Properties

Label 770.2.n.j.421.3
Level $770$
Weight $2$
Character 770.421
Analytic conductor $6.148$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 2 x^{11} + 11 x^{10} - 11 x^{9} + 39 x^{8} - 43 x^{7} + 99 x^{6} + 36 x^{5} + 431 x^{4} - 350 x^{3} + 510 x^{2} - 175 x + 25\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 421.3
Root \(1.66582 - 1.21029i\) of defining polynomial
Character \(\chi\) \(=\) 770.421
Dual form 770.2.n.j.631.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{2} +(0.636285 + 1.95828i) q^{3} +(0.309017 - 0.951057i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(1.66582 + 1.21029i) q^{6} +(0.309017 - 0.951057i) q^{7} +(-0.309017 - 0.951057i) q^{8} +(-1.00297 + 0.728698i) q^{9} +O(q^{10})\) \(q+(0.809017 - 0.587785i) q^{2} +(0.636285 + 1.95828i) q^{3} +(0.309017 - 0.951057i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(1.66582 + 1.21029i) q^{6} +(0.309017 - 0.951057i) q^{7} +(-0.309017 - 0.951057i) q^{8} +(-1.00297 + 0.728698i) q^{9} -1.00000 q^{10} +(1.76927 + 2.80530i) q^{11} +2.05906 q^{12} +(1.83855 - 1.33578i) q^{13} +(-0.309017 - 0.951057i) q^{14} +(0.636285 - 1.95828i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(6.02629 + 4.37835i) q^{17} +(-0.383099 + 1.17906i) q^{18} +(-0.263232 - 0.810144i) q^{19} +(-0.809017 + 0.587785i) q^{20} +2.05906 q^{21} +(3.08028 + 1.22959i) q^{22} +0.651398 q^{23} +(1.66582 - 1.21029i) q^{24} +(0.309017 + 0.951057i) q^{25} +(0.702263 - 2.16134i) q^{26} +(2.93228 + 2.13042i) q^{27} +(-0.809017 - 0.587785i) q^{28} +(0.731260 - 2.25059i) q^{29} +(-0.636285 - 1.95828i) q^{30} +(0.117329 - 0.0852442i) q^{31} -1.00000 q^{32} +(-4.36781 + 5.24969i) q^{33} +7.44890 q^{34} +(-0.809017 + 0.587785i) q^{35} +(0.383099 + 1.17906i) q^{36} +(0.719116 - 2.21321i) q^{37} +(-0.689150 - 0.500697i) q^{38} +(3.78568 + 2.75046i) q^{39} +(-0.309017 + 0.951057i) q^{40} +(1.43449 + 4.41491i) q^{41} +(1.66582 - 1.21029i) q^{42} -11.7588 q^{43} +(3.21473 - 0.815786i) q^{44} +1.23973 q^{45} +(0.526992 - 0.382882i) q^{46} +(-1.63018 - 5.01717i) q^{47} +(0.636285 - 1.95828i) q^{48} +(-0.809017 - 0.587785i) q^{49} +(0.809017 + 0.587785i) q^{50} +(-4.73962 + 14.5871i) q^{51} +(-0.702263 - 2.16134i) q^{52} +(0.778794 - 0.565827i) q^{53} +3.62450 q^{54} +(0.217548 - 3.30948i) q^{55} -1.00000 q^{56} +(1.41900 - 1.03097i) q^{57} +(-0.731260 - 2.25059i) q^{58} +(0.322293 - 0.991917i) q^{59} +(-1.66582 - 1.21029i) q^{60} +(2.90344 + 2.10947i) q^{61} +(0.0448155 - 0.137928i) q^{62} +(0.383099 + 