Properties

Label 770.2.n.j.71.2
Level $770$
Weight $2$
Character 770.71
Analytic conductor $6.148$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \( x^{12} - 2 x^{11} + 11 x^{10} - 11 x^{9} + 39 x^{8} - 43 x^{7} + 99 x^{6} + 36 x^{5} + 431 x^{4} - 350 x^{3} + 510 x^{2} - 175 x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 71.2
Root \(0.289142 + 0.889888i\) of defining polynomial
Character \(\chi\) \(=\) 770.71
Dual form 770.2.n.j.141.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.309017 - 0.951057i) q^{2} +(0.756984 + 0.549981i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(0.309017 - 0.951057i) q^{5} +(0.289142 - 0.889888i) q^{6} +(-0.809017 + 0.587785i) q^{7} +(0.809017 + 0.587785i) q^{8} +(-0.656505 - 2.02052i) q^{9} +O(q^{10})\) \(q+(-0.309017 - 0.951057i) q^{2} +(0.756984 + 0.549981i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(0.309017 - 0.951057i) q^{5} +(0.289142 - 0.889888i) q^{6} +(-0.809017 + 0.587785i) q^{7} +(0.809017 + 0.587785i) q^{8} +(-0.656505 - 2.02052i) q^{9} -1.00000 q^{10} +(-3.09234 + 1.19893i) q^{11} -0.935683 q^{12} +(-0.776859 - 2.39093i) q^{13} +(0.809017 + 0.587785i) q^{14} +(0.756984 - 0.549981i) q^{15} +(0.309017 - 0.951057i) q^{16} +(1.44806 - 4.45667i) q^{17} +(-1.71875 + 1.24875i) q^{18} +(-3.28100 - 2.38379i) q^{19} +(0.309017 + 0.951057i) q^{20} -0.935683 q^{21} +(2.09584 + 2.57050i) q^{22} -3.46945 q^{23} +(0.289142 + 0.889888i) q^{24} +(-0.809017 - 0.587785i) q^{25} +(-2.03384 + 1.47767i) q^{26} +(1.48171 - 4.56023i) q^{27} +(0.309017 - 0.951057i) q^{28} +(6.03901 - 4.38760i) q^{29} +(-0.756984 - 0.549981i) q^{30} +(0.477714 + 1.47025i) q^{31} -1.00000 q^{32} +(-3.00024 - 0.793153i) q^{33} -4.68602 q^{34} +(0.309017 + 0.951057i) q^{35} +(1.71875 + 1.24875i) q^{36} +(3.98540 - 2.89556i) q^{37} +(-1.25323 + 3.85705i) q^{38} +(0.726894 - 2.23715i) q^{39} +(0.809017 - 0.587785i) q^{40} +(-1.33552 - 0.970311i) q^{41} +(0.289142 + 0.889888i) q^{42} -7.97092 q^{43} +(1.79704 - 2.78759i) q^{44} -2.12450 q^{45} +(1.07212 + 3.29965i) q^{46} +(-1.43558 - 1.04301i) q^{47} +(0.756984 - 0.549981i) q^{48} +(0.309017 - 0.951057i) q^{49} +(-0.309017 + 0.951057i) q^{50} +(3.54724 - 2.57722i) q^{51} +(2.03384 + 1.47767i) q^{52} +(2.20730 + 6.79337i) q^{53} -4.79491 q^{54} +(0.184670 + 3.31148i) q^{55} -1.00000 q^{56} +(-1.17263 - 3.60898i) q^{57} +(-6.03901 - 4.38760i) q^{58} +(0.345318 - 0.250889i) q^{59} +(-0.289142 + 0.889888i) q^{60} +(1.90107 - 5.85091i) q^{61} +(1.25067 - 0.908665i) q^{62} +(1.71875 + 1.24875i) q^{63} +(0.309017 + 0.951057i) q^{64} -2.51397 q^{65} +(0.172792 + 3.09850i) q^{66} -5.99409 q^{67} +(1.44806 + 4.45667i) q^{68} +(-2.62632 - 1.90813i) q^{69} +(0.809017 - 0.587785i) q^{70} +(2.02073 - 6.21917i) q^{71} +(0.656505 - 2.02052i) q^{72} +(0.692010 - 0.502775i) q^{73} +(-3.98540 - 2.89556i) q^{74} +(-0.289142 - 0.889888i) q^{75} +4.05554 q^{76} +(1.79704 - 2.78759i) q^{77} -2.35228 q^{78} +(-3.04746 - 9.37911i) q^{79} +(-0.809017 - 0.587785i) q^{80} +(-1.52659 + 1.10914i) q^{81} +(-0.510123 + 1.57000i) q^{82} +(-2.52057 + 7.75752i) q^{83} +(0.756984 - 0.549981i) q^{84} +(-3.79107 - 2.75437i) q^{85} +(2.46315 + 7.58080i) q^{86} +6.98453 q^{87} +(-3.20647 - 0.847672i) q^{88} +1.00048 q^{89} +(0.656505 + 2.02052i) q^{90} +(2.03384 + 1.47767i) q^{91} +(2.80685 - 2.03929i) q^{92} +(-0.446989 + 1.37569i) q^{93} +(-0.548343 + 1.68763i) q^{94} +(-3.28100 + 2.38379i) q^{95} +(-0.756984 - 0.549981i) q^{96} +(3.50235 + 10.7791i) q^{97} -1.00000 q^{98} +(4.45260 + 5.46101i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} + 3 q^{3} - 3 q^{4} - 3 q^{5} + 2 q^{6} - 3 q^{7} + 3 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 3 q^{2} + 3 q^{3} - 3 q^{4} - 3 q^{5} + 2 q^{6} - 3 q^{7} + 3 q^{8} + 6 q^{9} - 12 q^{10} - q^{11} - 2 q^{12} + 2 q^{13} + 3 q^{14} + 3 q^{15} - 3 q^{16} + 7 q^{17} + 9 q^{18} + 6 q^{19} - 3 q^{20} - 2 q^{21} + q^{22} + 8 q^{23} + 2 q^{24} - 3 q^{25} - 7 q^{26} - 3 q^{27} - 3 q^{28} + 20 q^{29} - 3 q^{30} + 6 q^{31} - 12 q^{32} - 12 q^{33} + 18 q^{34} - 3 q^{35} - 9 q^{36} + 22 q^{37} - 6 q^{38} + 23 q^{39} + 3 q^{40} + 2 q^{41} + 2 q^{42} - 60 q^{43} - 11 q^{44} + 6 q^{45} + 2 q^{46} - 4 q^{47} + 3 q^{48} - 3 q^{49} + 3 q^{50} + 13 q^{51} + 7 q^{52} + 18 q^{53} + 8 q^{54} + 14 q^{55} - 12 q^{56} + 8 q^{57} - 20 q^{58} - 32 q^{59} - 2 q^{60} + 8 q^{61} + 14 q^{62} - 9 q^{63} - 3 q^{64} - 18 q^{65} - 8 q^{66} + 36 q^{67} + 7 q^{68} + 50 q^{69} + 3 q^{70} - 34 q^{71} - 6 q^{72} + 14 q^{73} - 22 q^{74} - 2 q^{75} - 24 q^{76} - 11 q^{77} - 38 q^{78} - 12 q^{79} - 3 q^{80} + 4 q^{81} - 2 q^{82} + 30 q^{83} + 3 q^{84} + 2 q^{85} - 28 q^{87} + q^{88} - 36 q^{89} - 6 q^{90} + 7 q^{91} - 2 q^{92} + 12 q^{93} - 11 q^{94} + 6 q^{95} - 3 q^{96} + 39 q^{97} - 12 q^{98} - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.951057i −0.218508 0.672499i
\(3\) 0.756984 + 0.549981i 0.437045 + 0.317532i 0.784460 0.620180i \(-0.212940\pi\)
−0.347415 + 0.937712i \(0.612940\pi\)
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) 0.309017 0.951057i 0.138197 0.425325i
\(6\) 0.289142 0.889888i 0.118042 0.363295i
\(7\) −0.809017 + 0.587785i −0.305780 + 0.222162i
\(8\) 0.809017 + 0.587785i 0.286031 + 0.207813i
\(9\) −0.656505 2.02052i −0.218835 0.673505i
\(10\) −1.00000 −0.316228
\(11\) −3.09234 + 1.19893i −0.932375 + 0.361492i
\(12\) −0.935683 −0.270109
\(13\) −0.776859 2.39093i −0.215462 0.663123i −0.999120 0.0419317i \(-0.986649\pi\)
0.783659 0.621192i \(-0.213351\pi\)
\(14\) 0.809017 + 0.587785i 0.216219 + 0.157092i
\(15\) 0.756984 0.549981i 0.195452 0.142004i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 1.44806 4.45667i 0.351206 1.08090i −0.606971 0.794724i \(-0.707616\pi\)
0.958177 0.286177i \(-0.0923844\pi\)
\(18\) −1.71875 + 1.24875i −0.405114 + 0.294333i
\(19\) −3.28100 2.38379i −0.752713 0.546878i 0.143953 0.989584i \(-0.454018\pi\)
−0.896667 + 0.442706i \(0.854018\pi\)
\(20\) 0.309017 + 0.951057i 0.0690983 + 0.212663i
\(21\) −0.935683 −0.204183
\(22\) 2.09584 + 2.57050i 0.446835 + 0.548032i
\(23\) −3.46945 −0.723431 −0.361716 0.932289i \(-0.617809\pi\)
