853i \(-0.201603\pi\)
\(548\) −10.0697 + 7.31608i −0.430157 + 0.312528i
\(549\) −11.5006 −0.490832
\(550\) −1.48251 + 2.96684i −0.0632146 + 0.126507i
\(551\) −7.74507 −0.329951
\(552\) 0.116645 0.0847476i 0.00496475 0.00360710i
\(553\) −1.04068 3.20289i −0.0442543 0.136201i
\(554\) 7.39093 22.7469i 0.314010 0.966425i
\(555\) −0.146328 0.106314i −0.00621129 0.00451276i
\(556\) 9.72482 + 7.06549i 0.412424 + 0.299644i
\(557\) −6.58747 + 20.2742i −0.279120 + 0.859044i 0.708979 + 0.705229i \(0.249156\pi\)
−0.988100 + 0.153815i \(0.950844\pi\)
\(558\) 1.14865 + 3.53519i 0.0486264 + 0.149657i
\(559\) 2.96772 2.15617i 0.125521 0.0911964i
\(560\) 1.00000 0.0422577
\(561\) −2.32021 0.348872i −0.0979593 0.0147294i
\(562\) 24.2413 1.02256
\(563\) −26.7451 + 19.4315i −1.12717 + 0.818938i −0.985281 0.170944i \(-0.945318\pi\)
−0.141891 + 0.989882i \(0.545318\pi\)
\(564\) 0.492498 + 1.51575i 0.0207379 + 0.0638248i
\(565\) −3.16012 + 9.72586i −0.132947 + 0.409170i
\(566\) −1.78659 1.29804i −0.0750961 0.0545605i
\(567\) 6.95835 + 5.05554i 0.292223 + 0.212313i
\(568\) 0.259709 0.799302i 0.0108971 0.0335379i
\(569\) 14.2354 + 43.8119i 0.596777 + 1.83669i 0.545674 + 0.837998i \(0.316274\pi\)
0.0511031 + 0.998693i \(0.483726\pi\)
\(570\) 0.823099 0.598017i 0.0344758 0.0250482i
\(571\) 24.0901 1.00814 0.504070 0.863663i \(-0.331835\pi\)
0.504070 + 0.863663i \(0.331835\pi\)
\(572\) −1.13036 + 0.587149i −0.0472628 + 0.0245499i
\(573\) −0.624456 −0.0260870
\(574\) 7.78363 5.65514i 0.324882 0.236041i
\(575\) 0.211079 + 0.649635i 0.00880262 + 0.0270917i
\(576\) −0.913283 + 2.81080i −0.0380535 + 0.117116i
\(577\) 7.78779 + 5.65816i 0.324210 + 0.235552i 0.737970 0.674834i \(-0.235785\pi\)
−0.413760 + 0.910386i \(0.635785\pi\)
\(578\) 4.66593 + 3.39000i 0.194077 + 0.141005i
\(579\) 0.618100 1.90232i 0.0256874 0.0790575i
\(580\) −0.496545 1.52821i −0.0206179 0.0634555i
\(581\) −8.51048 + 6.18323i −0.353074 + 0.256523i
\(582\) −2.37825 −0.0985818
\(583\) −31.9987 31.5012i −1.32525 1.30464i
\(584\) −10.3485 −0.428225
\(585\) 0.918272 0.667164i 0.0379659 0.0275838i
\(586\) −6.75948 20.8035i −0.279231 0.859386i
\(587\) −14.9203 + 45.9198i −0.615825 + 1.89531i −0.227570 + 0.973762i \(0.573078\pi\)
−0.388254 + 0.921552i \(0.626922\pi\)
\(588\) 0.170767 + 0.124069i 0.00704230 + 0.00511653i
\(589\) −4.90445 3.56329i −0.202084 0.146823i
\(590\) −2.24632 + 6.91346i −0.0924796 + 0.284623i
\(591\) −0.330303 1.01657i −0.0135869 0.0418160i
\(592\) −0.693238 + 0.503667i −0.0284919 + 0.0207006i
\(593\) −22.5234 −0.924924 −0.462462 0.886639i \(-0.653034\pi\)