1.17906i) q^{63} +(-0.809017 + 0.587785i) q^{64} -2.27257 q^{65} +(-0.447944 + 6.81443i) q^{66} -0.430333 q^{67} +(6.02629 - 4.37835i) q^{68} +(0.414475 + 1.27562i) q^{69} +(-0.309017 + 0.951057i) q^{70} +(-8.60669 - 6.25312i) q^{71} +(1.00297 + 0.728698i) q^{72} +(-0.359240 + 1.10563i) q^{73} +(-0.719116 - 2.21321i) q^{74} +(-1.66582 + 1.21029i) q^{75} -0.851836 q^{76} +(3.21473 - 0.815786i) q^{77} +4.67936 q^{78} +(-8.66195 + 6.29328i) q^{79} +(0.309017 + 0.951057i) q^{80} +(-3.45551 + 10.6350i) q^{81} +(3.75555 + 2.72857i) q^{82} +(-0.876708 - 0.636966i) q^{83} +(0.636285 - 1.95828i) q^{84} +(-2.30184 - 7.08432i) q^{85} +(-9.51309 + 6.91166i) q^{86} +4.87258 q^{87} +(2.12126 - 2.54956i) q^{88} +3.73563 q^{89} +(1.00297 - 0.728698i) q^{90} +(-0.702263 - 2.16134i) q^{91} +(0.201293 - 0.619516i) q^{92} +(0.241587 + 0.175523i) q^{93} +(-4.26786 - 3.10078i) q^{94} +(-0.263232 + 0.810144i) q^{95} +(-0.636285 - 1.95828i) q^{96} +(1.19721 - 0.869822i) q^{97} -1.00000 q^{98} +(-3.81873 - 1.52436i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} + 3 q^{3} - 3 q^{4} - 3 q^{5} + 2 q^{6} - 3 q^{7} + 3 q^{8} + 6 q^{9} + O(q^{10}) \) \( 12 q + 3 q^{2} + 3 q^{3} - 3 q^{4} - 3 q^{5} + 2 q^{6} - 3 q^{7} + 3 q^{8} + 6 q^{9} - 12 q^{10} - q^{11} - 2 q^{12} + 2 q^{13} + 3 q^{14} + 3 q^{15} - 3 q^{16} + 7 q^{17} + 9 q^{18} + 6 q^{19} - 3 q^{20} - 2 q^{21} + q^{22} + 8 q^{23} + 2 q^{24} - 3 q^{25} - 7 q^{26} - 3 q^{27} - 3 q^{28} + 20 q^{29} - 3 q^{30} + 6 q^{31} - 12 q^{32} - 12 q^{33} + 18 q^{34} - 3 q^{35} - 9 q^{36} + 22 q^{37} - 6 q^{38} + 23 q^{39} + 3 q^{40} + 2 q^{41} + 2 q^{42} - 60 q^{43} - 11 q^{44} + 6 q^{45} + 2 q^{46} - 4 q^{47} + 3 q^{48} - 3 q^{49} + 3 q^{50} + 13 q^{51} + 7 q^{52} + 18 q^{53} + 8 q^{54} + 14 q^{55} - 12 q^{56} + 8 q^{57} - 20 q^{58} - 32 q^{59} - 2 q^{60} + 8 q^{61} + 14 q^{62} - 9 q^{63} - 3 q^{64} - 18 q^{65} - 8 q^{66} + 36 q^{67} + 7 q^{68} + 50 q^{69} + 3 q^{70} - 34 q^{71} - 6 q^{72} + 14 q^{73} - 22 q^{74} - 2 q^{75} - 24 q^{76} - 11 q^{77} - 38 q^{78} - 12 q^{79} - 3 q^{80} + 4 q^{81} - 2 q^{82} + 30 q^{83} + 3 q^{84} + 2 q^{85} - 28 q^{87} + q^{88} - 36 q^{89} - 6 q^{90} + 7 q^{91} - 2 q^{92} + 12 q^{93} - 11 q^{94} + 6 q^{95} - 3 q^{96} + 39 q^{97} - 12 q^{98} - 15 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 0.587785i 0.572061 0.415627i
\(3\) 0.636285 + 1.95828i 0.367359 + 1.13062i 0.948490 + 0.316806i \(0.102610\pi\)
−0.581131 + 0.813810i \(0.697390\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 1.66582 + 1.21029i 0.680066 + 0.494097i