−0.361716 + 0.932289i \(0.617809\pi\)
\(24\) 0.289142 + 0.889888i 0.0590209 + 0.181648i
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) −2.03384 + 1.47767i −0.398869 + 0.289796i
\(27\) 1.48171 4.56023i 0.285155 0.877616i
\(28\) 0.309017 0.951057i 0.0583987 0.179733i
\(29\) 6.03901 4.38760i 1.12142 0.814757i 0.136993 0.990572i \(-0.456256\pi\)
0.984423 + 0.175815i \(0.0562561\pi\)
\(30\) −0.756984 0.549981i −0.138206 0.100412i
\(31\) 0.477714 + 1.47025i 0.0857999 + 0.264065i 0.984747 0.173992i \(-0.0556668\pi\)
−0.898947 + 0.438057i \(0.855667\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.00024 0.793153i −0.522275 0.138070i
\(34\) −4.68602 −0.803645
\(35\) 0.309017 + 0.951057i 0.0522334 + 0.160758i
\(36\) 1.71875 + 1.24875i 0.286459 + 0.208125i
\(37\) 3.98540 2.89556i 0.655195 0.476027i −0.209842 0.977735i \(-0.567295\pi\)
0.865037 + 0.501708i \(0.167295\pi\)
\(38\) −1.25323 + 3.85705i −0.203301 + 0.625696i
\(39\) 0.726894 2.23715i 0.116396 0.358231i
\(40\) 0.809017 0.587785i 0.127917 0.0929370i
\(41\) −1.33552 0.970311i −0.208573 0.151537i 0.478595 0.878036i \(-0.341146\pi\)
−0.687168 + 0.726499i \(0.741146\pi\)
\(42\) 0.289142 + 0.889888i 0.0446156 + 0.137313i
\(43\) −7.97092 −1.21555 −0.607777 0.794108i \(-0.707939\pi\)
−0.607777 + 0.794108i \(0.707939\pi\)
\(44\) 1.79704 2.78759i 0.270914 0.420245i
\(45\) −2.12450 −0.316701
\(46\) 1.07212 + 3.29965i 0.158075 + 0.486506i
\(47\) −1.43558 1.04301i −0.209401 0.152139i 0.478142 0.878283i \(-0.341311\pi\)
−0.687543 + 0.726144i \(0.741311\pi\)
\(48\) 0.756984 0.549981i 0.109261 0.0793829i
\(49\) 0.309017 0.951057i 0.0441453 0.135865i
\(50\) −0.309017 + 0.951057i −0.0437016 + 0.134500i
\(51\) 3.54724 2.57722i 0.496713 0.360883i
\(52\) 2.03384 + 1.47767i 0.282043 + 0.204916i
\(53\) 2.20730 + 6.79337i 0.303196 + 0.933141i 0.980344 + 0.197294i \(0.0632155\pi\)
−0.677148 + 0.735846i \(0.736784\pi\)
\(54\) −4.79491 −0.652504
\(55\) 0.184670 + 3.31148i 0.0249009 + 0.446520i
\(56\) −1.00000 −0.133631
\(57\) −1.17263 3.60898i −0.155318 0.478021i
\(58\) −6.03901 4.38760i −0.792961 0.576120i
\(59\) 0.345318 0.250889i 0.0449566 0.0326629i −0.565080 0.825036i \(-0.691155\pi\)
0.610037 + 0.792373i \(0.291155\pi\)
\(60\) −0.289142 + 0.889888i −0.0373281 + 0.114884i
\(61\) 1.90107 5.85091i 0.243408 0.749132i −0.752487 0.658608i \(-0.771146\pi\)
0.995894 0.0905243i \(-0.0288543\pi\)
\(62\) 1.25067 0.908665i 0.158835 0.115401i
\(63\) 1.71875 + 1.24875i 0.216543 + 0.157327i
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) −2.51397 −0.311819
\(66\) 0.172792 + 3.09850i 0.0212693 + 0.381399i
\(67\) −5.99409 −0.732295 −0.366147 0.930557i \(-0.619323\pi\)
−0.366147 + 0.930557i \(0.619323\pi\)
\(68\) 1.44806 + 4.45667i 0.175603 + 0.540450i
\(69\) −2.62632 1.90813i −0.316172 0.229712i
\(70\) 0.809017 0.587785i 0.0966960 0.0702538i
\(71\) 2.02073 6.21917i 0.239817 0.738080i −0.756629 0.653844i \(-0.773155\pi\)
0.996446 0.0842354i \(-0.0268448\pi\)
\(72\) 0.656505 2.02052i 0.0773699 0.238120i
\(73\) 0.692010 0.502775i 0.0809937 0.0588454i −0.546552 0.837425i \(-0.684060\pi\)
0.627545 + 0.778580i \(0.284060\pi\)
\(74\) −3.98540 2.89556i −0.463293 0.336602i
\(75\) −0.289142 0.889888i −0.0333873 0.102755i
\(76\) 4.05554 0.465203
\(77\) 1.79704 2.78759i 0.204791 0.317675i
\(78\) −2.35228 −0.266343
\(79\) −3.04746 9.37911i −0.342866 1.05523i −0.962716 0.270513i \(-0.912807\pi\)
0.619851 0.784720i \(-0.287193\pi\)
\(80\) −0.809017 0.587785i −0.0904508 0.0657164i
\(81\) −1.52659 + 1.10914i −0.169622 + 0.123237i
\(82\) −0.510123 + 1.57000i −0.0563336 + 0.173377i
\(83\) −2.52057 + 7.75752i −0.276669 + 0.851499i 0.712104 + 0.702074i \(0.247742\pi\)
−0.988773 + 0.149425i \(0.952258\pi\)
\(84\) 0.756984 0.549981i 0.0825937 0.0600078i
\(85\) −3.79107 2.75437i −0.411199 0.298754i
\(86\) 2.46315 + 7.58080i 0.265608 + 0.817458i
\(87\) 6.98453 0.748820
\(88\) −3.20647 0.847672i −0.341811 0.0903621i
\(89\) 1.00048 0.106051 0.0530255 0.998593i \(-0.483114\pi\)
0.0530255 + 0.998593i \(0.483114\pi\)
\(90\) 0.656505 + 2.02052i 0.0692018 + 0.212981i
\(91\) 2.03384 + 1.47767i 0.213205 + 0.154902i
\(92\) 2.80685 2.03929i 0.292634 0.212611i
\(93\) −0.446989 + 1.37569i −0.0463506 + 0.142652i
\(94\) −0.548343 + 1.68763i −0.0565573 + 0.174065i
\(95\) −3.28100 + 2.38379i −0.336624 + 0.244571i
\(96\) −0.756984 0.549981i −0.0772593 0.0561322i
\(97\) 3.50235 + 10.7791i 0.355610 + 1.09445i 0.955655 + 0.294488i \(0.0951491\pi\)
−0.600046 + 0.799966i \(0.704851\pi\)
\(98\) −1.00000 −0.101015
\(99\) 4.45260 + 5.46101i 0.447504 + 0.548852i
\(100\) 1.00000 0.100000
\(101\) 0.978533 + 3.01161i 0.0973677 + 0.299667i 0.987863 0.155325i \(-0.0496423\pi\)
−0.890496 + 0.454991i \(0.849642\pi\)
\(102\) −3.54724 2.57722i −0.351229 0.255183i
\(103\) −12.1736 + 8.84467i −1.19950 + 0.871491i −0.994236 0.107214i \(-0.965807\pi\)
−0.205269 + 0.978706i \(0.565807\pi\)
\(104\) 0.776859 2.39093i 0.0761773 0.234450i
\(105\) −0.289142 + 0.889888i −0.0282174 + 0.0868442i
\(106\) 5.77878 4.19853i 0.561285 0.407798i
\(107\) 11.6803 + 8.48626i 1.12918 + 0.820398i 0.985575 0.169237i \(-0.0541304\pi\)
0.143606 + 0.989635i \(0.454130\pi\)
\(108\) 1.48171 + 4.56023i 0.142577 + 0.438808i
\(109\) −12.1869 −1.16729 −0.583646 0.812008i \(-0.698374\pi\)
−0.583646 + 0.812008i \(0.698374\pi\)
\(110\) 3.09234 1.19893i 0.294843 0.114314i
\(111\) 4.60938 0.437503
\(112\) 0.309017 + 0.951057i 0.0291994 + 0.0898664i
\(113\) 9.48931 + 6.89438i 0.892679 + 0.648569i 0.936575 0.350467i \(-0.113977\pi\)
−0.0438963 + 0.999036i \(0.513977\pi\)
\(114\) −3.06998 + 2.23047i −0.287530 + 0.208903i
\(115\) −1.07212 + 3.29965i −0.0999757 + 0.307694i
\(116\) −2.30670 + 7.09929i −0.214172 + 0.659152i
\(117\) −4.32089 + 3.13931i −0.399467 + 0.290229i
\(118\) −0.345318 0.250889i −0.0317891 0.0230962i
\(119\) 1.44806 + 4.45667i 0.132743 + 0.408542i
\(120\) 0.935683 0.0854158
\(121\) 8.12511 7.41502i 0.738646 0.674093i
\(122\) −6.15201 −0.556977
\(123\) −0.477314 1.46902i −0.0430379 0.132457i
\(124\) −1.25067 0.908665i −0.112314 0.0816006i
\(125\) −0.809017 + 0.587785i −0.0723607 + 0.0525731i