−0.462462 + 0.886639i \(0.653034\pi\)
\(594\) −0.684458 4.11267i −0.0280836 0.168745i
\(595\) −3.35151 −0.137398
\(596\) −9.83995 + 7.14914i −0.403060 + 0.292840i
\(597\) 1.41611 + 4.35834i 0.0579575 + 0.178375i
\(598\) −0.0810656 + 0.249494i −0.00331502 + 0.0102026i
\(599\) 21.7386 + 15.7940i 0.888215 + 0.645326i 0.935412 0.353560i \(-0.115029\pi\)
−0.0471971 + 0.998886i \(0.515029\pi\)
\(600\) 0.170767 + 0.124069i 0.00697152 + 0.00506511i
\(601\) 13.1660 40.5209i 0.537054 1.65288i −0.202115 0.979362i \(-0.564781\pi\)
0.739169 0.673520i \(-0.235219\pi\)
\(602\) −2.95159 9.08407i −0.120298 0.370239i
\(603\) 11.8922 8.64019i 0.484288 0.351856i
\(604\) −20.2628 −0.824481
\(605\) −10.5136 3.23483i −0.427439 0.131515i
\(606\) −0.149442 −0.00607068
\(607\) 13.6276 9.90101i 0.553126 0.401870i −0.275811 0.961212i \(-0.588946\pi\)
0.828937 + 0.559342i \(0.188946\pi\)
\(608\) −1.48947 4.58411i −0.0604059 0.185910i
\(609\) 0.104810 0.322573i 0.00424713 0.0130713i
\(610\) 3.14814 + 2.28726i 0.127464 + 0.0926083i
\(611\) −2.34598 1.70446i −0.0949084 0.0689550i
\(612\) 3.06087 9.42040i 0.123728 0.380797i
\(613\) −9.25827 28.4940i −0.373938 1.15086i −0.944192 0.329395i \(-0.893155\pi\)
0.570254 0.821468i \(-0.306845\pi\)
\(614\) 0.742289 0.539304i 0.0299563 0.0217646i
\(615\) 2.03081 0.0818903
\(616\) 0.544486 + 3.27163i 0.0219380 + 0.131818i
\(617\) −9.21777 −0.371093 −0.185547 0.982635i \(-0.559406\pi\)
−0.185547 + 0.982635i \(0.559406\pi\)
\(618\) 0.102809 0.0746948i 0.00413557 0.00300467i
\(619\) −10.5485 32.4648i −0.423979 1.30487i −0.903969 0.427598i \(-0.859360\pi\)
0.479990 0.877274i \(-0.340640\pi\)
\(620\) 0.388657 1.19616i 0.0156088 0.0480391i
\(621\) −0.694674 0.504710i −0.0278763 0.0202533i
\(622\) −2.40244 1.74548i −0.0963292 0.0699873i
\(623\) −4.64652 + 14.3005i −0.186159 + 0.572938i
\(624\) 0.0250506 + 0.0770979i 0.00100283 + 0.00308639i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) −1.00800 −0.0402879
\(627\) 2.40465 + 2.36726i 0.0960326 + 0.0945393i
\(628\) −10.0988 −0.402986
\(629\) 2.32339 1.68804i 0.0926397 0.0673067i
\(630\) −0.913283 2.81080i −0.0363861 0.111985i
\(631\) −6.07889 + 18.7089i −0.241997 + 0.744790i 0.754119 + 0.656738i \(0.228064\pi\)
−0.996116 + 0.0880521i \(0.971936\pi\)
\(632\) −2.72454 1.97949i −0.108376 0.0787400i
\(633\) 2.73191 + 1.98485i 0.108584 + 0.0788907i
\(634\) −1.07431 + 3.30638i −0.0426662 + 0.131313i
\(635\) −6.50478 20.0196i −0.258134 0.794456i
\(636\) −2.31195 + 1.67973i −0.0916747 + 0.0666056i
\(637\) −0.384053 −0.0152167
\(638\) 4.72937 2.45660i 0.187237 0.0972577i