\(7\) 0.309017 0.951057i 0.116797 0.359466i
\(8\) −0.309017 0.951057i −0.109254 0.336249i
\(9\) −1.00297 + 0.728698i −0.334322 + 0.242899i
\(10\) −1.00000 −0.316228
\(11\) 1.76927 + 2.80530i 0.533454 + 0.845829i
\(12\) 2.05906 0.594400
\(13\) 1.83855 1.33578i 0.509921 0.370480i −0.302872 0.953031i \(-0.597946\pi\)
0.812794 + 0.582552i \(0.197946\pi\)
\(14\) −0.309017 0.951057i −0.0825883 0.254181i
\(15\) 0.636285 1.95828i 0.164288 0.505627i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 6.02629 + 4.37835i 1.46159 + 1.06191i 0.982945 + 0.183897i \(0.0588714\pi\)
0.478644 + 0.878009i \(0.341129\pi\)
\(18\) −0.383099 + 1.17906i −0.0902973 + 0.277907i
\(19\) −0.263232 0.810144i −0.0603895 0.185860i 0.916311 0.400468i \(-0.131152\pi\)
−0.976700 + 0.214608i \(0.931152\pi\)
\(20\) −0.809017 + 0.587785i −0.180902 + 0.131433i
\(21\) 2.05906 0.449324
\(22\) 3.08028 + 1.22959i 0.656718 + 0.262149i
\(23\) 0.651398 0.135826 0.0679130 0.997691i \(-0.478366\pi\)
0.0679130 + 0.997691i \(0.478366\pi\)
\(24\) 1.66582 1.21029i 0.340033 0.247049i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0.702263 2.16134i 0.137725 0.423874i
\(27\) 2.93228 + 2.13042i 0.564317 + 0.410000i
\(28\) −0.809017 0.587785i −0.152890 0.111081i
\(29\) 0.731260 2.25059i 0.135792 0.417923i −0.859921 0.510428i \(-0.829487\pi\)
0.995712 + 0.0925042i \(0.0294871\pi\)
\(30\) −0.636285 1.95828i −0.116169 0.357532i
\(31\) 0.117329 0.0852442i 0.0210728 0.0153103i −0.577199 0.816604i \(-0.695854\pi\)
0.598272 + 0.801293i \(0.295854\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.36781 + 5.24969i −0.760339 + 0.913854i
\(34\) 7.44890 1.27748
\(35\) −0.809017 + 0.587785i −0.136749 + 0.0993538i
\(36\) 0.383099 + 1.17906i 0.0638498 + 0.196510i
\(37\) 0.719116 2.21321i 0.118222 0.363850i −0.874383 0.485236i \(-0.838734\pi\)
0.992605 + 0.121386i \(0.0387338\pi\)
\(38\) −0.689150 0.500697i −0.111795 0.0812237i
\(39\) 3.78568 + 2.75046i 0.606194 + 0.440426i
\(40\) −0.309017 + 0.951057i −0.0488599 + 0.150375i
\(41\) 1.43449 + 4.41491i 0.224030 + 0.689494i 0.998389 + 0.0567466i \(0.0180727\pi\)
−0.774359 + 0.632747i \(0.781927\pi\)
\(42\) 1.66582 1.21029i 0.257041 0.186751i
\(43\) −11.7588 −1.79320 −0.896602 0.442837i \(-0.853972\pi\)
−0.896602 + 0.442837i \(0.853972\pi\)
\(44\) 3.21473 0.815786i 0.484639 0.122984i
\(45\) 1.23973 0.184809
\(46\) 0.526992 0.382882i 0.0777008 0.0564529i
\(47\) −1.63018 5.01717i −0.237786 0.731829i −0.996740 0.0806850i \(-0.974289\pi\)
0.758954 0.651144i \(-0.225711\pi\)