\(126\) 0.656505 2.02052i 0.0584862 0.180002i
\(127\) 1.13816 3.50290i 0.100995 0.310832i −0.887774 0.460279i \(-0.847749\pi\)
0.988770 + 0.149447i \(0.0477494\pi\)
\(128\) 0.809017 0.587785i 0.0715077 0.0519534i
\(129\) −6.03386 4.38385i −0.531252 0.385977i
\(130\) 0.776859 + 2.39093i 0.0681350 + 0.209698i
\(131\) 8.57781 0.749447 0.374724 0.927137i \(-0.377738\pi\)
0.374724 + 0.927137i \(0.377738\pi\)
\(132\) 2.89345 1.12182i 0.251842 0.0976422i
\(133\) 4.05554 0.351660
\(134\) 1.85228 + 5.70072i 0.160012 + 0.492467i
\(135\) −3.87916 2.81838i −0.333865 0.242567i
\(136\) 3.79107 2.75437i 0.325081 0.236185i
\(137\) 0.503965 1.55104i 0.0430566 0.132515i −0.927217 0.374523i \(-0.877806\pi\)
0.970274 + 0.242009i \(0.0778063\pi\)
\(138\) −1.00317 + 3.08742i −0.0853951 + 0.262819i
\(139\) 18.7529 13.6248i 1.59060 1.15564i 0.687524 0.726161i \(-0.258697\pi\)
0.903077 0.429478i \(-0.141303\pi\)
\(140\) −0.809017 0.587785i −0.0683744 0.0496769i
\(141\) −0.513076 1.57909i −0.0432088 0.132983i
\(142\) −6.53922 −0.548759
\(143\) 5.26887 + 6.46215i 0.440605 + 0.540392i
\(144\) −2.12450 −0.177041
\(145\) −2.30670 7.09929i −0.191561 0.589564i
\(146\) −0.692010 0.502775i −0.0572712 0.0416100i
\(147\) 0.756984 0.549981i 0.0624350 0.0453617i
\(148\) −1.52229 + 4.68512i −0.125131 + 0.385114i
\(149\) −0.443087 + 1.36368i −0.0362991 + 0.111717i −0.967564 0.252625i \(-0.918706\pi\)
0.931265 + 0.364342i \(0.118706\pi\)
\(150\) −0.756984 + 0.549981i −0.0618075 + 0.0449058i
\(151\) −14.3966 10.4597i −1.17158 0.851201i −0.180380 0.983597i \(-0.557733\pi\)
−0.991197 + 0.132396i \(0.957733\pi\)
\(152\) −1.25323 3.85705i −0.101650 0.312848i
\(153\) −9.95543 −0.804849
\(154\) −3.20647 0.847672i −0.258385 0.0683074i
\(155\) 1.54591 0.124171
\(156\) 0.726894 + 2.23715i 0.0581981 + 0.179115i
\(157\) 5.89890 + 4.28580i 0.470783 + 0.342044i 0.797746 0.602993i \(-0.206025\pi\)
−0.326963 + 0.945037i \(0.606025\pi\)
\(158\) −7.97835 + 5.79661i −0.634723 + 0.461153i
\(159\) −2.06533 + 6.35644i −0.163792 + 0.504099i
\(160\) −0.309017 + 0.951057i −0.0244299 + 0.0751876i
\(161\) 2.80685 2.03929i 0.221211 0.160719i
\(162\) 1.52659 + 1.10914i 0.119941 + 0.0871419i
\(163\) 2.90879 + 8.95233i 0.227834 + 0.701201i 0.997992 + 0.0633471i \(0.0201775\pi\)
−0.770158 + 0.637854i \(0.779822\pi\)
\(164\) 1.65079 0.128905
\(165\) −1.68146 + 2.60830i −0.130901 + 0.203056i
\(166\) 8.15674 0.633086
\(167\) −0.0895895 0.275728i −0.00693264 0.0213365i 0.947530 0.319666i \(-0.103571\pi\)
−0.954463 + 0.298329i \(0.903571\pi\)
\(168\) −0.756984 0.549981i −0.0584026 0.0424320i
\(169\) 5.40421 3.92639i 0.415708 0.302030i
\(170\) −1.44806 + 4.45667i −0.111061 + 0.341811i
\(171\) −2.66249 + 8.19429i −0.203605 + 0.626633i
\(172\) 6.44861 4.68519i 0.491702 0.357242i
\(173\) 8.42898 + 6.12401i 0.640844 + 0.465600i 0.860140 0.510058i \(-0.170376\pi\)
−0.219296 + 0.975658i \(0.570376\pi\)
\(174\) −2.15834 6.64268i −0.163623 0.503581i
\(175\) 1.00000 0.0755929
\(176\) 0.184670 + 3.31148i 0.0139200 + 0.249612i
\(177\) 0.399384 0.0300196
\(178\) −0.309166 0.951516i −0.0231730 0.0713191i
\(179\) 12.0637 + 8.76478i 0.901682 + 0.655111i 0.938898 0.344197i \(-0.111849\pi\)
−0.0372152 + 0.999307i \(0.511849\pi\)
\(180\) 1.71875 1.24875i 0.128108 0.0930762i
\(181\) 1.35143 4.15926i 0.100451 0.309155i −0.888185 0.459486i \(-0.848034\pi\)
0.988636 + 0.150330i \(0.0480337\pi\)
\(182\) 0.776859 2.39093i 0.0575846 0.177227i
\(183\) 4.65697 3.38349i 0.344253 0.250115i
\(184\) −2.80685 2.03929i −0.206923 0.150339i
\(185\) −1.52229 4.68512i −0.111921 0.344457i
\(186\) 1.44649 0.106062
\(187\) 0.865366 + 15.5177i 0.0632818 + 1.13476i
\(188\) 1.77448 0.129417
\(189\) 1.48171 + 4.56023i 0.107778 + 0.331708i
\(190\) 3.28100 + 2.38379i 0.238029 + 0.172938i
\(191\) 8.59154 6.24212i 0.621662 0.451664i −0.231840 0.972754i \(-0.574474\pi\)
0.853502 + 0.521090i \(0.174474\pi\)
\(192\) −0.289142 + 0.889888i −0.0208670 + 0.0642221i
\(193\) 2.46640 7.59081i 0.177536 0.546398i −0.822205 0.569192i \(-0.807256\pi\)
0.999740 + 0.0227938i \(0.00725612\pi\)
\(194\) 9.16927 6.66186i 0.658315 0.478294i
\(195\) −1.90303 1.38263i −0.136279 0.0990125i
\(196\) 0.309017 + 0.951057i 0.0220726 + 0.0679326i
\(197\) −7.28621 −0.519121 −0.259560 0.965727i \(-0.583578\pi\)
−0.259560 + 0.965727i \(0.583578\pi\)
\(198\) 3.81780 5.92222i 0.271319 0.420874i
\(199\) 14.1853 1.00557 0.502783 0.864413i \(-0.332309\pi\)
0.502783 + 0.864413i \(0.332309\pi\)
\(200\) −0.309017 0.951057i −0.0218508 0.0672499i
\(201\) −4.53743 3.29664i −0.320046 0.232527i
\(202\) 2.56183 1.86128i 0.180250 0.130959i
\(203\) −2.30670 + 7.09929i −0.161898 + 0.498272i
\(204\) −1.35492 + 4.17003i −0.0948637 + 0.291961i
\(205\) −1.33552 + 0.970311i −0.0932767 + 0.0677695i
\(206\) 12.1736 + 8.84467i 0.848178 + 0.616237i
\(207\) 2.27772 + 7.01009i 0.158312 + 0.487235i
\(208\) −2.51397 −0.174312
\(209\) 13.0040 + 3.43777i 0.899504 + 0.237795i
\(210\) 0.935683 0.0645683
\(211\) −7.19300 22.1378i −0.495187 1.52403i −0.816665 0.577111i \(-0.804180\pi\)
0.321479 0.946917i \(-0.395820\pi\)
\(212\) −5.77878 4.19853i −0.396889 0.288356i
\(213\) 4.95008 3.59645i 0.339174 0.246424i
\(214\) 4.46149 13.7311i 0.304981 0.938636i
\(215\) −2.46315 + 7.58080i −0.167985 + 0.517006i
\(216\) 3.87916 2.81838i 0.263943 0.191766i
\(217\) −1.25067 0.908665i −0.0849011 0.0616842i
\(218\) 3.76595 + 11.5904i 0.255063 + 0.785002i
\(219\) 0.800357 0.0540831
\(220\) −2.09584 2.57050i −0.141301 0.173303i
\(221\) −11.7805 −0.792442
\(222\) −1.42438 4.38379i −0.0955980 0.294220i
\(223\) 6.55100 + 4.75958i 0.438688 + 0.318725i 0.785113 0.619352i \(-0.212605\pi\)
−0.346426 + 0.938077i \(0.612605\pi\)
\(224\) 0.809017 0.587785i 0.0540547 0.0392731i
\(225\) −0.656505 + 2.02052i −0.0437670 + 0.134701i
\(226\) 3.62459 11.1553i 0.241104 0.742043i
\(227\) 15.2382 11.0712i 1.01139 0.734819i 0.0468911 0.998900i \(-0.485069\pi\)
0.964501 + 0.264081i \(0.0850686\pi\)
\(228\) 3.06998 + 2.23047i 0.203314 + 0.147717i
\(229\) 3.35967 + 10.3400i 0.222013 + 0.683287i 0.998581 + 0.0532533i \(0.0169591\pi\)
−0.776568 + 0.630034i \(0.783041\pi\)