\(639\) −2.48386 −0.0982600
\(640\) 0.809017 0.587785i 0.0319792 0.0232343i
\(641\) −2.09646 6.45224i −0.0828051 0.254848i 0.901079 0.433655i \(-0.142776\pi\)
−0.983884 + 0.178807i \(0.942776\pi\)
\(642\) −0.670544 + 2.06372i −0.0264642 + 0.0814486i
\(643\) −6.18721 4.49527i −0.244000 0.177276i 0.459064 0.888403i \(-0.348185\pi\)
−0.703063 + 0.711127i \(0.748185\pi\)
\(644\) 0.552613 + 0.401497i 0.0217760 + 0.0158212i
\(645\) 0.623020 1.91746i 0.0245314 0.0754999i
\(646\) 4.99196 + 15.3637i 0.196406 + 0.604476i
\(647\) −10.0726 + 7.31815i −0.395994 + 0.287706i −0.767907 0.640561i \(-0.778702\pi\)
0.371914 + 0.928267i \(0.378702\pi\)
\(648\) 8.60099 0.337879
\(649\) −23.8414 3.58484i −0.935855 0.140717i
\(650\) −0.384053 −0.0150638
\(651\) 0.214777 0.156044i 0.00841776 0.00611586i
\(652\) 6.48526 + 19.9596i 0.253983 + 0.781678i
\(653\) 10.0636 30.9725i 0.393819 1.21205i −0.536059 0.844180i \(-0.680088\pi\)
0.929878 0.367868i \(-0.119912\pi\)
\(654\) −0.453436 0.329441i −0.0177308 0.0128822i
\(655\) 10.4872 + 7.61940i 0.409769 + 0.297715i
\(656\) 2.97308 9.15021i 0.116079 0.357256i
\(657\) 9.45114 + 29.0876i 0.368724 + 1.13482i
\(658\) −6.10850 + 4.43808i −0.238134 + 0.173014i
\(659\) 13.3486 0.519990 0.259995 0.965610i \(-0.416279\pi\)
0.259995 + 0.965610i \(0.416279\pi\)
\(660\) −0.312928 + 0.626239i −0.0121807 + 0.0243763i
\(661\) 37.5491 1.46049 0.730246 0.683184i \(-0.239405\pi\)
0.730246 + 0.683184i \(0.239405\pi\)
\(662\) −14.0676 + 10.2207i −0.546752 + 0.397239i
\(663\) −0.0839573 0.258394i −0.00326063 0.0100352i
\(664\) −3.25071 + 10.0047i −0.126152 + 0.388256i
\(665\) 3.89948 + 2.83314i 0.151215 + 0.109864i
\(666\) 2.04883 + 1.48856i 0.0793904 + 0.0576805i
\(667\) 0.339174 1.04387i 0.0131329 0.0404188i
\(668\) 6.75982 + 20.8046i 0.261545 + 0.804954i
\(669\) 0.475393 0.345393i 0.0183797 0.0133537i
\(670\) −4.97372 −0.192152
\(671\) −5.76893 + 11.5449i −0.222707 + 0.445686i
\(672\) 0.211079 0.00814256
\(673\) 4.95740 3.60176i 0.191094 0.138838i −0.488125 0.872774i \(-0.662319\pi\)
0.679218 + 0.733936i \(0.262319\pi\)
\(674\) −5.07777 15.6278i −0.195589 0.601960i
\(675\) 0.388456 1.19555i 0.0149517 0.0460166i
\(676\) 10.3979 + 7.55451i 0.399919 + 0.290558i
\(677\) −12.7401 9.25620i −0.489641 0.355745i 0.315405 0.948957i \(-0.397859\pi\)
−0.805046 + 0.593212i \(0.797859\pi\)
\(678\) −0.667036 + 2.05293i −0.0256174 + 0.0788422i
\(679\) −3.48173 10.7157i −0.133616 0.411229i
\(680\) −2.71143 + 1.96997i −0.103978 + 0.0755447i
\(681\) 3.31683 0.127101
\(682\) 4.12502 + 0.620246i 0.157955 + 0.0237504i