\(48\) 0.636285 1.95828i 0.0918398 0.282654i
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 0.809017 + 0.587785i 0.114412 + 0.0831254i
\(51\) −4.73962 + 14.5871i −0.663680 + 2.04260i
\(52\) −0.702263 2.16134i −0.0973863 0.299724i
\(53\) 0.778794 0.565827i 0.106976 0.0777223i −0.533011 0.846108i \(-0.678940\pi\)
0.639987 + 0.768386i \(0.278940\pi\)
\(54\) 3.62450 0.493231
\(55\) 0.217548 3.30948i 0.0293341 0.446251i
\(56\) −1.00000 −0.133631
\(57\) 1.41900 1.03097i 0.187951 0.136555i
\(58\) −0.731260 2.25059i −0.0960191 0.295516i
\(59\) 0.322293 0.991917i 0.0419590 0.129137i −0.927883 0.372872i \(-0.878373\pi\)
0.969842 + 0.243736i \(0.0783730\pi\)
\(60\) −1.66582 1.21029i −0.215056 0.156247i
\(61\) 2.90344 + 2.10947i 0.371747 + 0.270090i 0.757935 0.652330i \(-0.226208\pi\)
−0.386188 + 0.922420i \(0.626208\pi\)
\(62\) 0.0448155 0.137928i 0.00569158 0.0175169i
\(63\) 0.383099 + 1.17906i 0.0482659 + 0.148547i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −2.27257 −0.281878
\(66\) −0.447944 + 6.81443i −0.0551381 + 0.838798i
\(67\) −0.430333 −0.0525735 −0.0262868 0.999654i \(-0.508368\pi\)
−0.0262868 + 0.999654i \(0.508368\pi\)
\(68\) 6.02629 4.37835i 0.730795 0.530953i
\(69\) 0.414475 + 1.27562i 0.0498969 + 0.153567i
\(70\) −0.309017 + 0.951057i −0.0369346 + 0.113673i
\(71\) −8.60669 6.25312i −1.02143 0.742109i −0.0548510 0.998495i \(-0.517468\pi\)
−0.966575 + 0.256385i \(0.917468\pi\)
\(72\) 1.00297 + 0.728698i 0.118201 + 0.0858778i
\(73\) −0.359240 + 1.10563i −0.0420459 + 0.129404i −0.969876 0.243599i \(-0.921672\pi\)
0.927830 + 0.373003i \(0.121672\pi\)
\(74\) −0.719116 2.21321i −0.0835956 0.257281i
\(75\) −1.66582 + 1.21029i −0.192352 + 0.139752i
\(76\) −0.851836 −0.0977123
\(77\) 3.21473 0.815786i 0.366353 0.0929675i
\(78\) 4.67936 0.529833
\(79\) −8.66195 + 6.29328i −0.974546 + 0.708049i −0.956483 0.291788i \(-0.905750\pi\)
−0.0180630 + 0.999837i \(0.505750\pi\)
\(80\) 0.309017 + 0.951057i 0.0345492 + 0.106331i
\(81\) −3.45551 + 10.6350i −0.383945 + 1.18166i
\(82\) 3.75555 + 2.72857i 0.414731 + 0.301320i
\(83\) −0.876708 0.636966i −0.0962312 0.0699161i 0.538629 0.842543i \(-0.318942\pi\)
−0.634860 + 0.772627i \(0.718942\pi\)
\(84\) 0.636285 1.95828i 0.0694244 0.213666i
\(85\) −2.30184 7.08432i −0.249669 0.768403i
\(86\) −9.51309 + 6.91166i −1.02582 + 0.745304i
\(87\) 4.87258 0.522395
\(88\) 2.12126 2.54956i 0.226128 0.271784i
\(89\) 3.73563 0.395976 0.197988 0.980204i \(-0.436559\pi\)
0.197988 + 0.980204i \(0.436559\pi\)
