Properties

Label 770.2.n.k.141.4
Level $770$
Weight $2$
Character 770.141
Analytic conductor $6.148$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 5 x^{15} + 18 x^{14} - 35 x^{13} + 89 x^{12} - 185 x^{11} + 837 x^{10} - 1660 x^{9} + 4196 x^{8} - 8420 x^{7} + 13485 x^{6} - 14630 x^{5} + 11615 x^{4} - 5200 x^{3} + 1425 x^{2} - 225 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 141.4
Root \(-2.05435 - 1.49258i\) of defining polynomial
Character \(\chi\) \(=\) 770.141
Dual form 770.2.n.k.71.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(2.05435 - 1.49258i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(-0.784693 - 2.41504i) q^{6} +(0.809017 + 0.587785i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(1.06554 - 3.27939i) q^{9} +O(q^{10})\) \(q+(0.309017 - 0.951057i) q^{2} +(2.05435 - 1.49258i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(-0.784693 - 2.41504i) q^{6} +(0.809017 + 0.587785i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(1.06554 - 3.27939i) q^{9} -1.00000 q^{10} +(1.57392 - 2.91938i) q^{11} -2.53932 q^{12} +(-1.27148 + 3.91321i) q^{13} +(0.809017 - 0.587785i) q^{14} +(-2.05435 - 1.49258i) q^{15} +(0.309017 + 0.951057i) q^{16} +(-2.11624 - 6.51311i) q^{17} +(-2.78961 - 2.02677i) q^{18} +(5.35695 - 3.89205i) q^{19} +(-0.309017 + 0.951057i) q^{20} +2.53932 q^{21} +(-2.29013 - 2.39902i) q^{22} -3.13877 q^{23} +(-0.784693 + 2.41504i) q^{24} +(-0.809017 + 0.587785i) q^{25} +(3.32878 + 2.41850i) q^{26} +(-0.351660 - 1.08230i) q^{27} +(-0.309017 - 0.951057i) q^{28} +(-4.44605 - 3.23024i) q^{29} +(-2.05435 + 1.49258i) q^{30} +(-1.72249 + 5.30127i) q^{31} +1.00000 q^{32} +(-1.12402 - 8.34663i) q^{33} -6.84829 q^{34} +(0.309017 - 0.951057i) q^{35} +(-2.78961 + 2.02677i) q^{36} +(6.29838 + 4.57604i) q^{37} +(-2.04617 - 6.29747i) q^{38} +(3.22869 + 9.93689i) q^{39} +(0.809017 + 0.587785i) q^{40} +(-2.35226 + 1.70902i) q^{41} +(0.784693 - 2.41504i) q^{42} +3.23479 q^{43} +(-2.98929 + 1.43670i) q^{44} -3.44815 q^{45} +(-0.969934 + 2.98515i) q^{46} +(1.21343 - 0.881607i) q^{47} +(2.05435 + 1.49258i) q^{48} +(0.309017 + 0.951057i) q^{49} +(0.309017 + 0.951057i) q^{50} +(-14.0688 - 10.2216i) q^{51} +(3.32878 - 2.41850i) q^{52} +(-3.43975 + 10.5865i) q^{53} -1.13800 q^{54} +(-3.26286 - 0.594745i) q^{55} -1.00000 q^{56} +(5.19589 - 15.9913i) q^{57} +(-4.44605 + 3.23024i) q^{58} +(6.00637 + 4.36389i) q^{59} +(0.784693 + 2.41504i) q^{60} +(-0.705073 - 2.16999i) q^{61} +(4.50953 + 3.27637i) q^{62} +(2.78961 - 2.02677i) q^{63} +(0.309017 - 0.951057i) q^{64} +4.11459 q^{65} +(-8.28546 - 1.51025i) q^{66} +14.1969 q^{67} +(-2.11624 + 6.51311i) q^{68} +(-6.44815 + 4.68485i) q^{69} +(-0.809017 - 0.587785i) q^{70} +(0.0188133 + 0.0579014i) q^{71} +(1.06554 + 3.27939i) q^{72} +(3.16555 + 2.29991i) q^{73} +(6.29838 - 4.57604i) q^{74} +(-0.784693 + 2.41504i) q^{75} -6.62155 q^{76} +(2.98929 - 1.43670i) q^{77} +10.4483 q^{78} +(-1.31018 + 4.03232i) q^{79} +(0.809017 - 0.587785i) q^{80} +(6.03099 + 4.38177i) q^{81} +(0.898483 + 2.76525i) q^{82} +(3.16642 + 9.74525i) q^{83} +(-2.05435 - 1.49258i) q^{84} +(-5.54038 + 4.02533i) q^{85} +(0.999606 - 3.07647i) q^{86} -13.9551 q^{87} +(0.442644 + 3.28695i) q^{88} -6.54394 q^{89} +(-1.06554 + 3.27939i) q^{90} +(-3.32878 + 2.41850i) q^{91} +(2.53932 + 1.84492i) q^{92} +(4.37395 + 13.4616i) q^{93} +(-0.463488 - 1.42647i) q^{94} +(-5.35695 - 3.89205i) q^{95} +(2.05435 - 1.49258i) q^{96} +(-0.213537 + 0.657198i) q^{97} +1.00000 q^{98} +(-7.89671 - 8.27219i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} + O(q^{10}) \) \( 16q - 4q^{2} - 5q^{3} - 4q^{4} + 4q^{5} + 5q^{6} + 4q^{7} - 4q^{8} + q^{9} - 16q^{10} - 2q^{11} + 8q^{13} + 4q^{14} + 5q^{15} - 4q^{16} - 13q^{17} - 9q^{18} + 15q^{19} + 4q^{20} - 2q^{22} + 20q^{23} + 5q^{24} - 4q^{25} - 7q^{26} + 10q^{27} + 4q^{28} - 14q^{29} + 5q^{30} - 6q^{31} + 16q^{32} - 25q^{33} + 12q^{34} - 4q^{35} - 9q^{36} + 28q^{37} - 20q^{38} + 15q^{39} + 4q^{40} + 2q^{41} - 5q^{42} - 10q^{43} + 3q^{44} - 16q^{45} - 10q^{46} - 10q^{47} - 5q^{48} - 4q^{49} - 4q^{50} - 42q^{51} - 7q^{52} - 2q^{53} - 3q^{55} - 16q^{56} + 21q^{57} - 14q^{58} + 7q^{59} - 5q^{60} + 4q^{61} + 14q^{62} + 9q^{63} - 4q^{64} + 2q^{65} - 10q^{66} + 66q^{67} - 13q^{68} - 64q^{69} - 4q^{70} + 2q^{71} + q^{72} + 12q^{73} + 28q^{74} + 5q^{75} + 10q^{76} - 3q^{77} + 70q^{78} + 2q^{79} + 4q^{80} - 30q^{81} - 13q^{82} - 5q^{83} + 5q^{84} - 7q^{85} + 5q^{86} - 24q^{87} - 2q^{88} + 2q^{89} - q^{90} + 7q^{91} - 38q^{93} + 25q^{94} - 15q^{95} - 5q^{96} + 22q^{97} + 16q^{98} - 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) 2.05435 1.49258i 1.18608 0.861739i 0.193237 0.981152i \(-0.438101\pi\)
0.992845 + 0.119413i \(0.0381014\pi\)
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) −0.784693 2.41504i −0.320350 0.985935i
\(7\) 0.809017 + 0.587785i 0.305780 + 0.222162i
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 1.06554 3.27939i 0.355179 1.09313i
\(10\) −1.00000 −0.316228
\(11\) 1.57392 2.91938i 0.474554 0.880227i
\(12\) −2.53932 −0.733039
\(13\) −1.27148 + 3.91321i −0.352645 + 1.08533i 0.604718 + 0.796440i \(0.293286\pi\)
−0.957363 + 0.288889i \(0.906714\pi\)
\(14\) 0.809017 0.587785i 0.216219 0.157092i
\(15\) −2.05435 1.49258i −0.530432 0.385381i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −2.11624 6.51311i −0.513263 1.57966i −0.786420 0.617692i \(-0.788068\pi\)
0.273157 0.961970i \(-0.411932\pi\)
\(18\) −2.78961 2.02677i −0.657518 0.477715i
\(19\) 5.35695 3.89205i 1.22897 0.892898i 0.232156 0.972679i \(-0.425422\pi\)
0.996812 + 0.0797809i \(0.0254221\pi\)
\(20\) −0.309017 + 0.951057i −0.0690983 + 0.212663i
\(21\) 2.53932 0.554125
\(22\) −2.29013 2.39902i −0.488257 0.511473i
\(23\) −3.13877 −0.654479 −0.327240 0.944941i \(-0.606118\pi\)
−0.327240 + 0.944941i \(0.606118\pi\)
\(24\) −0.784693 + 2.41504i −0.160175 + 0.492967i
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 3.32878 + 2.41850i 0.652827 + 0.474306i
\(27\) −0.351660 1.08230i −0.0676770 0.208288i
\(28\) −0.309017 0.951057i −0.0583987 0.179733i