\(683\) −15.0157 −0.574559 −0.287280 0.957847i \(-0.592751\pi\)
−0.287280 + 0.957847i \(0.592751\pi\)
\(684\) −11.5247 + 8.37318i −0.440658 + 0.320157i
\(685\) −3.84629 11.8377i −0.146959 0.452294i
\(686\) −0.309017 + 0.951057i −0.0117983 + 0.0363115i
\(687\) 2.91525 + 2.11806i 0.111224 + 0.0808089i
\(688\) −7.72737 5.61426i −0.294603 0.214042i
\(689\) 1.60675 4.94506i 0.0612123 0.188392i
\(690\) 0.0445545 + 0.137125i 0.00169616 + 0.00522024i
\(691\) −24.7191 + 17.9595i −0.940359 + 0.683211i −0.948507 0.316756i \(-0.897406\pi\)
0.00814785 + 0.999967i \(0.497406\pi\)
\(692\) 0.216594 0.00823366
\(693\) 8.69860 4.51836i 0.330433 0.171638i
\(694\) 32.0372 1.21612
\(695\) −9.72482 + 7.06549i −0.368883 + 0.268009i
\(696\) −0.104810 0.322573i −0.00397283 0.0122271i
\(697\) −9.96430 + 30.6670i −0.377425 + 1.16159i
\(698\) −28.9672 21.0459i −1.09642 0.796598i
\(699\) −1.23226 0.895287i −0.0466082 0.0338629i
\(700\) −0.309017 + 0.951057i −0.0116797 + 0.0359466i
\(701\) −1.21416 3.73681i −0.0458583 0.141137i 0.925506 0.378734i \(-0.123640\pi\)
−0.971364 + 0.237597i \(0.923640\pi\)
\(702\) 0.390578 0.283772i 0.0147414 0.0107103i
\(703\) −4.13022 −0.155774
\(704\) 2.36351 + 2.32676i 0.0890782 + 0.0876931i
\(705\) −1.59376 −0.0600244
\(706\) 12.4841 9.07026i 0.469847 0.341364i
\(707\) −0.218782 0.673340i −0.00822813 0.0253236i
\(708\) −0.474152 + 1.45929i −0.0178197 + 0.0548434i
\(709\) −19.5180 14.1806i −0.733013 0.532565i 0.157502 0.987519i \(-0.449656\pi\)
−0.890515 + 0.454954i \(0.849656\pi\)
\(710\) 0.679927 + 0.493996i 0.0255172 + 0.0185393i
\(711\) −3.07568 + 9.46596i −0.115347 + 0.355001i
\(712\) 4.64652 + 14.3005i 0.174136 + 0.535935i
\(713\) 0.695032 0.504970i 0.0260292 0.0189113i
\(714\) −0.707434 −0.0264750
\(715\) −0.209111 1.25648i −0.00782032 0.0469896i
\(716\) −17.0592 −0.637534
\(717\) −0.837731 + 0.608647i −0.0312856 + 0.0227304i
\(718\) 5.21751 + 16.0578i 0.194716 + 0.599274i
\(719\) −13.5542 + 41.7154i −0.505485 + 1.55572i 0.294468 + 0.955661i \(0.404858\pi\)
−0.799953 + 0.600062i \(0.795142\pi\)
\(720\) −2.39101 1.73717i −0.0891075 0.0647404i
\(721\) 0.487061 + 0.353871i 0.0181391 + 0.0131788i
\(722\) 1.30794 4.02544i 0.0486766 0.149811i
\(723\) −1.53325 4.71885i −0.0570221 0.175496i
\(724\) −2.79721 + 2.03229i −0.103957 + 0.0755294i
\(725\) 1.60685 0.0596771
\(726\) −2.21920 0.682806i −0.0823624 0.0253413i
\(727\) −20.7183 −0.768400 −0.384200 0.923250i \(-0.625523\pi\)
−0.384200 + 0.923250i \(0.625523\pi\)
\(728\) −0.310705 + 0.225740i −0.0115155 + 0.00836650i
\(729\) −7.60916 23.4186i −0.281821 0.867355i