\(90\) 1.00297 0.728698i 0.105722 0.0768115i
\(91\) −0.702263 2.16134i −0.0736171 0.226570i
\(92\) 0.201293 0.619516i 0.0209863 0.0645891i
\(93\) 0.241587 + 0.175523i 0.0250514 + 0.0182009i
\(94\) −4.26786 3.10078i −0.440196 0.319821i
\(95\) −0.263232 + 0.810144i −0.0270070 + 0.0831190i
\(96\) −0.636285 1.95828i −0.0649406 0.199867i
\(97\) 1.19721 0.869822i 0.121558 0.0883170i −0.525345 0.850889i \(-0.676064\pi\)
0.646903 + 0.762572i \(0.276064\pi\)
\(98\) −1.00000 −0.101015
\(99\) −3.81873 1.52436i −0.383797 0.153204i
\(100\) 1.00000 0.100000
\(101\) 11.2876 8.20093i 1.12316 0.816023i 0.138474 0.990366i \(-0.455780\pi\)
0.984685 + 0.174343i \(0.0557802\pi\)
\(102\) 4.73962 + 14.5871i 0.469293 + 1.44433i
\(103\) −0.434349 + 1.33679i −0.0427977 + 0.131718i −0.970172 0.242416i \(-0.922060\pi\)
0.927375 + 0.374134i \(0.122060\pi\)
\(104\) −1.83855 1.33578i −0.180284 0.130984i
\(105\) −1.66582 1.21029i −0.162567 0.118112i
\(106\) 0.297473 0.915528i 0.0288931 0.0889239i
\(107\) −5.84913 18.0018i −0.565456 1.74030i −0.666592 0.745423i \(-0.732248\pi\)
0.101136 0.994873i \(-0.467752\pi\)
\(108\) 2.93228 2.13042i 0.282159 0.205000i
\(109\) −10.8423 −1.03850 −0.519252 0.854621i \(-0.673789\pi\)
−0.519252 + 0.854621i \(0.673789\pi\)
\(110\) −1.76927 2.80530i −0.168693 0.267475i
\(111\) 4.79166 0.454804
\(112\) −0.809017 + 0.587785i −0.0764449 + 0.0555405i
\(113\) −5.30300 16.3209i −0.498864 1.53535i −0.810847 0.585258i \(-0.800993\pi\)
0.311983 0.950088i \(-0.399007\pi\)
\(114\) 0.542010 1.66814i 0.0507639 0.156235i
\(115\) −0.526992 0.382882i −0.0491423 0.0357040i
\(116\) −1.91446 1.39094i −0.177753 0.129145i
\(117\) −0.870619 + 2.67949i −0.0804888 + 0.247719i
\(118\) −0.322293 0.991917i −0.0296695 0.0913134i
\(119\) 6.02629 4.37835i 0.552429 0.401363i
\(120\) −2.05906 −0.187966
\(121\) −4.73940 + 9.92663i −0.430855 + 0.902421i
\(122\) 3.58885 0.324919
\(123\) −7.73291 + 5.61829i −0.697253 + 0.506584i
\(124\) −0.0448155 0.137928i −0.00402456 0.0123863i
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 1.00297 + 0.728698i 0.0893513 + 0.0649175i
\(127\) −8.99528 6.53545i −0.798202 0.579927i 0.112184 0.993687i \(-0.464215\pi\)
−0.910386 + 0.413760i \(0.864215\pi\)
\(128\) −0.309017 + 0.951057i −0.0273135 + 0.0840623i
\(129\) −7.48197 23.0271i −0.658750 2.02742i
\(130\) −1.83855 + 1.33578i −0.161251 + 0.117156i
\(131\) −10.9162 −0.953749 −0.476874 0.878971i \(-0.658230\pi\)
−0.476874 + 0.878971i \(0.658230\pi\)
\(132\) 3.64303 + 5.77628i 0.317085 + 0.502761i
\(133\) −0.851836 −0.0738635