\(29\) −4.44605 3.23024i −0.825610 0.599841i 0.0927040 0.995694i \(-0.470449\pi\)
−0.918314 + 0.395853i \(0.870449\pi\)
\(30\) −2.05435 + 1.49258i −0.375072 + 0.272506i
\(31\) −1.72249 + 5.30127i −0.309368 + 0.952137i 0.668643 + 0.743583i \(0.266875\pi\)
−0.978011 + 0.208553i \(0.933125\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.12402 8.34663i −0.195666 1.45296i
\(34\) −6.84829 −1.17447
\(35\) 0.309017 0.951057i 0.0522334 0.160758i
\(36\) −2.78961 + 2.02677i −0.464935 + 0.337795i
\(37\) 6.29838 + 4.57604i 1.03545 + 0.752296i 0.969392 0.245519i \(-0.0789585\pi\)
0.0660556 + 0.997816i \(0.478959\pi\)
\(38\) −2.04617 6.29747i −0.331933 1.02158i
\(39\) 3.22869 + 9.93689i 0.517005 + 1.59118i
\(40\) 0.809017 + 0.587785i 0.127917 + 0.0929370i
\(41\) −2.35226 + 1.70902i −0.367361 + 0.266904i −0.756116 0.654438i \(-0.772905\pi\)
0.388755 + 0.921341i \(0.372905\pi\)
\(42\) 0.784693 2.41504i 0.121081 0.372648i
\(43\) 3.23479 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(44\) −2.98929 + 1.43670i −0.450653 + 0.216591i
\(45\) −3.44815 −0.514020
\(46\) −0.969934 + 2.98515i −0.143009 + 0.440136i
\(47\) 1.21343 0.881607i 0.176997 0.128596i −0.495760 0.868460i \(-0.665110\pi\)
0.672756 + 0.739864i \(0.265110\pi\)
\(48\) 2.05435 + 1.49258i 0.296520 + 0.215435i
\(49\) 0.309017 + 0.951057i 0.0441453 + 0.135865i
\(50\) 0.309017 + 0.951057i 0.0437016 + 0.134500i
\(51\) −14.0688 10.2216i −1.97003 1.43131i
\(52\) 3.32878 2.41850i 0.461618 0.335385i
\(53\) −3.43975 + 10.5865i −0.472486 + 1.45416i 0.376832 + 0.926282i \(0.377013\pi\)
−0.849318 + 0.527881i \(0.822987\pi\)
\(54\) −1.13800 −0.154862
\(55\) −3.26286 0.594745i −0.439964 0.0801954i
\(56\) −1.00000 −0.133631
\(57\) 5.19589 15.9913i 0.688212 2.11810i
\(58\) −4.44605 + 3.23024i −0.583794 + 0.424151i
\(59\) 6.00637 + 4.36389i 0.781963 + 0.568129i 0.905568 0.424202i \(-0.139445\pi\)
−0.123604 + 0.992332i \(0.539445\pi\)
\(60\) 0.784693 + 2.41504i 0.101303 + 0.311780i
\(61\) −0.705073 2.16999i −0.0902753 0.277839i 0.895718 0.444622i \(-0.146662\pi\)
−0.985994 + 0.166783i \(0.946662\pi\)
\(62\) 4.50953 + 3.27637i 0.572711 + 0.416099i
\(63\) 2.78961 2.02677i 0.351458 0.255349i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 4.11459 0.510352
\(66\) −8.28546 1.51025i −1.01987 0.185899i
\(67\) 14.1969 1.73442 0.867212 0.497939i \(-0.165910\pi\)
0.867212 + 0.497939i \(0.165910\pi\)
\(68\) −2.11624 + 6.51311i −0.256632 + 0.789831i
\(69\) −6.44815 + 4.68485i −0.776266 + 0.563990i
\(70\) −0.809017 0.587785i −0.0966960 0.0702538i
\(71\) 0.0188133 + 0.0579014i 0.00223273 + 0.00687163i 0.952167 0.305579i \(-0.0988501\pi\)
−0.949934 + 0.312451i \(0.898850\pi\)
\(72\) 1.06554 + 3.27939i 0.125575 + 0.386479i
\(73\) 3.16555 + 2.29991i 0.370500 + 0.269184i 0.757418 0.652930i \(-0.226460\pi\)
−0.386918 + 0.922114i \(0.626460\pi\)
\(74\) 6.29838 4.57604i 0.732172 0.531954i
\(75\) −0.784693 + 2.41504i −0.0906086 + 0.278865i
\(76\) −6.62155 −0.759544
\(77\) 2.98929 1.43670i 0.340662 0.163728i
\(78\) 10.4483 1.18303
\(79\) −1.31018 + 4.03232i −0.147407 + 0.453671i −0.997313 0.0732634i \(-0.976659\pi\)
0.849906 + 0.526934i \(0.176659\pi\)
\(80\) 0.809017 0.587785i 0.0904508 0.0657164i
\(81\) 6.03099 + 4.38177i 0.670110 + 0.486863i
\(82\) 0.898483 + 2.76525i 0.0992209 + 0.305371i
\(83\) 3.16642 + 9.74525i 0.347560 + 1.06968i 0.960199 + 0.279317i \(0.0901081\pi\)
−0.612639 + 0.790363i \(0.709892\pi\)
\(84\) −2.05435 1.49258i −0.224148 0.162853i
\(85\) −5.54038 + 4.02533i −0.600939 + 0.436608i
\(86\) 0.999606 3.07647i 0.107790 0.331744i
\(87\) −13.9551 −1.49615
\(88\) 0.442644 + 3.28695i 0.0471861 + 0.350390i
\(89\) −6.54394 −0.693656 −0.346828 0.937929i \(-0.612741\pi\)
−0.346828 + 0.937929i \(0.612741\pi\)
\(90\) −1.06554 + 3.27939i −0.112317 + 0.345678i
\(91\) −3.32878 + 2.41850i −0.348950 + 0.253527i
\(92\) 2.53932 + 1.84492i 0.264742 + 0.192347i
\(93\) 4.37395 + 13.4616i 0.453557 + 1.39591i
\(94\) −0.463488 1.42647i −0.0478052 0.147129i
\(95\) −5.35695 3.89205i −0.549611 0.399316i
\(96\) 2.05435 1.49258i 0.209672 0.152335i
\(97\) −0.213537 + 0.657198i −0.0216814 + 0.0667284i −0.961312 0.275463i \(-0.911169\pi\)
0.939630 + 0.342191i \(0.111169\pi\)
\(98\) 1.00000 0.101015
\(99\) −7.89671 8.27219i −0.793649 0.831386i
\(100\) 1.00000 0.100000
\(101\) 4.51753 13.9035i 0.449511 1.38345i −0.427949 0.903803i \(-0.640764\pi\)
0.877460 0.479649i \(-0.159236\pi\)
\(102\) −14.0688 + 10.2216i −1.39302 + 1.01209i
\(103\) −0.868543 0.631033i −0.0855800 0.0621775i 0.544172 0.838973i \(-0.316844\pi\)
−0.629753 + 0.776796i \(0.716844\pi\)
\(104\) −1.27148 3.91321i −0.124679 0.383722i
\(105\) −0.784693 2.41504i −0.0765782 0.235684i
\(106\) 9.00539 + 6.54280i 0.874680 + 0.635493i
\(107\) 15.2727 11.0963i 1.47647 1.07272i 0.497793 0.867296i \(-0.334144\pi\)
0.978674 0.205420i \(-0.0658559\pi\)
\(108\) −0.351660 + 1.08230i −0.0338385 + 0.104144i
\(109\) 4.22315 0.404504 0.202252 0.979333i \(-0.435174\pi\)
0.202252 + 0.979333i \(0.435174\pi\)
\(110\) −1.57392 + 2.91938i −0.150067 + 0.278352i
\(111\) 19.7692 1.87641
\(112\) −0.309017 + 0.951057i −0.0291994 + 0.0898664i
\(113\) −5.95877 + 4.32930i −0.560554 + 0.407267i −0.831662 0.555283i \(-0.812610\pi\)
0.271107 + 0.962549i \(0.412610\pi\)
\(114\) −13.6030 9.88317i −1.27404 0.925643i
\(115\) 0.969934 + 2.98515i 0.0904468 + 0.278367i
\(116\) 1.69824 + 5.22664i 0.157677 + 0.485281i
\(117\) 11.4781 + 8.33934i 1.06115 + 0.770972i
\(118\) 6.00637 4.36389i 0.552931 0.401728i
\(119\) 2.11624 6.51311i 0.193995 0.597056i
\(120\) 2.53932 0.231807
\(121\) −6.04558 9.18972i −0.549598 0.835429i
\(122\) −2.28166 −0.206572
\(123\) −2.28154 + 7.02185i −0.205719 + 0.633139i
\(124\) 4.50953 3.27637i 0.404968 0.294226i
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) −1.06554 3.27939i −0.0949256 0.292151i
\(127\) −4.63622 14.2688i −0.411398 1.26615i −0.915433 0.402470i \(-0.868152\pi\)
0.504035 0.863683i \(-0.331848\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) 6.64541 4.82817i 0.585096 0.425097i
\(130\) 1.27148 3.91321i 0.111516 0.343211i