\(730\) 3.19787 9.84204i 0.118359 0.364270i
\(731\) 25.8983 + 18.8162i 0.957884 + 0.695944i
\(732\) 0.664507 + 0.482793i 0.0245609 + 0.0178445i
\(733\) −10.2029 + 31.4013i −0.376853 + 1.15983i 0.565367 + 0.824840i \(0.308735\pi\)
−0.942220 + 0.334995i \(0.891265\pi\)
\(734\) −2.76463 8.50867i −0.102044 0.314061i
\(735\) −0.170767 + 0.124069i −0.00629883 + 0.00457637i
\(736\) 0.683067 0.0251782
\(737\) −2.70812 16.2722i −0.0997550 0.599393i
\(738\) −28.4346 −1.04669
\(739\) −4.22246 + 3.06780i −0.155326 + 0.112851i −0.662734 0.748855i \(-0.730604\pi\)
0.507408 + 0.861706i \(0.330604\pi\)
\(740\) −0.264793 0.814950i −0.00973400 0.0299582i
\(741\) −0.120745 + 0.371614i −0.00443566 + 0.0136516i
\(742\) −10.9530 7.95781i −0.402097 0.292140i
\(743\) −26.3269 19.1276i −0.965841 0.701725i −0.0113413 0.999936i \(-0.503610\pi\)
−0.954500 + 0.298211i \(0.903610\pi\)
\(744\) 0.0820374 0.252485i 0.00300764 0.00925656i
\(745\) −3.75853 11.5676i −0.137702 0.423802i
\(746\) −10.7120 + 7.78276i −0.392196 + 0.284947i
\(747\) 31.0899 1.13752
\(748\) −7.92132 7.79815i −0.289632 0.285129i
\(749\) −10.2801 −0.375628
\(750\) −0.170767 + 0.124069i −0.00623552 + 0.00453037i
\(751\) 14.5842 + 44.8856i 0.532185 + 1.63790i 0.749654 + 0.661830i \(0.230220\pi\)
−0.217469 + 0.976067i \(0.569780\pi\)
\(752\) −2.33324 + 7.18097i −0.0850844 + 0.261863i
\(753\) −1.03935 0.755134i −0.0378761 0.0275186i
\(754\) 0.499258 + 0.362732i 0.0181819 + 0.0132099i
\(755\) 6.26155 19.2711i 0.227881 0.701346i
\(756\) −0.388456 1.19555i −0.0141280 0.0434816i
\(757\) 29.7933 21.6461i 1.08285 0.786740i 0.104676 0.994506i \(-0.466619\pi\)
0.978178 + 0.207766i \(0.0666194\pi\)
\(758\) −15.8412 −0.575378
\(759\) −0.424361 + 0.220428i −0.0154033 + 0.00800103i
\(760\) 4.82002 0.174841
\(761\) −4.92452 + 3.57787i −0.178514 + 0.129698i −0.673454 0.739229i \(-0.735190\pi\)
0.494940 + 0.868927i \(0.335190\pi\)
\(762\) −1.37302 4.22573i −0.0497394 0.153082i
\(763\) 0.820532 2.52534i 0.0297052 0.0914233i
\(764\) −2.39339 1.73890i −0.0865898 0.0629112i
\(765\) 8.01347 + 5.82213i 0.289728 + 0.210499i
\(766\) −0.0392873 + 0.120914i −0.00141951 + 0.00436880i
\(767\) −0.862705 2.65513i −0.0311505 0.0958713i
\(768\) 0.170767 0.124069i 0.00616201 0.00447697i
\(769\) −42.1342 −1.51940 −0.759700 0.650274i \(-0.774654\pi\)
−0.759700 + 0.650274i \(0.774654\pi\)
\(770\) −3.27976 0.493151i −0.118194 0.0177719i
\(771\) −0.373450 −0.0134495
\(772\) 7.66634 5.56992i 0.275918 0.200466i
\(773\) −5.04168 15.5167i −0.181337 0.558097i 0.818529 0.574465i \(-0.194790\pi\)
−0.999866 +