\(134\) −0.348147 + 0.252943i −0.0300753 + 0.0218510i
\(135\) −1.12003 3.44710i −0.0963969 0.296679i
\(136\) 2.30184 7.08432i 0.197381 0.607476i
\(137\) 3.89426 + 2.82935i 0.332709 + 0.241727i 0.741579 0.670865i \(-0.234077\pi\)
−0.408870 + 0.912593i \(0.634077\pi\)
\(138\) 1.08511 + 0.788378i 0.0923706 + 0.0671112i
\(139\) −3.13442 + 9.64676i −0.265858 + 0.818228i 0.725636 + 0.688079i \(0.241546\pi\)
−0.991494 + 0.130149i \(0.958454\pi\)
\(140\) 0.309017 + 0.951057i 0.0261167 + 0.0803789i
\(141\) 8.78779 6.38470i 0.740065 0.537689i
\(142\) −10.6384 −0.892759
\(143\) 7.00015 + 2.79432i 0.585382 + 0.233673i
\(144\) 1.23973 0.103311
\(145\) −1.91446 + 1.39094i −0.158988 + 0.115511i
\(146\) 0.359240 + 1.10563i 0.0297309 + 0.0915023i
\(147\) 0.636285 1.95828i 0.0524799 0.161517i
\(148\) −1.88267 1.36784i −0.154755 0.112436i
\(149\) −1.52445 1.10758i −0.124888 0.0907362i 0.523588 0.851972i \(-0.324593\pi\)
−0.648476 + 0.761235i \(0.724593\pi\)
\(150\) −0.636285 + 1.95828i −0.0519525 + 0.159893i
\(151\) 4.44445 + 13.6786i 0.361684 + 1.11315i 0.952031 + 0.306001i \(0.0989910\pi\)
−0.590347 + 0.807150i \(0.701009\pi\)
\(152\) −0.689150 + 0.500697i −0.0558974 + 0.0406119i
\(153\) −9.23466 −0.746578
\(154\) 2.12126 2.54956i 0.170936 0.205449i
\(155\) −0.145026 −0.0116488
\(156\) 3.78568 2.75046i 0.303097 0.220213i
\(157\) −3.91186 12.0395i −0.312200 0.960853i −0.976892 0.213735i \(-0.931437\pi\)
0.664692 0.747118i \(-0.268563\pi\)
\(158\) −3.30857 + 10.1827i −0.263216 + 0.810095i
\(159\) 1.60359 + 1.16507i 0.127173 + 0.0923963i
\(160\) 0.809017 + 0.587785i 0.0639584 + 0.0464685i
\(161\) 0.201293 0.619516i 0.0158641 0.0488247i
\(162\) 3.45551 + 10.6350i 0.271490 + 0.835562i
\(163\) 7.24298 5.26234i 0.567314 0.412178i −0.266814 0.963748i \(-0.585971\pi\)
0.834129 + 0.551570i \(0.185971\pi\)
\(164\) 4.64211 0.362488
\(165\) 6.61933 1.67975i 0.515314 0.130769i
\(166\) −1.08367 −0.0841091
\(167\) −5.14911 + 3.74104i −0.398450 + 0.289491i −0.768909 0.639358i \(-0.779200\pi\)
0.370459 + 0.928849i \(0.379200\pi\)
\(168\) −0.636285 1.95828i −0.0490905 0.151085i
\(169\) −2.42128 + 7.45193i −0.186252 + 0.573226i
\(170\) −6.02629 4.37835i −0.462195 0.335804i
\(171\) 0.854363 + 0.620731i 0.0653347 + 0.0474685i
\(172\) −3.63368 + 11.1833i −0.277065 + 0.852719i
\(173\) −7.54711 23.2276i −0.573796 1.76596i −0.640243 0.768173i \(-0.721166\pi\)
0.0664468 0.997790i \(-0.478834\pi\)
\(174\) 3.94200 2.86403i 0.298842 0.217121i
\(175\) 1.00000 0.0755929
\(176\) 0.217548 3.30948i 0.0163983 0.249462i