\(131\) −6.77296 −0.591757 −0.295878 0.955226i \(-0.595612\pi\)
−0.295878 + 0.955226i \(0.595612\pi\)
\(132\) −3.99668 + 7.41325i −0.347866 + 0.645240i
\(133\) 6.62155 0.574161
\(134\) 4.38707 13.5020i 0.378986 1.16640i
\(135\) −0.920658 + 0.668897i −0.0792376 + 0.0575695i
\(136\) 5.54038 + 4.02533i 0.475084 + 0.345169i
\(137\) −2.82781 8.70311i −0.241596 0.743557i −0.996178 0.0873506i \(-0.972160\pi\)
0.754581 0.656207i \(-0.227840\pi\)
\(138\) 2.46297 + 7.58025i 0.209662 + 0.645274i
\(139\) −12.8740 9.35348i −1.09195 0.793352i −0.112227 0.993683i \(-0.535798\pi\)
−0.979728 + 0.200331i \(0.935798\pi\)
\(140\) −0.809017 + 0.587785i −0.0683744 + 0.0496769i
\(141\) 1.17695 3.62227i 0.0991167 0.305050i
\(142\) 0.0608812 0.00510903
\(143\) 9.42295 + 9.87100i 0.787987 + 0.825454i
\(144\) 3.44815 0.287346
\(145\) −1.69824 + 5.22664i −0.141031 + 0.434049i
\(146\) 3.16555 2.29991i 0.261983 0.190342i
\(147\) 2.05435 + 1.49258i 0.169440 + 0.123106i
\(148\) −2.40577 7.40419i −0.197753 0.608621i
\(149\) 2.97604 + 9.15932i 0.243807 + 0.750361i 0.995830 + 0.0912245i \(0.0290781\pi\)
−0.752023 + 0.659137i \(0.770922\pi\)
\(150\) 2.05435 + 1.49258i 0.167737 + 0.121868i
\(151\) −16.4670 + 11.9640i −1.34006 + 0.973613i −0.340622 + 0.940200i \(0.610638\pi\)
−0.999442 + 0.0334132i \(0.989362\pi\)
\(152\) −2.04617 + 6.29747i −0.165966 + 0.510792i
\(153\) −23.6139 −1.90907
\(154\) −0.442644 3.28695i −0.0356693 0.264870i
\(155\) 5.57409 0.447721
\(156\) 3.22869 9.93689i 0.258502 0.795588i
\(157\) 4.86753 3.53647i 0.388472 0.282241i −0.376357 0.926475i \(-0.622823\pi\)
0.764829 + 0.644233i \(0.222823\pi\)
\(158\) 3.43009 + 2.49211i 0.272884 + 0.198261i
\(159\) 8.73463 + 26.8824i 0.692701 + 2.13192i
\(160\) −0.309017 0.951057i −0.0244299 0.0751876i
\(161\) −2.53932 1.84492i −0.200127 0.145400i
\(162\) 6.03099 4.38177i 0.473839 0.344264i
\(163\) −2.66203 + 8.19288i −0.208506 + 0.641716i 0.791045 + 0.611758i \(0.209537\pi\)
−0.999551 + 0.0299581i \(0.990463\pi\)
\(164\) 2.90755 0.227042
\(165\) −7.59078 + 3.64825i −0.590941 + 0.284016i
\(166\) 10.2468 0.795303
\(167\) −2.78607 + 8.57463i −0.215592 + 0.663525i 0.783519 + 0.621368i \(0.213423\pi\)
−0.999111 + 0.0421565i \(0.986577\pi\)
\(168\) −2.05435 + 1.49258i −0.158497 + 0.115155i
\(169\) −3.17933 2.30992i −0.244564 0.177686i
\(170\) 2.11624 + 6.51311i 0.162308 + 0.499533i
\(171\) −7.05551 21.7146i −0.539548 1.66056i
\(172\) −2.61700 1.90136i −0.199545 0.144978i
\(173\) 10.4677 7.60521i 0.795842 0.578213i −0.113849 0.993498i \(-0.536318\pi\)
0.909691 + 0.415285i \(0.136318\pi\)
\(174\) −4.31237 + 13.2721i −0.326920 + 1.00616i
\(175\) −1.00000 −0.0755929
\(176\) 3.26286 + 0.594745i 0.245948 + 0.0448306i
\(177\) 18.8526 1.41705
\(178\) −2.02219 + 6.22365i −0.151569 + 0.466483i
\(179\) −12.7503 + 9.26363i −0.953002 + 0.692396i −0.951515 0.307603i \(-0.900473\pi\)
−0.00148685 + 0.999999i \(0.500473\pi\)
\(180\) 2.78961 + 2.02677i 0.207925 + 0.151067i
\(181\) −4.51455 13.8943i −0.335564 1.03276i −0.966444 0.256878i \(-0.917306\pi\)
0.630880 0.775880i \(-0.282694\pi\)
\(182\) 1.27148 + 3.91321i 0.0942483 + 0.290066i
\(183\) −4.68734 3.40555i −0.346498 0.251746i
\(184\) 2.53932 1.84492i 0.187201 0.136010i
\(185\) 2.40577 7.40419i 0.176876 0.544367i
\(186\) 14.1544 1.03785
\(187\) −22.3450 4.07299i −1.63403 0.297846i
\(188\) −1.49988 −0.109390
\(189\) 0.351660 1.08230i 0.0255795 0.0787256i
\(190\) −5.35695 + 3.89205i −0.388634 + 0.282359i
\(191\) 14.5352 + 10.5604i 1.05173 + 0.764125i 0.972540 0.232734i \(-0.0747673\pi\)
0.0791880 + 0.996860i \(0.474767\pi\)
\(192\) −0.784693 2.41504i −0.0566304 0.174290i
\(193\) 7.36017 + 22.6523i 0.529797 + 1.63055i 0.754630 + 0.656150i \(0.227816\pi\)
−0.224833 + 0.974397i \(0.572184\pi\)
\(194\) 0.559046 + 0.406171i 0.0401372 + 0.0291614i
\(195\) 8.45283 6.14134i 0.605320 0.439790i
\(196\) 0.309017 0.951057i 0.0220726 0.0679326i
\(197\) −1.85551 −0.132200 −0.0660998 0.997813i \(-0.521056\pi\)
−0.0660998 + 0.997813i \(0.521056\pi\)
\(198\) −10.3075 + 4.95397i −0.732525 + 0.352063i
\(199\) 21.8206 1.54682 0.773411 0.633905i \(-0.218549\pi\)
0.773411 + 0.633905i \(0.218549\pi\)
\(200\) 0.309017 0.951057i 0.0218508 0.0672499i
\(201\) 29.1654 21.1899i 2.05717 1.49462i
\(202\) −11.8270 8.59285i −0.832148 0.604591i
\(203\) −1.69824 5.22664i −0.119193 0.366838i
\(204\) 5.37381 + 16.5389i 0.376242 + 1.15795i
\(205\) 2.35226 + 1.70902i 0.164289 + 0.119363i
\(206\) −0.868543 + 0.631033i −0.0605142 + 0.0439662i
\(207\) −3.34448 + 10.2932i −0.232457 + 0.715430i
\(208\) −4.11459 −0.285296
\(209\) −2.93099 21.7647i −0.202741 1.50550i
\(210\) −2.53932 −0.175230
\(211\) −8.21125 + 25.2716i −0.565286 + 1.73977i 0.101816 + 0.994803i \(0.467535\pi\)
−0.667102 + 0.744967i \(0.732465\pi\)
\(212\) 9.00539 6.54280i 0.618492 0.449361i
\(213\) 0.125071 + 0.0908697i 0.00856975 + 0.00622629i
\(214\) −5.83365 17.9541i −0.398780 1.22732i
\(215\) −0.999606 3.07647i −0.0681726 0.209814i
\(216\) 0.920658 + 0.668897i 0.0626428 + 0.0455127i
\(217\) −4.50953 + 3.27637i −0.306127 + 0.222414i
\(218\) 1.30502 4.01645i 0.0883874 0.272029i
\(219\) 9.93595 0.671409
\(220\) 2.29013 + 2.39902i 0.154401 + 0.161742i
\(221\) 28.1779 1.89545
\(222\) 6.10901 18.8016i 0.410010 1.26188i
\(223\) 8.00306 5.81457i 0.535925 0.389372i −0.286645 0.958037i \(-0.592540\pi\)
0.822569 + 0.568665i \(0.192540\pi\)
\(224\) 0.809017 + 0.587785i 0.0540547 + 0.0392731i
\(225\) 1.06554 + 3.27939i 0.0710358 + 0.218626i
\(226\) 2.27605 + 7.00496i 0.151401 + 0.465963i
\(227\) −11.2696 8.18782i −0.747987 0.543445i 0.147215 0.989105i \(-0.452969\pi\)
−0.895202 + 0.445660i \(0.852969\pi\)
\(228\) −13.6030 + 9.88317i −0.900881 + 0.654529i
\(229\) −3.14980 + 9.69409i −0.208145 + 0.640604i 0.791425 + 0.611266i \(0.209340\pi\)
−0.999570 + 0.0293371i \(0.990660\pi\)
\(230\) 3.13877 0.206965
\(231\) 3.99668 7.41325i 0.262962 0.487756i
\(232\) 5.49561 0.360805
\(233\) −4.08277 + 12.5655i −0.267471 + 0.823191i 0.723643 + 0.690175i \(0.242466\pi\)
−0.991114 + 0.133016i \(0.957534\pi\)