\(230\) 3.46945 0.228769
\(231\) 2.89345 1.12182i 0.190375 0.0738106i
\(232\) 7.46463 0.490077
\(233\) −2.77386 8.53705i −0.181721 0.559281i 0.818155 0.574998i \(-0.194997\pi\)
−0.999876 + 0.0157166i \(0.994997\pi\)
\(234\) 4.32089 + 3.13931i 0.282465 + 0.205223i
\(235\) −1.43558 + 1.04301i −0.0936470 + 0.0680385i
\(236\) −0.131900 + 0.405946i −0.00858595 + 0.0264248i
\(237\) 2.85146 8.77588i 0.185222 0.570055i
\(238\) 3.79107 2.75437i 0.245738 0.178539i
\(239\) 7.91320 + 5.74927i 0.511862 + 0.371890i 0.813530 0.581524i \(-0.197543\pi\)
−0.301667 + 0.953413i \(0.597543\pi\)
\(240\) −0.289142 0.889888i −0.0186640 0.0574420i
\(241\) 23.3855 1.50639 0.753195 0.657797i \(-0.228512\pi\)
0.753195 + 0.657797i \(0.228512\pi\)
\(242\) −9.56290 5.43607i −0.614727 0.349444i
\(243\) −16.1503 −1.03604
\(244\) 1.90107 + 5.85091i 0.121704 + 0.374566i
\(245\) −0.809017 0.587785i −0.0516862 0.0375522i
\(246\) −1.24962 + 0.907904i −0.0796731 + 0.0578859i
\(247\) −3.15058 + 9.69650i −0.200467 + 0.616973i
\(248\) −0.477714 + 1.47025i −0.0303348 + 0.0933611i
\(249\) −6.17452 + 4.48605i −0.391294 + 0.284292i
\(250\) 0.809017 + 0.587785i 0.0511667 + 0.0371748i
\(251\) 8.06347 + 24.8168i 0.508962 + 1.56642i 0.794007 + 0.607909i \(0.207991\pi\)
−0.285045 + 0.958514i \(0.592009\pi\)
\(252\) −2.12450 −0.133831
\(253\) 10.7287 4.15965i 0.674509 0.261515i
\(254\) −3.68316 −0.231102
\(255\) −1.35492 4.17003i −0.0848487 0.261137i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −4.46524 + 3.24419i −0.278534 + 0.202367i −0.718278 0.695756i \(-0.755069\pi\)
0.439744 + 0.898123i \(0.355069\pi\)
\(258\) −2.30473 + 7.09323i −0.143486 + 0.441605i
\(259\) −1.52229 + 4.68512i −0.0945903 + 0.291119i
\(260\) 2.03384 1.47767i 0.126134 0.0916414i
\(261\) −12.8299 9.32144i −0.794148 0.576983i
\(262\) −2.65069 8.15799i −0.163760 0.504002i
\(263\) −27.1823 −1.67613 −0.838067 0.545568i \(-0.816314\pi\)
−0.838067 + 0.545568i \(0.816314\pi\)
\(264\) −1.96104 2.40517i −0.120694 0.148028i
\(265\) 7.14297 0.438789
\(266\) −1.25323 3.85705i −0.0768405 0.236491i
\(267\) 0.757349 + 0.550246i 0.0463490 + 0.0336745i
\(268\) 4.84932 3.52324i 0.296219 0.215216i
\(269\) −2.51688 + 7.74617i −0.153457 + 0.472292i −0.998001 0.0631935i \(-0.979871\pi\)
0.844544 + 0.535486i \(0.179871\pi\)
\(270\) −1.48171 + 4.56023i −0.0901739 + 0.277527i
\(271\) 5.10158 3.70651i 0.309899 0.225155i −0.421954 0.906617i \(-0.638656\pi\)
0.731853 + 0.681463i \(0.238656\pi\)
\(272\) −3.79107 2.75437i −0.229867 0.167008i
\(273\) 0.726894 + 2.23715i 0.0439936 + 0.135398i
\(274\) −1.63086 −0.0985241
\(275\) 3.20647 + 0.847672i 0.193357 + 0.0511166i
\(276\) 3.24631 0.195405
\(277\) −8.07757 24.8602i −0.485334 1.49371i −0.831496 0.555530i \(-0.812515\pi\)
0.346162 0.938175i \(-0.387485\pi\)
\(278\) −18.7529 13.6248i −1.12473 0.817161i
\(279\) 2.65705 1.93046i 0.159073 0.115573i
\(280\) −0.309017 + 0.951057i −0.0184673 + 0.0568365i
\(281\) 4.55356 14.0144i 0.271643 0.836031i −0.718445 0.695584i \(-0.755146\pi\)
0.990088 0.140447i \(-0.0448541\pi\)
\(282\) −1.34325 + 0.975928i −0.0799894 + 0.0581157i
\(283\) −17.3987 12.6409i −1.03425 0.751424i −0.0650920 0.997879i \(-0.520734\pi\)
−0.969154 + 0.246456i \(0.920734\pi\)
\(284\) 2.02073 + 6.21917i 0.119908 + 0.369040i
\(285\) −3.79470 −0.224779
\(286\) 4.51770 7.00791i 0.267137 0.414386i
\(287\) 1.65079 0.0974432
\(288\) 0.656505 + 2.02052i 0.0386850 + 0.119060i
\(289\) −4.01172 2.91469i −0.235984 0.171452i
\(290\) −6.03901 + 4.38760i −0.354623 + 0.257649i
\(291\) −3.27709 + 10.0858i −0.192106 + 0.591243i
\(292\) −0.264324 + 0.813507i −0.0154684 + 0.0476069i
\(293\) 4.94798 3.59492i 0.289064 0.210017i −0.433797 0.901011i \(-0.642827\pi\)
0.722861 + 0.690993i \(0.242827\pi\)
\(294\) −0.756984 0.549981i −0.0441482 0.0320755i
\(295\) −0.131900 0.405946i −0.00767951 0.0236351i
\(296\) 4.92622 0.286331
\(297\) 0.885474 + 15.8782i 0.0513804 + 0.921349i
\(298\) 1.43386 0.0830613
\(299\) 2.69528 + 8.29520i 0.155872 + 0.479724i
\(300\) 0.756984 + 0.549981i 0.0437045 + 0.0317532i
\(301\) 6.44861 4.68519i 0.371692 0.270050i
\(302\) −5.49901 + 16.9242i −0.316432 + 0.973878i
\(303\) −0.915597 + 2.81792i −0.0525997 + 0.161885i
\(304\) −3.28100 + 2.38379i −0.188178 + 0.136720i
\(305\) −4.97708 3.61606i −0.284987 0.207055i
\(306\) 3.07640 + 9.46817i 0.175866 + 0.541259i
\(307\) 24.8721 1.41952 0.709762 0.704441i \(-0.248802\pi\)
0.709762 + 0.704441i \(0.248802\pi\)
\(308\) 0.184670 + 3.31148i 0.0105225 + 0.188689i
\(309\) −14.0797 −0.800963
\(310\) −0.477714 1.47025i −0.0271323 0.0835047i
\(311\) −2.73404 1.98640i −0.155033 0.112638i 0.507564 0.861614i \(-0.330546\pi\)
−0.662598 + 0.748976i \(0.730546\pi\)
\(312\) 1.90303 1.38263i 0.107738 0.0782763i
\(313\) −6.40904 + 19.7250i −0.362261 + 1.11492i 0.589418 + 0.807828i \(0.299357\pi\)
−0.951679 + 0.307095i \(0.900643\pi\)
\(314\) 2.25318 6.93457i 0.127154 0.391340i
\(315\) 1.71875 1.24875i 0.0968408 0.0703590i
\(316\) 7.97835 + 5.79661i 0.448817 + 0.326085i
\(317\) 2.30588 + 7.09678i 0.129511 + 0.398595i 0.994696 0.102858i \(-0.0327989\pi\)
−0.865185 + 0.501453i \(0.832799\pi\)
\(318\) 6.68356 0.374795
\(319\) −13.4142 + 20.8083i −0.751052 + 1.16504i
\(320\) 1.00000 0.0559017
\(321\) 4.17454 + 12.8479i 0.233000 + 0.717101i
\(322\) −2.80685 2.03929i −0.156419 0.113645i
\(323\) −15.3748 + 11.1705i −0.855479 + 0.621542i
\(324\) 0.583107 1.79462i 0.0323948 0.0997011i
\(325\) −0.776859 + 2.39093i −0.0430924 + 0.132625i
\(326\) 7.61531 5.53285i 0.421773 0.306436i
\(327\) −9.22527 6.70255i −0.510159 0.370652i
\(328\) −0.510123 1.57000i −0.0281668 0.0866886i
\(329\) 1.77448 0.0978301
\(330\) 3.00024 + 0.793153i 0.165158 + 0.0436616i
\(331\) −8.26702 −0.454396 −0.227198 0.973849i \(-0.572956\pi\)
−0.227198 + 0.973849i \(0.572956\pi\)
\(332\) −2.52057 7.75752i −0.138334 0.425749i
\(333\) −8.46696 6.15161i −0.463987 0.337106i
\(334\) −0.234548 + 0.170409i −0.0128339 + 0.00932438i
\(335\) −1.85228 + 5.70072i −0.101201 + 0.311464i
\(336\) −0.289142 + 0.889888i −0.0157740 + 0.0485474i
\(337\) −0.250073 + 0.181688i −0.0136223 + 0.00989720i −0.594576 0.804040i \(-0.702680\pi\)