\(177\) 2.14753 0.161418
\(178\) 3.02219 2.19575i 0.226522 0.164578i
\(179\) 1.79467 + 5.52343i 0.134140 + 0.412840i 0.995455 0.0952305i \(-0.0303588\pi\)
−0.861315 + 0.508071i \(0.830359\pi\)
\(180\) 0.383099 1.17906i 0.0285545 0.0878818i
\(181\) 10.4211 + 7.57136i 0.774593 + 0.562775i 0.903351 0.428901i \(-0.141099\pi\)
−0.128758 + 0.991676i \(0.541099\pi\)
\(182\) −1.83855 1.33578i −0.136282 0.0990148i
\(183\) −2.28353 + 7.02798i −0.168803 + 0.519524i
\(184\) −0.201293 0.619516i −0.0148395 0.0456714i
\(185\) −1.88267 + 1.36784i −0.138417 + 0.100566i
\(186\) 0.298618 0.0218957
\(187\) −1.62049 + 24.6520i −0.118502 + 1.80273i
\(188\) −5.27536 −0.384746
\(189\) 2.93228 2.13042i 0.213292 0.154966i
\(190\) 0.263232 + 0.810144i 0.0190968 + 0.0587740i
\(191\) −1.74864 + 5.38175i −0.126527 + 0.389410i −0.994176 0.107767i \(-0.965630\pi\)
0.867649 + 0.497177i \(0.165630\pi\)
\(192\) −1.66582 1.21029i −0.120220 0.0873449i
\(193\) −11.1546 8.10429i −0.802925 0.583359i 0.108845 0.994059i \(-0.465285\pi\)
−0.911771 + 0.410699i \(0.865285\pi\)
\(194\) 0.457292 1.40740i 0.0328317 0.101046i
\(195\) −1.44600 4.45034i −0.103550 0.318695i
\(196\) −0.809017 + 0.587785i −0.0577869 + 0.0419847i
\(197\) 2.82825 0.201504 0.100752 0.994912i \(-0.467875\pi\)
0.100752 + 0.994912i \(0.467875\pi\)
\(198\) −3.98541 + 1.01136i −0.283231 + 0.0718741i
\(199\) −0.513194 −0.0363793 −0.0181897 0.999835i \(-0.505790\pi\)
−0.0181897 + 0.999835i \(0.505790\pi\)
\(200\) 0.809017 0.587785i 0.0572061 0.0415627i
\(201\) −0.273814 0.842714i −0.0193134 0.0594405i
\(202\) 4.31148 13.2694i 0.303355 0.933630i
\(203\) −1.91446 1.39094i −0.134369 0.0976248i
\(204\) 12.4085 + 9.01530i 0.868768 + 0.631197i
\(205\) 1.43449 4.41491i 0.100189 0.308351i
\(206\) 0.434349 + 1.33679i 0.0302625 + 0.0931385i
\(207\) −0.653330 + 0.474672i −0.0454096 + 0.0329920i
\(208\) −2.27257 −0.157574
\(209\) 1.80697 2.17180i 0.124991 0.150227i
\(210\) −2.05906 −0.142089
\(211\) 16.5157 11.9994i 1.13699 0.826071i 0.150292 0.988642i \(-0.451979\pi\)
0.986697 + 0.162571i \(0.0519785\pi\)
\(212\) −0.297473 0.915528i −0.0204305 0.0628787i
\(213\) 6.76908 20.8331i 0.463810 1.42746i
\(214\) −15.3132 11.1257i −1.04679 0.760537i
\(215\) 9.51309 + 6.91166i 0.648787 + 0.471372i
\(216\) 1.12003 3.44710i 0.0762084 0.234545i
\(217\) −0.0448155 0.137928i −0.00304228 0.00936317i
\(218\) −8.77160 + 6.37294i −0.594088 + 0.431630i
\(219\) −2.39371 −0.161752
\(220\) −3.08028 1.22959i −0.207672 0.0828987i
\(221\) 16.9281 1.13871