\(234\) 11.4781 8.33934i 0.750348 0.545160i
\(235\) −1.21343 0.881607i −0.0791553 0.0575097i
\(236\) −2.29423 7.06091i −0.149342 0.459626i
\(237\) 3.32696 + 10.2393i 0.216110 + 0.665117i
\(238\) −5.54038 4.02533i −0.359130 0.260923i
\(239\) −4.12702 + 2.99846i −0.266955 + 0.193954i −0.713208 0.700953i \(-0.752758\pi\)
0.446253 + 0.894907i \(0.352758\pi\)
\(240\) 0.784693 2.41504i 0.0506517 0.155890i
\(241\) 24.0075 1.54646 0.773229 0.634127i \(-0.218640\pi\)
0.773229 + 0.634127i \(0.218640\pi\)
\(242\) −10.6081 + 2.90990i −0.681917 + 0.187056i
\(243\) 22.3439 1.43336
\(244\) −0.705073 + 2.16999i −0.0451377 + 0.138919i
\(245\) 0.809017 0.587785i 0.0516862 0.0375522i
\(246\) 5.97314 + 4.33974i 0.380834 + 0.276692i
\(247\) 8.41916 + 25.9115i 0.535699 + 1.64871i
\(248\) −1.72249 5.30127i −0.109378 0.336631i
\(249\) 21.0505 + 15.2941i 1.33402 + 0.969222i
\(250\) 0.809017 0.587785i 0.0511667 0.0371748i
\(251\) 4.78873 14.7382i 0.302262 0.930267i −0.678423 0.734672i \(-0.737336\pi\)
0.980685 0.195595i \(-0.0626638\pi\)
\(252\) −3.44815 −0.217213
\(253\) −4.94017 + 9.16328i −0.310586 + 0.576090i
\(254\) −15.0031 −0.941380
\(255\) −5.37381 + 16.5389i −0.336521 + 1.03571i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 3.33705 + 2.42451i 0.208159 + 0.151237i 0.686980 0.726676i \(-0.258936\pi\)
−0.478821 + 0.877912i \(0.658936\pi\)
\(258\) −2.53832 7.81215i −0.158029 0.486363i
\(259\) 2.40577 + 7.40419i 0.149487 + 0.460074i
\(260\) −3.32878 2.41850i −0.206442 0.149989i
\(261\) −15.3306 + 11.1384i −0.948942 + 0.689447i
\(262\) −2.09296 + 6.44147i −0.129304 + 0.397955i
\(263\) 0.308382 0.0190156 0.00950781 0.999955i \(-0.496974\pi\)
0.00950781 + 0.999955i \(0.496974\pi\)
\(264\) 5.81537 + 6.09189i 0.357912 + 0.374930i
\(265\) 11.1313 0.683788
\(266\) 2.04617 6.29747i 0.125459 0.386123i
\(267\) −13.4436 + 9.76732i −0.822733 + 0.597750i
\(268\) −11.4855 8.34471i −0.701589 0.509734i
\(269\) −5.29707 16.3027i −0.322968 0.993993i −0.972350 0.233530i \(-0.924972\pi\)
0.649382 0.760463i \(-0.275028\pi\)
\(270\) 0.351660 + 1.08230i 0.0214013 + 0.0658666i
\(271\) −21.5407 15.6502i −1.30850 0.950684i −0.308505 0.951223i \(-0.599829\pi\)
−1.00000 0.000538195i \(0.999829\pi\)
\(272\) 5.54038 4.02533i 0.335935 0.244071i
\(273\) −3.22869 + 9.93689i −0.195409 + 0.601408i
\(274\) −9.15100 −0.552832
\(275\) 0.442644 + 3.28695i 0.0266925 + 0.198211i
\(276\) 7.97035 0.479759
\(277\) −4.85556 + 14.9439i −0.291742 + 0.897891i 0.692554 + 0.721366i \(0.256485\pi\)
−0.984296 + 0.176525i \(0.943515\pi\)
\(278\) −12.8740 + 9.35348i −0.772129 + 0.560984i
\(279\) 15.5495 + 11.2974i 0.930927 + 0.676358i
\(280\) 0.309017 + 0.951057i 0.0184673 + 0.0568365i
\(281\) −5.38747 16.5809i −0.321390 0.989136i −0.973044 0.230620i \(-0.925925\pi\)
0.651654 0.758516i \(-0.274075\pi\)
\(282\) −3.08128 2.23868i −0.183488 0.133312i
\(283\) −12.1510 + 8.82821i −0.722302 + 0.524783i −0.887119 0.461541i \(-0.847297\pi\)
0.164817 + 0.986324i \(0.447297\pi\)
\(284\) 0.0188133 0.0579014i 0.00111636 0.00343582i
\(285\) −16.8142 −0.995990
\(286\) 12.2997 5.91145i 0.727298 0.349552i
\(287\) −2.90755 −0.171627
\(288\) 1.06554 3.27939i 0.0627874 0.193240i
\(289\) −24.1889 + 17.5743i −1.42288 + 1.03378i
\(290\) 4.44605 + 3.23024i 0.261081 + 0.189686i
\(291\) 0.542238 + 1.66884i 0.0317866 + 0.0978290i
\(292\) −1.20913 3.72133i −0.0707592 0.217774i
\(293\) −6.07302 4.41231i −0.354790 0.257770i 0.396086 0.918213i \(-0.370368\pi\)
−0.750876 + 0.660444i \(0.770368\pi\)
\(294\) 2.05435 1.49258i 0.119812 0.0870488i
\(295\) 2.29423 7.06091i 0.133575 0.411102i
\(296\) −7.78523 −0.452507
\(297\) −3.71312 0.676817i −0.215457 0.0392729i
\(298\) 9.63068 0.557891
\(299\) 3.99088 12.2827i 0.230799 0.710326i
\(300\) 2.05435 1.49258i 0.118608 0.0861739i
\(301\) 2.61700 + 1.90136i 0.150842 + 0.109593i
\(302\) 6.28983 + 19.3581i 0.361939 + 1.11393i
\(303\) −11.4715 35.3055i −0.659018 2.02825i
\(304\) 5.35695 + 3.89205i 0.307242 + 0.223224i
\(305\) −1.84590 + 1.34113i −0.105696 + 0.0767928i
\(306\) −7.29711 + 22.4582i −0.417148 + 1.28385i
\(307\) −5.08116 −0.289997 −0.144998 0.989432i \(-0.546318\pi\)
−0.144998 + 0.989432i \(0.546318\pi\)
\(308\) −3.26286 0.594745i −0.185919 0.0338887i
\(309\) −2.72616 −0.155086
\(310\) 1.72249 5.30127i 0.0978307 0.301092i
\(311\) −8.77265 + 6.37370i −0.497451 + 0.361420i −0.808043 0.589124i \(-0.799473\pi\)
0.310591 + 0.950544i \(0.399473\pi\)
\(312\) −8.45283 6.14134i −0.478547 0.347685i
\(313\) 10.3225 + 31.7695i 0.583463 + 1.79572i 0.605356 + 0.795955i \(0.293031\pi\)
−0.0218922 + 0.999760i \(0.506969\pi\)
\(314\) −1.85923 5.72213i −0.104923 0.322918i
\(315\) −2.78961 2.02677i −0.157177 0.114196i
\(316\) 3.43009 2.49211i 0.192958 0.140192i
\(317\) −8.55999 + 26.3450i −0.480777 + 1.47968i 0.357228 + 0.934017i \(0.383722\pi\)
−0.838005 + 0.545663i \(0.816278\pi\)
\(318\) 28.2659 1.58507
\(319\) −16.4280 + 7.89557i −0.919792 + 0.442067i
\(320\) −1.00000 −0.0559017
\(321\) 14.8135 45.5913i 0.826809 2.54466i
\(322\) −2.53932 + 1.84492i −0.141511 + 0.102814i
\(323\) −36.6860 26.6539i −2.04126 1.48306i
\(324\) −2.30363 7.08985i −0.127980 0.393881i
\(325\) −1.27148 3.91321i −0.0705290 0.217066i
\(326\) 6.96928 + 5.06348i 0.385993 + 0.280440i
\(327\) 8.67584 6.30337i 0.479775 0.348577i
\(328\) 0.898483 2.76525i 0.0496105 0.152685i
\(329\) 1.49988 0.0826911
\(330\) 1.12402 + 8.34663i 0.0618751 + 0.459467i
\(331\) −28.8317 −1.58473 −0.792367 0.610045i \(-0.791152\pi\)
−0.792367 + 0.610045i \(0.791152\pi\)
\(332\) 3.16642 9.74525i 0.173780 0.534840i
\(333\) 21.7178 15.7789i 1.19013 0.864677i
\(334\) 7.29401 + 5.29941i 0.399111 + 0.289971i
\(335\) −4.38707 13.5020i −0.239691 0.737695i
\(336\) 0.784693 + 2.41504i 0.0428085 + 0.131751i
\(337\) 13.7314 + 9.97646i 0.747998 + 0.543453i 0.895206 0.445653i \(-0.147028\pi\)
−0.147207 + 0.989106i \(0.547028\pi\)
\(338\) −3.17933 + 2.30992i −0.172933 + 0.125643i
\(339\) −5.77962 + 17.7878i −0.313906 + 0.966103i
\(340\) 6.84829 0.371401
\(341\) 12.7654 + 13.3724i 0.691284 + 0.724154i
\(342\) −22.8321 −1.23462