0.580953 + 0.813937i \(0.302680\pi\)
\(338\) −5.40421 3.92639i −0.293950 0.213567i
\(339\) 3.39147 + 10.4379i 0.184199 + 0.566908i
\(340\) 4.68602 0.254135
\(341\) −3.23999 3.97377i −0.175455 0.215192i
\(342\) 8.61598 0.465899
\(343\) 0.309017 + 0.951057i 0.0166853 + 0.0513522i
\(344\) −6.44861 4.68519i −0.347686 0.252608i
\(345\) −2.62632 + 1.90813i −0.141396 + 0.102730i
\(346\) 3.21959 9.90886i 0.173086 0.532704i
\(347\) −1.89215 + 5.82344i −0.101576 + 0.312619i −0.988912 0.148505i \(-0.952554\pi\)
0.887336 + 0.461124i \(0.152554\pi\)
\(348\) −5.65060 + 4.10540i −0.302904 + 0.220073i
\(349\) −16.0054 11.6286i −0.856751 0.622466i 0.0702484 0.997530i \(-0.477621\pi\)
−0.926999 + 0.375064i \(0.877621\pi\)
\(350\) −0.309017 0.951057i −0.0165177 0.0508361i
\(351\) −12.0542 −0.643408
\(352\) 3.09234 1.19893i 0.164822 0.0639034i
\(353\) −30.8256 −1.64068 −0.820340 0.571876i \(-0.806216\pi\)
−0.820340 + 0.571876i \(0.806216\pi\)
\(354\) −0.123417 0.379837i −0.00655952 0.0201881i
\(355\) −5.29034 3.84366i −0.280782 0.204000i
\(356\) −0.809408 + 0.588069i −0.0428985 + 0.0311676i
\(357\) −1.35492 + 4.17003i −0.0717102 + 0.220701i
\(358\) 4.60792 14.1817i 0.243536 0.749527i
\(359\) −20.4221 + 14.8375i −1.07784 + 0.783094i −0.977304 0.211840i \(-0.932055\pi\)
−0.100532 + 0.994934i \(0.532055\pi\)
\(360\) −1.71875 1.24875i −0.0905863 0.0658148i
\(361\) −0.788792 2.42765i −0.0415154 0.127771i
\(362\) −4.37330 −0.229856
\(363\) 10.2287 1.14440i 0.536867 0.0600653i
\(364\) −2.51397 −0.131768
\(365\) −0.264324 0.813507i −0.0138354 0.0425809i
\(366\) −4.65697 3.38349i −0.243424 0.176858i
\(367\) 7.17619 5.21380i 0.374594 0.272158i −0.384519 0.923117i \(-0.625633\pi\)
0.759113 + 0.650959i \(0.225633\pi\)
\(368\) −1.07212 + 3.29965i −0.0558881 + 0.172006i
\(369\) −1.08375 + 3.33545i −0.0564180 + 0.173637i
\(370\) −3.98540 + 2.89556i −0.207191 + 0.150533i
\(371\) −5.77878 4.19853i −0.300020 0.217977i
\(372\) −0.446989 1.37569i −0.0231753 0.0713262i
\(373\) −23.0860 −1.19535 −0.597675 0.801739i \(-0.703909\pi\)
−0.597675 + 0.801739i \(0.703909\pi\)
\(374\) 14.4908 5.61823i 0.749299 0.290512i
\(375\) −0.935683 −0.0483185
\(376\) −0.548343 1.68763i −0.0282787 0.0870327i
\(377\) −15.1819 11.0303i −0.781907 0.568089i
\(378\) 3.87916 2.81838i 0.199523 0.144962i
\(379\) 9.77466 30.0833i 0.502090 1.54528i −0.303517 0.952826i \(-0.598161\pi\)
0.805608 0.592450i \(-0.201839\pi\)
\(380\) 1.25323 3.85705i 0.0642894 0.197862i
\(381\) 2.78809 2.02567i 0.142838 0.103778i
\(382\) −8.59154 6.24212i −0.439581 0.319375i
\(383\) 0.571635 + 1.75931i 0.0292092 + 0.0898966i 0.964598 0.263723i \(-0.0849506\pi\)
−0.935389 + 0.353620i \(0.884951\pi\)
\(384\) 0.935683 0.0477489
\(385\) −2.09584 2.57050i −0.106814 0.131005i
\(386\) −7.98145 −0.406245
\(387\) 5.23295 + 16.1054i 0.266006 + 0.818682i
\(388\) −9.16927 6.66186i −0.465499 0.338205i
\(389\) −12.6712 + 9.20614i −0.642454 + 0.466770i −0.860692 0.509126i \(-0.829969\pi\)
0.218239 + 0.975895i \(0.429969\pi\)
\(390\) −0.726894 + 2.23715i −0.0368077 + 0.113282i
\(391\) −5.02397 + 15.4622i −0.254073 + 0.781957i
\(392\) 0.809017 0.587785i 0.0408615 0.0296876i
\(393\) 6.49327 + 4.71763i 0.327542 + 0.237973i
\(394\) 2.25156 + 6.92959i 0.113432 + 0.349108i
\(395\) −9.86178 −0.496200
\(396\) −6.81213 1.80088i −0.342323 0.0904974i
\(397\) −14.8207 −0.743827 −0.371914 0.928267i \(-0.621298\pi\)
−0.371914 + 0.928267i \(0.621298\pi\)
\(398\) −4.38349 13.4910i −0.219724 0.676242i
\(399\) 3.06998 + 2.23047i 0.153691 + 0.111663i
\(400\) −0.809017 + 0.587785i −0.0404508 + 0.0293893i
\(401\) 4.45980 13.7258i 0.222712 0.685436i −0.775804 0.630974i \(-0.782656\pi\)
0.998516 0.0544622i \(-0.0173444\pi\)
\(402\) −1.73314 + 5.33407i −0.0864414 + 0.266039i
\(403\) 3.14415 2.28436i 0.156621 0.113792i
\(404\) −2.56183 1.86128i −0.127456 0.0926022i
\(405\) 0.583107 + 1.79462i 0.0289748 + 0.0891753i
\(406\) 7.46463 0.370463
\(407\) −8.85261 + 13.7323i −0.438807 + 0.680684i
\(408\) 4.38463 0.217071
\(409\) −11.7531 36.1724i −0.581155 1.78861i −0.614193 0.789156i \(-0.710518\pi\)
0.0330387 0.999454i \(-0.489482\pi\)
\(410\) 1.33552 + 0.970311i 0.0659566 + 0.0479203i
\(411\) 1.23454 0.896944i 0.0608953 0.0442430i
\(412\) 4.64992 14.3110i 0.229085 0.705051i
\(413\) −0.131900 + 0.405946i −0.00649037 + 0.0199753i
\(414\) 5.96314 4.33247i 0.293072 0.212929i
\(415\) 6.59894 + 4.79441i 0.323929 + 0.235348i
\(416\) 0.776859 + 2.39093i 0.0380886 + 0.117225i
\(417\) 21.6890 1.06212
\(418\) −0.748936 13.4298i −0.0366316 0.656875i
\(419\) 24.2138 1.18292 0.591460 0.806334i \(-0.298552\pi\)
0.591460 + 0.806334i \(0.298552\pi\)
\(420\) −0.289142 0.889888i −0.0141087 0.0434221i
\(421\) −31.2829 22.7284i −1.52463 1.10771i −0.959129 0.282968i \(-0.908681\pi\)
−0.565505 0.824745i \(-0.691319\pi\)
\(422\) −18.8315 + 13.6819i −0.916704 + 0.666025i
\(423\) −1.16495 + 3.58536i −0.0566420 + 0.174326i
\(424\) −2.20730 + 6.79337i −0.107196 + 0.329915i
\(425\) −3.79107 + 2.75437i −0.183894 + 0.133607i
\(426\) −4.95008 3.59645i −0.239832 0.174248i
\(427\) 1.90107 + 5.85091i 0.0919995 + 0.283145i
\(428\) −14.4377 −0.697872
\(429\) 0.434395 + 7.78952i 0.0209728 + 0.376082i
\(430\) 7.97092 0.384392
\(431\) −7.29369 22.4477i −0.351325 1.08127i −0.958110 0.286401i \(-0.907541\pi\)
0.606785 0.794866i \(-0.292459\pi\)
\(432\) −3.87916 2.81838i −0.186636 0.135599i
\(433\) 24.7990 18.0175i 1.19176 0.865866i 0.198313 0.980139i \(-0.436454\pi\)
0.993449 + 0.114273i \(0.0364538\pi\)
\(434\) −0.477714 + 1.47025i −0.0229310 + 0.0705743i
\(435\) 2.15834 6.64268i 0.103484 0.318492i
\(436\) 9.85939 7.16327i 0.472179 0.343058i
\(437\) 11.3833 + 8.27044i 0.544536 + 0.395629i
\(438\) −0.247324 0.761185i −0.0118176 0.0363708i
\(439\) 23.4152 1.11755 0.558774 0.829320i \(-0.311272\pi\)
0.558774 + 0.829320i \(0.311272\pi\)
\(440\) −1.79704 + 2.78759i −0.0856704 + 0.132893i
\(441\) −2.12450 −0.101166
\(442\) 3.64037 + 11.2039i 0.173155 + 0.532916i
\(443\) −0.674103 0.489764i −0.0320276 0.0232694i 0.571656 0.820493i \(-0.306301\pi\)
−0.603684 + 0.797224i \(0.706301\pi\)
\(444\) −3.72907 + 2.70933i −0.176974 + 0.128579i
\(445\) 0.309166 0.951516i 0.0146559 0.0451062i
\(446\) 2.50226 7.70117i 0.118485 0.364661i
\(447\) −1.08541 + 0.788595i −0.0513381 + 0.0372993i
\(448\) −0.809017 0.587785i −0.0382225 0.0277702i
\(449\) −1.84802 5.68761i −0.0872133 0.268415i 0.897933 0.440132i \(-0.145068\pi\)
−0.985146 + 0.171717i \(0.945068\pi\)
\(450\) 2.12450 0.100150
\(451\) 5.29322 + 1.39933i 0.249248 + 0.0658919i
\(452\) −11.7294 −0.551706
\(453\) −5.14533 15.8357i −0.241749 0.744026i
\(454\) −15.2382 11.0712i −0.715162 0.519596i
\(455\) 2.03384 1.47767i 0.0953480 0.0692744i
\(456\) 1.17263 3.60898i 0.0549133 0.169006i
\(457\) −12.9714 + 39.9218i −0.606775 + 1.86746i −0.122678 + 0.992447i \(0.539148\pi\)
−0.484097 + 0.875014i \(0.660852\pi\)
\(458\) 8.79574 6.39048i 0.410998 0.298607i
\(459\) −18.1778 13.2070i −0.848468 0.616448i
\(460\) −1.07212 3.29965i −0.0499879 0.153847i
\(461\) −32.1474 −1.49725 −0.748626 0.662992i \(-0.769286\pi\)
−0.748626 + 0.662992i \(0.769286\pi\)
\(462\) −1.96104 2.40517i −0.0912360 0.111899i
\(463\) −8.14625 −0.378588 −0.189294 0.981920i \(-0.560620\pi\)
−0.189294 + 0.981920i \(0.560620\pi\)
\(464\) −2.30670 7.09929i −0.107086 0.329576i
\(465\) 1.17023 + 0.850223i 0.0542682 + 0.0394282i
\(466\) −7.26205 + 5.27619i −0.336408 + 0.244415i
\(467\) 2.37323 7.30406i 0.109820 0.337992i −0.881011 0.473095i \(-0.843137\pi\)
0.990831 + 0.135103i \(0.0431367\pi\)
\(468\) 1.65043 5.07951i 0.0762913 0.234801i
\(469\) 4.84932 3.52324i 0.223921 0.162688i
\(470\) 1.43558 + 1.04301i 0.0662184 + 0.0481105i
\(471\) 2.10826 + 6.48856i 0.0971436 + 0.298977i
\(472\) 0.426837 0.0196468
\(473\) 24.6488 9.55661i 1.13335 0.439414i
\(474\) −9.22750 −0.423833
\(475\) 1.25323 + 3.85705i 0.0575022 + 0.176974i
\(476\) −3.79107 2.75437i −0.173763 0.126246i
\(477\) 12.2770 8.91977i 0.562126 0.408408i
\(478\) 3.02257 9.30252i 0.138249 0.425487i
\(479\) −7.02164 + 21.6104i −0.320827 + 0.987404i 0.652462 + 0.757821i \(0.273736\pi\)
−0.973289 + 0.229583i \(0.926264\pi\)
\(480\) −0.756984 + 0.549981i −0.0345514 + 0.0251031i
\(481\) −10.0192 7.27935i −0.456834 0.331910i
\(482\) −7.22650 22.2409i −0.329158 1.01304i
\(483\) 3.24631 0.147712
\(484\) −2.21491 + 10.7747i −0.100678 + 0.489759i
\(485\) 11.3338 0.514643
\(486\) 4.99073 + 15.3599i 0.226384 + 0.696738i
\(487\) −27.0582 19.6589i −1.22612 0.890831i −0.229530 0.973302i \(-0.573719\pi\)
−0.996593 + 0.0824707i \(0.973719\pi\)
\(488\) 4.97708 3.61606i 0.225302 0.163691i
\(489\) −2.72171 + 8.37655i −0.123080 + 0.378801i
\(490\) −0.309017 + 0.951057i −0.0139600 + 0.0429644i
\(491\) −4.94302 + 3.59132i −0.223075 + 0.162074i −0.693710 0.720254i \(-0.744025\pi\)
0.470635 + 0.882328i \(0.344025\pi\)
\(492\) 1.24962 + 0.907904i 0.0563374 + 0.0409315i
\(493\) −10.8092 33.2674i −0.486823 1.49829i
\(494\) 10.1955 0.458717
\(495\) 6.56966 2.54713i 0.295284 0.114485i
\(496\) 1.54591 0.0694136
\(497\) 2.02073 + 6.21917i 0.0906421 + 0.278968i
\(498\) 6.17452 + 4.48605i 0.276687 + 0.201025i
\(499\) −17.0859 + 12.4136i −0.764869 + 0.555710i −0.900400 0.435063i \(-0.856726\pi\)
0.135531 + 0.990773i \(0.456726\pi\)
\(500\) 0.309017 0.951057i 0.0138197 0.0425325i
\(501\) 0.0838274 0.257994i 0.00374513 0.0115263i
\(502\) 21.1104 15.3376i 0.942205 0.684552i
\(503\) 20.6562 + 15.0076i 0.921016 + 0.669157i 0.943777 0.330584i \(-0.107246\pi\)
−0.0227608 + 0.999741i \(0.507246\pi\)
\(504\) 0.656505 + 2.02052i 0.0292431 + 0.0900009i
\(505\) 3.16660 0.140912
\(506\) −7.27142 8.91822i −0.323254 0.396463i
\(507\) 6.25033 0.277587
\(508\) 1.13816 + 3.50290i 0.0504977 + 0.155416i
\(509\) 17.7986 + 12.9314i 0.788908 + 0.573175i 0.907639 0.419751i \(-0.137883\pi\)
−0.118731 + 0.992926i \(0.537883\pi\)
\(510\) −3.54724 + 2.57722i −0.157074 + 0.114121i
\(511\) −0.264324 + 0.813507i −0.0116930 + 0.0359874i
\(512\) −0.309017 + 0.951057i −0.0136568 + 0.0420312i
\(513\) −15.7321 + 11.4300i −0.694589 + 0.504649i
\(514\) 4.46524 + 3.24419i 0.196953 + 0.143095i
\(515\) 4.64992 + 14.3110i 0.204900 + 0.630617i
\(516\) 7.45826 0.328332
\(517\) 5.68981 + 1.50417i 0.250237 + 0.0661535i
\(518\) 4.92622 0.216446
\(519\) 3.01251 + 9.27156i 0.132235 + 0.406976i
\(520\) −2.03384 1.47767i −0.0891899 0.0648003i
\(521\) 22.2845 16.1906i 0.976300 0.709323i 0.0194213 0.999811i \(-0.493818\pi\)
0.956879 + 0.290488i \(0.0938176\pi\)
\(522\) −4.90057 + 15.0824i −0.214492 + 0.660139i
\(523\) 0.799929 2.46193i 0.0349785 0.107653i −0.932043 0.362348i \(-0.881975\pi\)
0.967021 + 0.254695i \(0.0819752\pi\)
\(524\) −6.93960 + 5.04191i −0.303158 + 0.220257i
\(525\) 0.756984 + 0.549981i 0.0330375 + 0.0240031i
\(526\) 8.39980 + 25.8519i 0.366249 + 1.12720i
\(527\) 7.24418 0.315561
\(528\) −1.68146 + 2.60830i −0.0731761 + 0.113512i
\(529\) −10.9629 −0.476647
\(530\) −2.20730 6.79337i −0.0958790 0.295085i
\(531\) −0.733628 0.533012i −0.0318367 0.0231307i
\(532\) −3.28100 + 2.38379i −0.142249 + 0.103350i
\(533\) −1.28243 + 3.94692i −0.0555483 + 0.170960i
\(534\) 0.289282 0.890317i 0.0125184 0.0385278i
\(535\) 11.6803 8.48626i 0.504985 0.366893i
\(536\) −4.84932 3.52324i −0.209459 0.152181i
\(537\) 4.31155 + 13.2696i 0.186057 + 0.572625i
\(538\) 8.14480 0.351147
\(539\) 0.184670 + 3.31148i 0.00795429 + 0.142636i
\(540\) 4.79491 0.206340
\(541\) 5.14492 + 15.8344i 0.221197 + 0.680775i 0.998655 + 0.0518404i \(0.0165087\pi\)
−0.777458 + 0.628935i \(0.783491\pi\)
\(542\) −5.10158 3.70651i −0.219131 0.159208i
\(543\) 3.31052 2.40523i 0.142068 0.103218i
\(544\) −1.44806 + 4.45667i −0.0620850 + 0.191078i
\(545\) −3.76595 + 11.5904i −0.161316 + 0.496479i
\(546\) 1.90303 1.38263i 0.0814423 0.0591713i
\(547\) 26.0712 + 18.9418i 1.11472 + 0.809895i 0.983401 0.181445i \(-0.0580774\pi\)
0.131323 + 0.991340i \(0.458077\pi\)
\(548\) 0.503965 + 1.55104i 0.0215283 + 0.0662573i
\(549\) −13.0699 −0.557811
\(550\) −0.184670 3.31148i −0.00787434 0.141202i
\(551\) −30.2731 −1.28968
\(552\) −1.00317 3.08742i −0.0426975 0.131410i
\(553\) 7.97835 + 5.79661i 0.339274 + 0.246497i
\(554\) −21.1474 + 15.3645i −0.898465 + 0.652773i
\(555\) 1.42438 4.38379i 0.0604615 0.186081i