\(343\) −0.309017 + 0.951057i −0.0166853 + 0.0513522i
\(344\) −2.61700 + 1.90136i −0.141099 + 0.102515i
\(345\) 6.44815 + 4.68485i 0.347157 + 0.252224i
\(346\) −3.99829 12.3055i −0.214950 0.661547i
\(347\) 7.05990 + 21.7281i 0.378995 + 1.16643i 0.940744 + 0.339119i \(0.110129\pi\)
−0.561749 + 0.827308i \(0.689871\pi\)
\(348\) 11.2899 + 8.20262i 0.605204 + 0.439707i
\(349\) 12.2502 8.90032i 0.655741 0.476423i −0.209481 0.977813i \(-0.567178\pi\)
0.865222 + 0.501389i \(0.167178\pi\)
\(350\) −0.309017 + 0.951057i −0.0165177 + 0.0508361i
\(351\) 4.68239 0.249927
\(352\) 1.57392 2.91938i 0.0838900 0.155604i
\(353\) −9.01014 −0.479561 −0.239781 0.970827i \(-0.577076\pi\)
−0.239781 + 0.970827i \(0.577076\pi\)
\(354\) 5.82579 17.9299i 0.309637 0.952965i
\(355\) 0.0492539 0.0357850i 0.00261412 0.00189927i
\(356\) 5.29416 + 3.84643i 0.280590 + 0.203860i
\(357\) −5.37381 16.5389i −0.284412 0.875330i
\(358\) 4.87018 + 14.9889i 0.257397 + 0.792186i
\(359\) −29.8470 21.6851i −1.57526 1.14450i −0.921886 0.387462i \(-0.873352\pi\)
−0.653377 0.757033i \(-0.726648\pi\)
\(360\) 2.78961 2.02677i 0.147025 0.106820i
\(361\) 7.67751 23.6290i 0.404080 1.24363i
\(362\) −14.6094 −0.767852
\(363\) −26.1361 9.85546i −1.37179 0.517278i
\(364\) 4.11459 0.215663
\(365\) 1.20913 3.72133i 0.0632889 0.194783i
\(366\) −4.68734 + 3.40555i −0.245011 + 0.178011i
\(367\) −27.9176 20.2834i −1.45729 1.05878i −0.984059 0.177844i \(-0.943088\pi\)
−0.473230 0.880939i \(-0.656912\pi\)
\(368\) −0.969934 2.98515i −0.0505613 0.155612i
\(369\) 3.09811 + 9.53499i 0.161281 + 0.496372i
\(370\) −6.29838 4.57604i −0.327437 0.237897i
\(371\) −9.00539 + 6.54280i −0.467536 + 0.339685i
\(372\) 4.37395 13.4616i 0.226779 0.697953i
\(373\) 2.31601 0.119918 0.0599592 0.998201i \(-0.480903\pi\)
0.0599592 + 0.998201i \(0.480903\pi\)
\(374\) −10.7786 + 19.9928i −0.557350 + 1.03380i
\(375\) 2.53932 0.131130
\(376\) −0.463488 + 1.42647i −0.0239026 + 0.0735646i
\(377\) 18.2937 13.2911i 0.942172 0.684528i
\(378\) −0.920658 0.668897i −0.0473535 0.0344043i
\(379\) −2.44863 7.53611i −0.125778 0.387104i 0.868264 0.496102i \(-0.165236\pi\)
−0.994042 + 0.108998i \(0.965236\pi\)
\(380\) 2.04617 + 6.29747i 0.104966 + 0.323053i
\(381\) −30.8217 22.3933i −1.57904 1.14724i
\(382\) 14.5352 10.5604i 0.743684 0.540318i
\(383\) 5.93452 18.2646i 0.303240 0.933275i −0.677089 0.735901i \(-0.736759\pi\)
0.980328 0.197374i \(-0.0632413\pi\)
\(384\) −2.53932 −0.129584
\(385\) −2.29013 2.39902i −0.116716 0.122265i
\(386\) 23.8180 1.21231
\(387\) 3.44679 10.6081i 0.175210 0.539242i
\(388\) 0.559046 0.406171i 0.0283813 0.0206202i
\(389\) 6.19652 + 4.50204i 0.314176 + 0.228262i 0.733686 0.679488i \(-0.237798\pi\)
−0.419510 + 0.907751i \(0.637798\pi\)
\(390\) −3.22869 9.93689i −0.163491 0.503174i
\(391\) 6.64239 + 20.4432i 0.335920 + 1.03386i
\(392\) −0.809017 0.587785i −0.0408615 0.0296876i
\(393\) −13.9141 + 10.1092i −0.701872 + 0.509940i
\(394\) −0.573384 + 1.76470i −0.0288867 + 0.0889041i
\(395\) 4.23983 0.213329
\(396\) 1.52630 + 11.3339i 0.0766997 + 0.569550i
\(397\) −20.0239 −1.00497 −0.502486 0.864585i \(-0.667581\pi\)
−0.502486 + 0.864585i \(0.667581\pi\)
\(398\) 6.74294 20.7526i 0.337993 1.04024i
\(399\) 13.6030 9.88317i 0.681002 0.494777i
\(400\) −0.809017 0.587785i −0.0404508 0.0293893i
\(401\) 6.41401 + 19.7403i 0.320301 + 0.985784i 0.973517 + 0.228613i \(0.0734190\pi\)
−0.653217 + 0.757171i \(0.726581\pi\)
\(402\) −11.1402 34.2860i −0.555622 1.71003i
\(403\) −18.5549 13.4809i −0.924285 0.671532i
\(404\) −11.8270 + 8.59285i −0.588417 + 0.427510i
\(405\) 2.30363 7.08985i 0.114468 0.352298i
\(406\) −5.49561 −0.272743
\(407\) 23.2723 11.1851i 1.15357 0.554423i
\(408\) 17.3900 0.860934
\(409\) 10.1528 31.2472i 0.502026 1.54508i −0.303688 0.952772i \(-0.598218\pi\)
0.805714 0.592305i \(-0.201782\pi\)
\(410\) 2.35226 1.70902i 0.116170 0.0844023i
\(411\) −18.7994 13.6586i −0.927305 0.673727i
\(412\) 0.331754 + 1.02103i 0.0163443 + 0.0503027i
\(413\) 2.29423 + 7.06091i 0.112892 + 0.347445i
\(414\) 8.75596 + 6.36158i 0.430332 + 0.312654i
\(415\) 8.28981 6.02290i 0.406931 0.295652i
\(416\) −1.27148 + 3.91321i −0.0623394 + 0.191861i
\(417\) −40.4084 −1.97881
\(418\) −21.6052 3.93813i −1.05675 0.192620i
\(419\) −16.3625 −0.799361 −0.399680 0.916655i \(-0.630879\pi\)
−0.399680 + 0.916655i \(0.630879\pi\)
\(420\) −0.784693 + 2.41504i −0.0382891 + 0.117842i
\(421\) −21.0726 + 15.3102i −1.02702 + 0.746171i −0.967709 0.252069i \(-0.918889\pi\)
−0.0593072 + 0.998240i \(0.518889\pi\)
\(422\) 21.4973 + 15.6187i 1.04647 + 0.760307i
\(423\) −1.59818 4.91868i −0.0777060 0.239155i
\(424\) −3.43975 10.5865i −0.167049 0.514124i
\(425\) 5.54038 + 4.02533i 0.268748 + 0.195257i
\(426\) 0.125071 0.0908697i 0.00605973 0.00440265i
\(427\) 0.705073 2.16999i 0.0341209 0.105013i
\(428\) −18.8781 −0.912507
\(429\) 34.0913 + 6.21405i 1.64594 + 0.300017i
\(430\) −3.23479 −0.155996
\(431\) 5.64188 17.3639i 0.271760 0.836390i −0.718299 0.695735i \(-0.755079\pi\)
0.990059 0.140656i \(-0.0449211\pi\)
\(432\) 0.920658 0.668897i 0.0442952 0.0321823i
\(433\) −26.3818 19.1675i −1.26783 0.921130i −0.268713 0.963220i \(-0.586598\pi\)
−0.999114 + 0.0420905i \(0.986598\pi\)
\(434\) 1.72249 + 5.30127i 0.0826821 + 0.254469i
\(435\) 4.31237 + 13.2721i 0.206762 + 0.636349i
\(436\) −3.41660 2.48230i −0.163625 0.118881i
\(437\) −16.8142 + 12.2163i −0.804334 + 0.584383i
\(438\) 3.07038 9.44965i 0.146708 0.451522i
\(439\) −29.2540 −1.39622 −0.698108 0.715993i \(-0.745974\pi\)
−0.698108 + 0.715993i \(0.745974\pi\)
\(440\) 2.98929 1.43670i 0.142509 0.0684922i
\(441\) 3.44815 0.164198
\(442\) 8.70746 26.7988i 0.414172 1.27469i
\(443\) −9.23016 + 6.70611i −0.438538 + 0.318617i −0.785054 0.619427i \(-0.787365\pi\)
0.346516 + 0.938044i \(0.387365\pi\)
\(444\) −15.9936 11.6200i −0.759023 0.551462i
\(445\) 2.02219 + 6.22365i 0.0958609 + 0.295029i
\(446\) −3.05690 9.40817i −0.144748 0.445490i
\(447\) 19.7848 + 14.3745i 0.935790 + 0.679891i
\(448\) 0.809017 0.587785i 0.0382225 0.0277702i