\(556\) −7.16298 + 22.0454i −0.303778 + 0.934932i
\(557\) 35.1218 25.5175i 1.48816 1.08121i 0.513345 0.858183i \(-0.328406\pi\)
0.974812 0.223027i \(-0.0715937\pi\)
\(558\) −2.65705 1.93046i −0.112482 0.0817227i
\(559\) 6.19228 + 19.0579i 0.261906 + 0.806062i
\(560\) 1.00000 0.0422577
\(561\) −7.87934 + 12.2225i −0.332666 + 0.516036i
\(562\) −14.7356 −0.621586
\(563\) −3.72065 11.4510i −0.156807 0.482601i 0.841533 0.540206i \(-0.181654\pi\)
−0.998339 + 0.0576048i \(0.981654\pi\)
\(564\) 1.34325 + 0.975928i 0.0565610 + 0.0410940i
\(565\) 9.48931 6.89438i 0.399218 0.290049i
\(566\) −6.64572 + 20.4534i −0.279340 + 0.859721i
\(567\) 0.583107 1.79462i 0.0244882 0.0753669i
\(568\) 5.29034 3.84366i 0.221978 0.161276i
\(569\) 21.3099 + 15.4826i 0.893358 + 0.649063i 0.936751 0.349995i \(-0.113817\pi\)
−0.0433931 + 0.999058i \(0.513817\pi\)
\(570\) 1.17263 + 3.60898i 0.0491160 + 0.151163i
\(571\) 22.2032 0.929176 0.464588 0.885527i \(-0.346203\pi\)
0.464588 + 0.885527i \(0.346203\pi\)
\(572\) −8.06096 2.13102i −0.337046 0.0891024i
\(573\) 9.93670 0.415112
\(574\) −0.510123 1.57000i −0.0212921 0.0655304i
\(575\) 2.80685 + 2.03929i 0.117054 + 0.0850444i
\(576\) 1.71875 1.24875i 0.0716147 0.0520312i
\(577\) 10.4888 32.2812i 0.436654 1.34388i −0.454727 0.890631i \(-0.650263\pi\)
0.891382 0.453254i \(-0.149737\pi\)
\(578\) −1.53234 + 4.71606i −0.0637370 + 0.196162i
\(579\) 6.04183 4.38964i 0.251090 0.182427i
\(580\) 6.03901 + 4.38760i 0.250756 + 0.182185i
\(581\) −2.52057 7.75752i −0.104571 0.321836i
\(582\) 10.6049 0.439587
\(583\) −14.9705 18.3610i −0.620016 0.760434i
\(584\) 0.855372 0.0353955
\(585\) 1.65043 + 5.07951i 0.0682370 + 0.210012i
\(586\) −4.94798 3.59492i −0.204399 0.148505i
\(587\) 8.62007 6.26285i 0.355788 0.258495i −0.395505 0.918464i \(-0.629430\pi\)
0.751293 + 0.659968i \(0.229430\pi\)
\(588\) −0.289142 + 0.889888i −0.0119240 + 0.0366984i
\(589\) 1.93739 5.96267i 0.0798287 0.245687i
\(590\) −0.345318 + 0.250889i −0.0142165 + 0.0103289i
\(591\) −5.51554 4.00727i −0.226879 0.164837i
\(592\) −1.52229 4.68512i −0.0625656 0.192557i
\(593\) 44.1567 1.81330 0.906649 0.421886i \(-0.138632\pi\)
0.906649 + 0.421886i \(0.138632\pi\)
\(594\) 14.8275 5.74878i 0.608379 0.235875i
\(595\) 4.68602 0.192108
\(596\) −0.443087 1.36368i −0.0181495 0.0558586i
\(597\) 10.7380 + 7.80162i 0.439478 + 0.319299i
\(598\) 7.05632 5.12672i 0.288554 0.209647i
\(599\) 7.96094 24.5012i 0.325275 1.00109i −0.646041 0.763303i \(-0.723577\pi\)
0.971316 0.237791i \(-0.0764234\pi\)
\(600\) 0.289142 0.889888i 0.0118042 0.0363295i
\(601\) −39.4938 + 28.6939i −1.61099 + 1.17045i −0.750694 + 0.660651i \(0.770281\pi\)
−0.860293 + 0.509800i \(0.829719\pi\)
\(602\) −6.44861 4.68519i −0.262826 0.190954i
\(603\) 3.93515 + 12.1112i 0.160252 + 0.493205i
\(604\) 17.7952 0.724075
\(605\) −4.54131 10.0188i −0.184630 0.407322i
\(606\) 2.96293 0.120361
\(607\) −7.23450 22.2655i −0.293639 0.903729i −0.983675 0.179954i \(-0.942405\pi\)
0.690036 0.723775i \(-0.257595\pi\)
\(608\) 3.28100 + 2.38379i 0.133062 + 0.0966753i
\(609\) −5.65060 + 4.10540i −0.228974 + 0.166359i
\(610\) −1.90107 + 5.85091i −0.0769723 + 0.236896i
\(611\) −1.37852 + 4.24264i −0.0557689 + 0.171639i
\(612\) 8.05411 5.85165i 0.325568 0.236539i
\(613\) 27.8250 + 20.2160i 1.12384 + 0.816518i 0.984787 0.173767i \(-0.0555940\pi\)
0.139054 + 0.990285i \(0.455594\pi\)
\(614\) −7.68589 23.6547i −0.310177 0.954628i
\(615\) −1.54462 −0.0622851
\(616\) 3.09234 1.19893i 0.124594 0.0483065i
\(617\) −33.9149 −1.36536 −0.682681 0.730717i \(-0.739186\pi\)
−0.682681 + 0.730717i \(0.739186\pi\)
\(618\) 4.35085 + 13.3905i 0.175017 + 0.538647i
\(619\) 37.6422 + 27.3487i 1.51297 + 1.09924i 0.964839 + 0.262842i \(0.0846598\pi\)
0.548129 + 0.836394i \(0.315340\pi\)
\(620\) −1.25067 + 0.908665i −0.0502281 + 0.0364929i
\(621\) −5.14072 + 15.8215i −0.206290 + 0.634895i
\(622\) −1.04431 + 3.21406i −0.0418730 + 0.128872i
\(623\) −0.809408 + 0.588069i −0.0324282 + 0.0235605i
\(624\) −1.90303 1.38263i −0.0761823 0.0553497i
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 20.7401 0.828941
\(627\) 7.95309 + 9.75427i 0.317616 + 0.389548i
\(628\) −7.29144 −0.290960
\(629\) −7.13346 21.9545i −0.284430 0.875385i
\(630\) −1.71875 1.24875i −0.0684768 0.0497513i
\(631\) 39.7337 28.8683i 1.58178 1.14923i 0.667151 0.744923i \(-0.267514\pi\)
0.914625 0.404304i \(-0.132486\pi\)
\(632\) 3.04746 9.37911i 0.121221 0.373081i
\(633\) 6.73037 20.7140i 0.267508 0.823306i
\(634\) 6.03688 4.38605i 0.239755 0.174192i
\(635\) −2.97974 2.16491i −0.118247 0.0859118i
\(636\) −2.06533 6.35644i −0.0818958 0.252049i
\(637\) −2.51397 −0.0996070
\(638\) 23.9351 + 6.32756i 0.947600 + 0.250510i
\(639\) −13.8926 −0.549581
\(640\) −0.309017 0.951057i −0.0122150 0.0375938i
\(641\) 8.56092 + 6.21987i 0.338136 + 0.245670i 0.743875 0.668319i \(-0.232986\pi\)
−0.405739 + 0.913989i \(0.632986\pi\)
\(642\) 10.9291 7.94046i 0.431337 0.313385i
\(643\) −8.40839 + 25.8784i −0.331594 + 1.02054i 0.636781 + 0.771045i \(0.280266\pi\)
−0.968375 + 0.249498i \(0.919734\pi\)
\(644\) −1.07212 + 3.29965i −0.0422475 + 0.130024i
\(645\) −6.03386 + 4.38385i −0.237583 + 0.172614i
\(646\) 15.3748 + 11.1705i 0.604915 + 0.439496i
\(647\) −10.0973 31.0763i −0.396966 1.22174i −0.927420 0.374022i \(-0.877979\pi\)
0.530454 0.847714i \(-0.322021\pi\)
\(648\) −1.88697 −0.0741273
\(649\) −0.767042 + 1.18985i −0.0301090 + 0.0467056i
\(650\) 2.51397 0.0986059
\(651\) −0.446989 1.37569i −0.0175189 0.0539175i
\(652\) −7.61531 5.53285i −0.298239 0.216683i
\(653\) 29.0216 21.0854i 1.13570 0.825137i 0.149189 0.988809i \(-0.452334\pi\)
0.986515 + 0.163671i \(0.0523336\pi\)
\(654\) −3.52374 + 10.8450i −0.137789 + 0.424071i
\(655\) 2.65069 8.15799i 0.103571 0.318759i
\(656\) −1.33552 + 0.970311i −0.0521433 + 0.0378843i
\(657\) −1.47017 1.06814i −0.0573569 0.0416722i
\(658\) −0.548343 1.68763i −0.0213767 0.0657906i
\(659\) −2.91875 −0.113698 −0.0568492 0.998383i \(-0.518105\pi\)
−0.0568492 + 0.998383i \(0.518105\pi\)
\(660\) −0.172792 3.09850i −0.00672594 0.120609i
\(661\) −45.9224 −1.78617 −0.893087 0.449883i \(-0.851466\pi\)