\(449\) 4.21238 12.9644i 0.198794 0.611826i −0.801117 0.598508i \(-0.795760\pi\)
0.999911 0.0133185i \(-0.00423952\pi\)
\(450\) 3.44815 0.162547
\(451\) 1.28701 + 9.55699i 0.0606031 + 0.450021i
\(452\) 7.36545 0.346442
\(453\) −15.9719 + 49.1564i −0.750425 + 2.30957i
\(454\) −11.2696 + 8.18782i −0.528907 + 0.384273i
\(455\) 3.32878 + 2.41850i 0.156055 + 0.113381i
\(456\) 5.19589 + 15.9913i 0.243320 + 0.748861i
\(457\) −2.05915 6.33743i −0.0963232 0.296452i 0.891273 0.453467i \(-0.149813\pi\)
−0.987596 + 0.157015i \(0.949813\pi\)
\(458\) 8.24629 + 5.99128i 0.385324 + 0.279954i
\(459\) −6.30493 + 4.58080i −0.294289 + 0.213814i
\(460\) 0.969934 2.98515i 0.0452234 0.139183i
\(461\) 18.1977 0.847553 0.423776 0.905767i \(-0.360704\pi\)
0.423776 + 0.905767i \(0.360704\pi\)
\(462\) −5.81537 6.09189i −0.270556 0.283420i
\(463\) 11.3971 0.529666 0.264833 0.964294i \(-0.414683\pi\)
0.264833 + 0.964294i \(0.414683\pi\)
\(464\) 1.69824 5.22664i 0.0788387 0.242641i
\(465\) 11.4511 8.31975i 0.531034 0.385819i
\(466\) 10.6888 + 7.76588i 0.495150 + 0.359748i
\(467\) 7.10101 + 21.8547i 0.328595 + 1.01131i 0.969791 + 0.243936i \(0.0784386\pi\)
−0.641196 + 0.767377i \(0.721561\pi\)
\(468\) −4.38425 13.4933i −0.202662 0.623730i
\(469\) 11.4855 + 8.34471i 0.530352 + 0.385323i
\(470\) −1.21343 + 0.881607i −0.0559713 + 0.0406655i
\(471\) 4.72119 14.5303i 0.217541 0.669522i
\(472\) −7.42428 −0.341730
\(473\) 5.09129 9.44359i 0.234098 0.434217i
\(474\) 10.7663 0.494512
\(475\) −2.04617 + 6.29747i −0.0938848 + 0.288948i
\(476\) −5.54038 + 4.02533i −0.253943 + 0.184500i
\(477\) 31.0519 + 22.5605i 1.42177 + 1.03298i
\(478\) 1.57638 + 4.85161i 0.0721021 + 0.221907i
\(479\) 0.422409 + 1.30004i 0.0193004 + 0.0594004i 0.960243 0.279166i \(-0.0900580\pi\)
−0.940942 + 0.338566i \(0.890058\pi\)
\(480\) −2.05435 1.49258i −0.0937680 0.0681264i
\(481\) −25.9153 + 18.8285i −1.18163 + 0.858508i
\(482\) 7.41872 22.8325i 0.337913 1.03999i
\(483\) −7.97035 −0.362664
\(484\) −0.510610 + 10.9881i −0.0232095 + 0.499461i
\(485\) 0.691019 0.0313776
\(486\) 6.90464 21.2503i 0.313201 0.963933i
\(487\) 9.87790 7.17671i 0.447610 0.325208i −0.341041 0.940048i \(-0.610780\pi\)
0.788651 + 0.614840i \(0.210780\pi\)
\(488\) 1.84590 + 1.34113i 0.0835602 + 0.0607100i
\(489\) 6.75975 + 20.8044i 0.305686 + 0.940806i
\(490\) −0.309017 0.951057i −0.0139600 0.0429644i
\(491\) −32.2431 23.4260i −1.45511 1.05720i −0.984604 0.174802i \(-0.944072\pi\)
−0.470506 0.882397i \(-0.655928\pi\)
\(492\) 5.97314 4.33974i 0.269290 0.195651i
\(493\) −11.6300 + 35.7936i −0.523790 + 1.61206i
\(494\) 27.2450 1.22581
\(495\) −5.42710 + 10.0665i −0.243930 + 0.452454i
\(496\) −5.57409 −0.250284
\(497\) −0.0188133 + 0.0579014i −0.000843892 + 0.00259723i
\(498\) 21.0505 15.2941i 0.943294 0.685343i
\(499\) −29.7318 21.6014i −1.33098 0.967011i −0.999725 0.0234691i \(-0.992529\pi\)
−0.331252 0.943542i \(-0.607471\pi\)
\(500\) −0.309017 0.951057i −0.0138197 0.0425325i
\(501\) 7.07471 + 21.7737i 0.316075 + 0.972778i
\(502\) −12.5371 9.10870i −0.559556 0.406541i
\(503\) −9.69056 + 7.04060i −0.432081 + 0.313925i −0.782480 0.622675i \(-0.786046\pi\)
0.350400 + 0.936600i \(0.386046\pi\)
\(504\) −1.06554 + 3.27939i −0.0474628 + 0.146075i
\(505\) −14.6190 −0.650538
\(506\) 7.18820 + 7.52998i 0.319554 + 0.334749i
\(507\) −9.97920 −0.443192
\(508\) −4.63622 + 14.2688i −0.205699 + 0.633077i
\(509\) 19.1420 13.9075i 0.848455 0.616438i −0.0762649 0.997088i \(-0.524299\pi\)
0.924720 + 0.380649i \(0.124299\pi\)
\(510\) 14.0688 + 10.2216i 0.622978 + 0.452620i
\(511\) 1.20913 + 3.72133i 0.0534889 + 0.164622i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) −6.09618 4.42914i −0.269153 0.195551i
\(514\) 3.33705 2.42451i 0.147191 0.106940i
\(515\) −0.331754 + 1.02103i −0.0146188 + 0.0449921i
\(516\) −8.21418 −0.361609
\(517\) −0.663914 4.93004i −0.0291989 0.216823i
\(518\) 7.78523 0.342063
\(519\) 10.1530 31.2476i 0.445665 1.37162i
\(520\) −3.32878 + 2.41850i −0.145976 + 0.106058i
\(521\) 7.60910 + 5.52834i 0.333361 + 0.242201i 0.741855 0.670560i \(-0.233946\pi\)
−0.408494 + 0.912761i \(0.633946\pi\)
\(522\) 5.85578 + 18.0222i 0.256301 + 0.788812i
\(523\) −8.80500 27.0990i −0.385016 1.18496i −0.936469 0.350751i \(-0.885926\pi\)
0.551453 0.834206i \(-0.314074\pi\)
\(524\) 5.47944 + 3.98105i 0.239371 + 0.173913i
\(525\) −2.05435 + 1.49258i −0.0896593 + 0.0651413i
\(526\) 0.0952951 0.293288i 0.00415507 0.0127880i
\(527\) 38.1730 1.66284
\(528\) 7.59078 3.64825i 0.330346 0.158770i
\(529\) −13.1481 −0.571657
\(530\) 3.43975 10.5865i 0.149413 0.459847i
\(531\) 20.7109 15.0473i 0.898775 0.652998i
\(532\) −5.35695 3.89205i −0.232253 0.168742i
\(533\) −3.69689 11.3779i −0.160130 0.492830i
\(534\) 5.13498 + 15.8039i 0.222212 + 0.683900i
\(535\) −15.2727 11.0963i −0.660296 0.479733i
\(536\) −11.4855 + 8.34471i −0.496098 + 0.360437i
\(537\) −12.3669 + 38.0615i −0.533673 + 1.64248i
\(538\) −17.1417 −0.739030
\(539\) 3.26286 + 0.594745i 0.140541 + 0.0256175i
\(540\) 1.13800 0.0489715
\(541\) −0.740741 + 2.27977i −0.0318469 + 0.0980148i −0.965716 0.259599i \(-0.916410\pi\)
0.933870 + 0.357614i \(0.116410\pi\)
\(542\) −21.5407 + 15.6502i −0.925253 + 0.672235i
\(543\) −30.0128 21.8056i −1.28797 0.935768i
\(544\) −2.11624 6.51311i −0.0907330 0.279247i
\(545\) −1.30502 4.01645i −0.0559011 0.172046i
\(546\) 8.45283 + 6.14134i 0.361748 + 0.262825i
\(547\) −10.5441 + 7.66073i −0.450832 + 0.327549i −0.789924 0.613204i \(-0.789880\pi\)
0.339092 + 0.940753i \(0.389880\pi\)
\(548\) −2.82781 + 8.70311i −0.120798 + 0.371779i
\(549\) −7.86752 −0.335777
\(550\) 3.26286 + 0.594745i 0.139129 + 0.0253600i
\(551\) −36.3895 −1.55024
\(552\) 2.46297 7.58025i 0.104831 0.322637i
\(553\) −3.43009 + 2.49211i −0.145862 + 0.105975i
\(554\) 12.7120 + 9.23583i 0.540082 + 0.392393i
\(555\) −6.10901 18.8016i −0.259313 0.798084i
\(556\) 4.91741 + 15.1342i 0.208545 + 0.641835i
\(557\) −16.2894 11.8349i −0.690203 0.501462i 0.186524 0.982450i \(-0.440278\pi\)
−0.876727 + 0.480988i \(0.840278\pi\)
\(558\) 15.5495 11.2974i 0.658264 0.478257i
\(559\) −4.11297 + 12.6584i −0.173960 + 0.535394i
\(560\) 1.00000 0.0422577
\(561\) −51.9839 + 24.9843i −2.19476 + 1.05484i
\(562\) −17.4342 −0.735419
\(563\) 3.36541 10.3577i 0.141835 0.436524i −0.854755 0.519031i \(-0.826293\pi\)
0.996590 + 0.0825073i \(0.0262928\pi\)
\(564\) −3.08128 + 2.23868i −0.129745 + 0.0942656i
\(565\) 5.95877 + 4.32930i 0.250688 + 0.182135i
\(566\) 4.64127 + 14.2843i 0.195087 + 0.600416i
\(567\) 2.30363 + 7.08985i 0.0967435 + 0.297746i
\(568\) −0.0492539 0.0357850i −0.00206665 0.00150151i
\(569\) 18.2179 13.2361i 0.763734 0.554885i −0.136319 0.990665i \(-0.543527\pi\)
0.900053 + 0.435780i \(0.143527\pi\)
\(570\) −5.19589 + 15.9913i −0.217632 + 0.669802i
\(571\) 14.1198 0.590893 0.295447 0.955359i \(-0.404532\pi\)
0.295447 + 0.955359i \(0.404532\pi\)
\(572\) −1.82130 13.5245i −0.0761524 0.565487i
\(573\) 45.6226 1.90591
\(574\) −0.898483 + 2.76525i −0.0375020 + 0.115419i
\(575\) 2.53932 1.84492i 0.105897 0.0769387i
\(576\) −2.78961 2.02677i −0.116234 0.0844488i
\(577\) −3.89212 11.9787i −0.162031 0.498681i 0.836774 0.547548i \(-0.184439\pi\)
−0.998805 + 0.0488675i \(0.984439\pi\)
\(578\) 9.23933 + 28.4357i 0.384306 + 1.18277i
\(579\) 48.9306 + 35.5502i 2.03349 + 1.47742i
\(580\) 4.44605 3.23024i 0.184612 0.134128i
\(581\) −3.16642 + 9.74525i −0.131365 + 0.404301i
\(582\) 1.75472 0.0727355
\(583\) 25.4921 + 26.7042i 1.05577 + 1.10597i
\(584\) −3.91284 −0.161914
\(585\) 4.38425 13.4933i 0.181266 0.557881i
\(586\) −6.07302 + 4.41231i −0.250874 + 0.182271i
\(587\) 12.4603 + 9.05296i 0.514293 + 0.373656i 0.814450 0.580234i \(-0.197039\pi\)
−0.300157 + 0.953890i \(0.597039\pi\)
\(588\) −0.784693 2.41504i −0.0323602 0.0995945i
\(589\) 11.4055 + 35.1027i 0.469957 + 1.44638i
\(590\) −6.00637 4.36389i −0.247278 0.179658i
\(591\) −3.81187 + 2.76949i −0.156800 + 0.113922i
\(592\) −2.40577 + 7.40419i −0.0988764 + 0.304310i
\(593\) 27.0005 1.10878 0.554389 0.832258i \(-0.312952\pi\)
0.554389 + 0.832258i \(0.312952\pi\)
\(594\) −1.79111 + 3.32224i −0.0734901 + 0.136313i
\(595\) −6.84829 −0.280753
\(596\) 2.97604 9.15932i 0.121904 0.375181i
\(597\) 44.8273 32.5689i 1.83466 1.33296i
\(598\) −10.4483 7.59111i −0.427262 0.310424i
\(599\) 11.9064 + 36.6441i 0.486482 + 1.49724i 0.829822 + 0.558028i \(0.188442\pi\)
−0.343340 + 0.939211i \(0.611558\pi\)
\(600\) −0.784693 2.41504i −0.0320350 0.0985935i
\(601\) −12.8792 9.35726i −0.525352 0.381691i 0.293264 0.956031i \(-0.405258\pi\)
−0.818616 + 0.574341i \(0.805258\pi\)
\(602\) 2.61700 1.90136i 0.106661 0.0774938i
\(603\) 15.1273 46.5570i 0.616031 1.89595i
\(604\) 20.3543 0.828205
\(605\) −6.87176 + 8.58947i −0.279377 + 0.349211i
\(606\) −37.1224 −1.50799
\(607\) 6.26206 19.2726i 0.254169 0.782252i −0.739823 0.672801i \(-0.765091\pi\)
0.993992 0.109451i \(-0.0349092\pi\)
\(608\) 5.35695 3.89205i 0.217253 0.157844i
\(609\) −11.2899 8.20262i −0.457491 0.332387i
\(610\) 0.705073 + 2.16999i 0.0285476 + 0.0878604i
\(611\) 1.90707 + 5.86934i 0.0771516 + 0.237448i
\(612\) 19.1041 + 13.8799i 0.772236 + 0.561063i
\(613\) 22.7035 16.4950i 0.916985 0.666229i −0.0257866 0.999667i \(-0.508209\pi\)
0.942772 + 0.333439i \(0.108209\pi\)
\(614\) −1.57016 + 4.83247i −0.0633667 + 0.195023i
\(615\) 7.38321 0.297720
\(616\) −1.57392 + 2.91938i −0.0634149 + 0.117625i
\(617\) 38.0285 1.53097 0.765484 0.643455i \(-0.222500\pi\)
0.765484 + 0.643455i \(0.222500\pi\)
\(618\) −0.842429 + 2.59273i −0.0338875 + 0.104295i
\(619\) 28.1504 20.4525i 1.13146 0.822054i 0.145553 0.989350i \(-0.453504\pi\)
0.985907 + 0.167297i \(0.0535037\pi\)
\(620\) −4.50953 3.27637i −0.181107 0.131582i
\(621\) 1.10378 + 3.39709i 0.0442932 + 0.136320i
\(622\) 3.35085 + 10.3129i 0.134357 + 0.413508i
\(623\) −5.29416 3.84643i −0.212106 0.154104i
\(624\) −8.45283 + 6.14134i −0.338384 + 0.245850i
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 33.4044 1.33511
\(627\) −38.5068 40.3377i −1.53781 1.61093i
\(628\) −6.01660 −0.240089
\(629\) 16.4754 50.7061i 0.656917 2.02178i
\(630\) −2.78961 + 2.02677i −0.111141 + 0.0807485i
\(631\) 24.0948 + 17.5059i 0.959199 + 0.696899i 0.952965 0.303082i \(-0.0980155\pi\)
0.00623454 + 0.999981i \(0.498015\pi\)
\(632\) −1.31018 4.03232i −0.0521161 0.160397i
\(633\) 20.8510 + 64.1727i 0.828752 + 2.55064i
\(634\) 22.4104 + 16.2821i 0.890029 + 0.646644i
\(635\) −12.1378 + 8.81862i −0.481673 + 0.349956i
\(636\) 8.73463 26.8824i 0.346351 1.06596i
\(637\) −4.11459 −0.163026
\(638\) 2.43260 + 18.0638i 0.0963077 + 0.715154i
\(639\) 0.209927 0.00830460
\(640\) −0.309017 + 0.951057i −0.0122150 + 0.0375938i
\(641\) −0.469101 + 0.340822i −0.0185284 + 0.0134617i −0.597011 0.802233i \(-0.703645\pi\)
0.578483 + 0.815695i \(0.303645\pi\)
\(642\) −38.7823 28.1770i −1.53061 1.11206i
\(643\) 14.6711 + 45.1529i 0.578571 + 1.78066i 0.623685 + 0.781676i \(0.285635\pi\)
−0.0451146 + 0.998982i \(0.514365\pi\)
\(644\) 0.969934 + 2.98515i 0.0382208 + 0.117631i
\(645\) −6.64541 4.82817i −0.261663 0.190109i
\(646\) −36.6860 + 26.6539i −1.44339 + 1.04868i
\(647\) −12.8364 + 39.5064i −0.504651 + 1.55316i 0.296704 + 0.954969i \(0.404112\pi\)
−0.801356 + 0.598188i \(0.795888\pi\)
\(648\) −7.45471 −0.292849
\(649\) 22.1934 10.6665i 0.871166 0.418697i
\(650\) −4.11459 −0.161388
\(651\) −4.37395 + 13.4616i −0.171429 + 0.527603i
\(652\) 6.96928 5.06348i 0.272938 0.198301i
\(653\) 21.4334 + 15.5723i 0.838753 + 0.609390i 0.922022 0.387137i \(-0.126536\pi\)
−0.0832688 + 0.996527i \(0.526536\pi\)
\(654\) −3.31388 10.1991i −0.129583 0.398815i
\(655\) 2.09296 + 6.44147i 0.0817788 + 0.251689i
\(656\) −2.35226 1.70902i −0.0918403 0.0667259i
\(657\) 10.9153 7.93043i 0.425846 0.309395i
\(658\) 0.463488 1.42647i 0.0180687 0.0556096i
\(659\) −46.8092 −1.82343 −0.911713 0.410827i \(-0.865240\pi\)
−0.911713 + 0.410827i \(0.865240\pi\)
\(660\) 8.28546 + 1.51025i 0.322511 + 0.0587863i
\(661\) −35.7060 −1.38880 −0.694401 0.719588i \(-0.744331\pi\)
−0.694401 + 0.719588i \(0.744331\pi\)
\(662\) −8.90949 + 27.4206i −0.346277 + 1.06573i
\(663\) 57.8874 42.0577i 2.24816 1.63339i
\(664\) −8.28981 6.02290i −0.321707 0.233734i