−0.893087 + 0.449883i \(0.851466\pi\)
\(662\) 2.55465 + 7.86240i 0.0992892 + 0.305581i
\(663\) −8.91765 6.47905i −0.346333 0.251625i
\(664\) −6.59894 + 4.79441i −0.256089 + 0.186059i
\(665\) 1.25323 3.85705i 0.0485982 0.149570i
\(666\) −3.23409 + 9.95351i −0.125319 + 0.385691i
\(667\) −20.9521 + 15.2226i −0.811268 + 0.589420i
\(668\) 0.234548 + 0.170409i 0.00907495 + 0.00659334i
\(669\) 2.34132 + 7.20585i 0.0905208 + 0.278594i
\(670\) 5.99409 0.231572
\(671\) 1.13609 + 20.3722i 0.0438583 + 0.786462i
\(672\) 0.935683 0.0360948
\(673\) −5.28949 16.2794i −0.203895 0.627524i −0.999757 0.0220461i \(-0.992982\pi\)
0.795862 0.605478i \(-0.207018\pi\)
\(674\) 0.250073 + 0.181688i 0.00963244 + 0.00699838i
\(675\) −3.87916 + 2.81838i −0.149309 + 0.108479i
\(676\) −2.06422 + 6.35303i −0.0793932 + 0.244347i
\(677\) −0.0956622 + 0.294418i −0.00367660 + 0.0113154i −0.952878 0.303354i \(-0.901894\pi\)
0.949201 + 0.314669i \(0.101894\pi\)
\(678\) 8.87899 6.45096i 0.340995 0.247748i
\(679\) −9.16927 6.66186i −0.351884 0.255659i
\(680\) −1.44806 4.45667i −0.0555305 0.170905i
\(681\) 17.6240 0.675352
\(682\) −2.77807 + 4.30937i −0.106378 + 0.165014i
\(683\) 44.6187 1.70729 0.853644 0.520856i \(-0.174387\pi\)
0.853644 + 0.520856i \(0.174387\pi\)
\(684\) −2.66249 8.19429i −0.101803 0.313316i
\(685\) −1.31940 0.958598i −0.0504116 0.0366261i
\(686\) 0.809017 0.587785i 0.0308884 0.0224417i
\(687\) −3.14359 + 9.67498i −0.119935 + 0.369123i
\(688\) −2.46315 + 7.58080i −0.0939067 + 0.289015i
\(689\) 14.5277 10.5550i 0.553460 0.402113i
\(690\) 2.62632 + 1.90813i 0.0999823 + 0.0726414i
\(691\) 0.570571 + 1.75604i 0.0217055 + 0.0668027i 0.961323 0.275425i \(-0.0888186\pi\)
−0.939617 + 0.342228i \(0.888819\pi\)
\(692\) −10.4188 −0.396063
\(693\) −6.81213 1.80088i −0.258772 0.0684096i
\(694\) 6.12313 0.232431
\(695\) −7.16298 22.0454i −0.271707 0.836229i
\(696\) 5.65060 + 4.10540i 0.214186 + 0.155615i
\(697\) −6.25827 + 4.54690i −0.237049 + 0.172226i
\(698\) −6.11353 + 18.8155i −0.231400 + 0.712177i
\(699\) 2.59545 7.98798i 0.0981690 0.302133i
\(700\) −0.809017 + 0.587785i −0.0305780 + 0.0222162i
\(701\) 11.2934 + 8.20515i 0.426546 + 0.309904i 0.780266 0.625447i \(-0.215083\pi\)
−0.353720 + 0.935351i \(0.615083\pi\)
\(702\) 3.72497 + 11.4643i 0.140590 + 0.432691i
\(703\) −19.9785 −0.753503
\(704\) −2.09584 2.57050i −0.0789899 0.0968793i
\(705\) −1.66035 −0.0625323
\(706\) 9.52563 + 29.3169i 0.358502 + 1.10336i
\(707\) −2.56183 1.86128i −0.0963476 0.0700007i
\(708\) −0.323109 + 0.234752i −0.0121432 + 0.00882253i
\(709\) −3.78408 + 11.6462i −0.142114 + 0.437382i −0.996629 0.0820453i \(-0.973855\pi\)
0.854515 + 0.519428i \(0.173855\pi\)
\(710\) −2.02073 + 6.21917i −0.0758367 + 0.233401i
\(711\) −16.9500 + 12.3149i −0.635674 + 0.461844i
\(712\) 0.809408 + 0.588069i 0.0303338 + 0.0220388i
\(713\) −1.65741 5.10097i −0.0620703 0.191033i
\(714\) 4.38463 0.164091
\(715\) 7.77404 3.01408i 0.290733 0.112720i
\(716\) −14.9115 −0.557270
\(717\) 2.82817 + 8.70422i 0.105620 + 0.325065i
\(718\) 20.4221 + 14.8375i 0.762146 + 0.553731i
\(719\) 9.35473 6.79661i 0.348873 0.253471i −0.399523 0.916723i \(-0.630824\pi\)
0.748396 + 0.663252i \(0.230824\pi\)
\(720\) −0.656505 + 2.02052i −0.0244665 + 0.0753002i
\(721\) 4.64992 14.3110i 0.173172 0.532969i
\(722\) −2.06508 + 1.50037i −0.0768545 + 0.0558380i
\(723\) 17.7024 + 12.8616i 0.658360 + 0.478326i
\(724\) 1.35143 + 4.15926i 0.0502253 + 0.154578i
\(725\) −7.46463 −0.277229
\(726\) −4.24923 9.37443i −0.157704 0.347918i
\(727\) −11.2457 −0.417080 −0.208540 0.978014i \(-0.566871\pi\)
−0.208540 + 0.978014i \(0.566871\pi\)
\(728\) 0.776859 + 2.39093i 0.0287923 + 0.0886136i
\(729\) −7.64576 5.55497i −0.283176 0.205740i
\(730\) −0.692010 + 0.502775i −0.0256125 + 0.0186085i
\(731\) −11.5424 + 35.5237i −0.426910 + 1.31389i
\(732\) −1.77880 + 5.47460i −0.0657465 + 0.202347i
\(733\) 10.7782 7.83082i 0.398102 0.289238i −0.370665 0.928766i \(-0.620870\pi\)
0.768767 + 0.639528i \(0.220870\pi\)
\(734\) −7.17619 5.21380i −0.264878 0.192445i
\(735\) −0.289142 0.889888i −0.0106652 0.0328240i
\(736\) 3.46945 0.127886
\(737\) 18.5358 7.18653i 0.682773 0.264719i
\(738\) 3.50710 0.129098
\(739\) −13.1336 40.4210i −0.483127 1.48691i −0.834675 0.550742i \(-0.814345\pi\)
0.351548 0.936170i \(-0.385655\pi\)
\(740\) 3.98540 + 2.89556i 0.146506 + 0.106443i
\(741\) −7.71783 + 5.60733i −0.283522 + 0.205990i
\(742\) −2.20730 + 6.79337i −0.0810325 + 0.249392i
\(743\) 6.82541 21.0064i 0.250400 0.770652i −0.744301 0.667844i \(-0.767217\pi\)
0.994701 0.102808i \(-0.0327827\pi\)
\(744\) −1.17023 + 0.850223i −0.0429028 + 0.0311707i
\(745\) 1.16002 + 0.842802i 0.0424997 + 0.0308779i
\(746\) 7.13398 + 21.9561i 0.261193 + 0.803871i
\(747\) 17.3290 0.634034
\(748\) −9.82114 12.0454i −0.359097 0.440423i
\(749\) −14.4377 −0.527542
\(750\) 0.289142 + 0.889888i 0.0105580 + 0.0324941i
\(751\) −16.3987 11.9143i −0.598395 0.434760i 0.246914 0.969037i \(-0.420584\pi\)
−0.845309 + 0.534278i \(0.820584\pi\)
\(752\) −1.43558 + 1.04301i −0.0523503 + 0.0380347i
\(753\) −7.54486 + 23.2207i −0.274950 + 0.846209i
\(754\) −5.79896 + 17.8474i −0.211186 + 0.649963i
\(755\) −14.3966 + 10.4597i −0.523945 + 0.380669i
\(756\) −3.87916 2.81838i −0.141084 0.102503i
\(757\) −1.70285 5.24083i −0.0618911 0.190481i 0.915330 0.402704i \(-0.131930\pi\)
−0.977221 + 0.212223i \(0.931930\pi\)
\(758\) −31.6315 −1.14891
\(759\) 10.4092 + 2.75181i 0.377830 + 0.0998843i
\(760\) −4.05554 −0.147110
\(761\) 10.4972 + 32.3070i 0.380523 + 1.17113i 0.939676 + 0.342065i \(0.111126\pi\)
−0.559153 + 0.829064i \(0.688874\pi\)
\(762\) −2.78809 2.02567i −0.101002 0.0733823i
\(763\) 9.85939 7.16327i 0.356934 0.259328i
\(764\) −3.28168 + 10.1000i −0.118727 + 0.365404i
\(765\) −3.07640 + 9.46817i −0.111227 + 0.342323i
\(766\) 1.49656 1.08731i 0.0540729 0.0392862i
\(767\) −0.868119 0.630726i −0.0313460 0.0227742i
\(768\) −0.289142 0.889888i −0.0104335 0.0321111i
\(769\) 0.669422 0.0241400 0.0120700 0.999927i \(-0.496158\pi\)
0.0120700 + 0.999927i \(0.496158\pi\)
\(770\) −1.79704 + 2.78759i −0.0647608 + 0.100458i
\(771\) −5.16436 −0.185990