\(665\) −2.04617 6.29747i −0.0793472 0.244205i
\(666\) −8.29544 25.5308i −0.321442 0.989297i
\(667\) 13.9551 + 10.1390i 0.540345 + 0.392583i
\(668\) 7.29401 5.29941i 0.282214 0.205040i
\(669\) 7.76244 23.8903i 0.300113 0.923654i
\(670\) −14.1969 −0.548473
\(671\) −7.44476 1.35701i −0.287402 0.0523867i
\(672\) 2.53932 0.0979564
\(673\) 4.82817 14.8596i 0.186112 0.572794i −0.813854 0.581070i \(-0.802634\pi\)
0.999966 + 0.00827564i \(0.00263425\pi\)
\(674\) 13.7314 9.97646i 0.528915 0.384279i
\(675\) 0.920658 + 0.668897i 0.0354361 + 0.0257459i
\(676\) 1.21440 + 3.73753i 0.0467076 + 0.143751i
\(677\) 3.50218 + 10.7786i 0.134600 + 0.414255i 0.995528 0.0944718i \(-0.0301162\pi\)
−0.860928 + 0.508727i \(0.830116\pi\)
\(678\) 15.1312 + 10.9935i 0.581112 + 0.422202i
\(679\) −0.559046 + 0.406171i −0.0214542 + 0.0155874i
\(680\) 2.11624 6.51311i 0.0811541 0.249766i
\(681\) −35.3726 −1.35548
\(682\) 16.6626 8.00832i 0.638043 0.306654i
\(683\) −12.5315 −0.479504 −0.239752 0.970834i \(-0.577066\pi\)
−0.239752 + 0.970834i \(0.577066\pi\)
\(684\) −7.05551 + 21.7146i −0.269774 + 0.830279i
\(685\) −7.40331 + 5.37882i −0.282866 + 0.205514i
\(686\) 0.809017 + 0.587785i 0.0308884 + 0.0224417i
\(687\) 7.99835 + 24.6164i 0.305156 + 0.939174i
\(688\) 0.999606 + 3.07647i 0.0381096 + 0.117289i
\(689\) −37.0535 26.9209i −1.41163 1.02561i
\(690\) 6.44815 4.68485i 0.245477 0.178349i
\(691\) 1.05531 3.24791i 0.0401459 0.123556i −0.928975 0.370143i \(-0.879309\pi\)
0.969121 + 0.246586i \(0.0793088\pi\)
\(692\) −12.9388 −0.491858
\(693\) −1.52630 11.3339i −0.0579795 0.430540i
\(694\) 22.8463 0.867234
\(695\) −4.91741 + 15.1342i −0.186528 + 0.574075i
\(696\) 11.2899 8.20262i 0.427944 0.310919i
\(697\) 16.1090 + 11.7038i 0.610171 + 0.443315i
\(698\) −4.67918 14.4010i −0.177109 0.545087i
\(699\) 10.3675 + 31.9077i 0.392133 + 1.20686i
\(700\) 0.809017 + 0.587785i 0.0305780 + 0.0222162i
\(701\) −28.4015 + 20.6349i −1.07271 + 0.779369i −0.976397 0.215982i \(-0.930705\pi\)
−0.0963122 + 0.995351i \(0.530705\pi\)
\(702\) 1.44694 4.45322i 0.0546111 0.168076i
\(703\) 51.5503 1.94426
\(704\) −2.29013 2.39902i −0.0863125 0.0904165i
\(705\) −3.80868 −0.143443
\(706\) −2.78429 + 8.56915i −0.104788 + 0.322504i
\(707\) 11.8270 8.59285i 0.444802 0.323167i
\(708\) −15.2521 11.0813i −0.573209 0.416461i
\(709\) −8.94067 27.5165i −0.335774 1.03341i −0.966340 0.257270i \(-0.917177\pi\)
0.630566 0.776136i \(-0.282823\pi\)
\(710\) −0.0188133 0.0579014i −0.000706051 0.00217300i
\(711\) 11.8275 + 8.59316i 0.443565 + 0.322269i
\(712\) 5.29416 3.84643i 0.198407 0.144151i
\(713\) 5.40650 16.6395i 0.202475 0.623154i
\(714\) −17.3900 −0.650805
\(715\) 6.47602 12.0121i 0.242190 0.449226i
\(716\) 15.7602 0.588987
\(717\) −4.00294 + 12.3198i −0.149493 + 0.460091i
\(718\) −29.8470 + 21.6851i −1.11388 + 0.809280i
\(719\) 5.71953 + 4.15548i 0.213303 + 0.154973i 0.689307 0.724470i \(-0.257915\pi\)
−0.476004 + 0.879443i \(0.657915\pi\)
\(720\) −1.06554 3.27939i −0.0397102 0.122215i
\(721\) −0.331754 1.02103i −0.0123552 0.0380253i
\(722\) −20.1000 14.6035i −0.748044 0.543486i
\(723\) 49.3198 35.8330i 1.83422 1.33264i
\(724\) −4.51455 + 13.8943i −0.167782 + 0.516379i
\(725\) 5.49561 0.204102
\(726\) −17.4496 + 21.8114i −0.647615 + 0.809497i
\(727\) −28.5131 −1.05749 −0.528747 0.848779i \(-0.677338\pi\)
−0.528747 + 0.848779i \(0.677338\pi\)
\(728\) 1.27148 3.91321i 0.0471241 0.145033i
\(729\) 27.8093 20.2046i 1.02997 0.748320i
\(730\) −3.16555 2.29991i −0.117162 0.0851234i
\(731\) −6.84559 21.0686i −0.253193 0.779249i
\(732\) 1.79041 + 5.51030i 0.0661753 + 0.203667i
\(733\) −32.4592 23.5830i −1.19891 0.871059i −0.204733 0.978818i \(-0.565632\pi\)
−0.994177 + 0.107759i \(0.965632\pi\)
\(734\) −27.9176 + 20.2834i −1.03046 + 0.748672i
\(735\) 0.784693 2.41504i 0.0289438 0.0890800i
\(736\) −3.13877 −0.115697
\(737\) 22.3447 41.4461i 0.823077 1.52669i
\(738\) 10.0257 0.369050
\(739\) −11.3005 + 34.7794i −0.415696 + 1.27938i 0.495932 + 0.868362i \(0.334827\pi\)
−0.911627 + 0.411018i \(0.865173\pi\)
\(740\) −6.29838 + 4.57604i −0.231533 + 0.168219i
\(741\) 55.9708 + 40.6652i 2.05614 + 1.49387i
\(742\) 3.43975 + 10.5865i 0.126277 + 0.388641i
\(743\) −0.0151877 0.0467431i −0.000557184 0.00171484i 0.950778 0.309874i \(-0.100287\pi\)
−0.951335 + 0.308159i \(0.900287\pi\)
\(744\) −11.4511 8.31975i −0.419819 0.305017i
\(745\) 7.79139 5.66077i 0.285454 0.207395i
\(746\) 0.715686 2.20265i 0.0262031 0.0806449i
\(747\) 35.3324 1.29274
\(748\) 15.6835 + 16.4292i 0.573445 + 0.600711i
\(749\) 18.8781 0.689790
\(750\) 0.784693 2.41504i 0.0286529 0.0881847i
\(751\) −5.17702 + 3.76132i −0.188912 + 0.137253i −0.678221 0.734858i \(-0.737249\pi\)
0.489309 + 0.872110i \(0.337249\pi\)
\(752\) 1.21343 + 0.881607i 0.0442492 + 0.0321489i
\(753\) −12.1601 37.4250i −0.443139 1.36384i
\(754\) −6.98756 21.5055i −0.254472 0.783184i
\(755\) 16.4670 + 11.9640i 0.599295 + 0.435413i
\(756\) −0.920658 + 0.668897i −0.0334840 + 0.0243275i
\(757\) −5.93494 + 18.2659i −0.215709 + 0.663885i 0.783393 + 0.621526i \(0.213487\pi\)
−0.999102 + 0.0423583i \(0.986513\pi\)
\(758\) −7.92393 −0.287810
\(759\) 3.52803 + 26.1982i 0.128059 + 0.950934i
\(760\) 6.62155 0.240189
\(761\) −0.888309 + 2.73394i −0.0322012 + 0.0991051i −0.965865 0.259045i \(-0.916592\pi\)
0.933664 + 0.358150i \(0.116592\pi\)
\(762\) −30.8217 + 22.3933i −1.11655 + 0.811223i
\(763\) 3.41660 + 2.48230i 0.123689 + 0.0898655i
\(764\) −5.55194 17.0871i −0.200862 0.618190i
\(765\) 7.29711 + 22.4582i 0.263827 + 0.811978i
\(766\) −15.5368 11.2881i −0.561366 0.407856i
\(767\) −24.7138 + 17.9556i −0.892363 + 0.648339i
\(768\) −0.784693 + 2.41504i −0.0283152 + 0.0871452i
\(769\) −35.4758 −1.27929 −0.639646 0.768670i \(-0.720919\pi\)
−0.639646 + 0.768670i \(0.720919\pi\)
\(770\) −2.98929 + 1.43670i −0.107727 + 0.0517752i
\(771\) 10.4742 0.377220
\(772\) 7.36017 22.6523i 0.264898 0.815274i
\(773\) 25.2909 18.3749i 0.909650 0.660900i −0.0312760 0.999511i \(-0.509957\pi\)
0.940926 + 0.338611i \(0.109957\pi\)
\(774\) −9.02382 6.55619i −0.324354 0.235657i