\(222\) 3.87654 2.81647i 0.260176 0.189029i
\(223\) 4.73710 + 14.5793i 0.317220 + 0.976302i 0.974831 + 0.222945i \(0.0715669\pi\)
−0.657611 + 0.753357i \(0.728433\pi\)
\(224\) −0.309017 + 0.951057i −0.0206471 + 0.0635451i
\(225\) −1.00297 0.728698i −0.0668644 0.0485798i
\(226\) −13.8834 10.0869i −0.923512 0.670970i
\(227\) −8.90051 + 27.3930i −0.590748 + 1.81813i −0.0159001 + 0.999874i \(0.505061\pi\)
−0.574847 + 0.818261i \(0.694939\pi\)
\(228\) −0.542010 1.66814i −0.0358955 0.110475i
\(229\) −5.71909 + 4.15516i −0.377928 + 0.274581i −0.760491 0.649349i \(-0.775042\pi\)
0.382563 + 0.923930i \(0.375042\pi\)
\(230\) −0.651398 −0.0429519
\(231\) 3.64303 + 5.77628i 0.239694 + 0.380051i
\(232\) −2.36641 −0.155362
\(233\) −20.3134 + 14.7586i −1.33078 + 0.966867i −0.331049 + 0.943614i \(0.607402\pi\)
−0.999730 + 0.0232532i \(0.992598\pi\)
\(234\) 0.870619 + 2.67949i 0.0569142 + 0.175164i
\(235\) −1.63018 + 5.01717i −0.106341 + 0.327284i
\(236\) −0.843775 0.613038i −0.0549251 0.0399054i
\(237\) −17.8355 12.9582i −1.15854 0.841729i
\(238\) 2.30184 7.08432i 0.149206 0.459209i
\(239\) 2.80951 + 8.64679i 0.181732 + 0.559314i 0.999877 0.0156982i \(-0.00499710\pi\)
−0.818144 + 0.575013i \(0.804997\pi\)
\(240\) −1.66582 + 1.21029i −0.107528 + 0.0781236i
\(241\) 11.8409 0.762739 0.381370 0.924423i \(-0.375452\pi\)
0.381370 + 0.924423i \(0.375452\pi\)
\(242\) 2.00047 + 10.8166i 0.128595 + 0.695315i
\(243\) −12.1515 −0.779518
\(244\) 2.90344 2.10947i 0.185874 0.135045i
\(245\) 0.309017 + 0.951057i 0.0197424 + 0.0607608i
\(246\) −2.95371 + 9.09058i −0.188322 + 0.579594i
\(247\) −1.56614 1.13787i −0.0996512 0.0724008i
\(248\) −0.117329 0.0852442i −0.00745038 0.00541301i
\(249\) 0.689523 2.12213i 0.0436968 0.134485i
\(250\) −0.309017 0.951057i −0.0195440 0.0601501i
\(251\) 9.93669 7.21943i 0.627198 0.455686i −0.228230 0.973607i \(-0.573294\pi\)
0.855428 + 0.517921i \(0.173294\pi\)
\(252\) 1.23973 0.0780959
\(253\) 1.15250 + 1.82737i 0.0724568 + 0.114886i
\(254\) −11.1188 −0.697654
\(255\) 12.4085 9.01530i 0.777050 0.564560i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −7.37965 + 22.7122i −0.460330 + 1.41675i 0.404432 + 0.914568i \(0.367469\pi\)
−0.864762 + 0.502182i \(0.832531\pi\)
\(258\) −19.5880 14.2315i −1.21950 0.886017i
\(259\) −1.88267 1.36784i −0.116984 0.0849935i
\(260\) −0.702263 + 2.16134i −0.0435525 + 0.134041i
\(261\) 0.906568 + 2.79013i 0.0561151 + 0.172705i
\(262\) −8.83135 + 6.41635i −0.545603 + 0.396404i
\(263\) −10.5902 −0.653019 −0.326509 0.945194i \(-0.605872\pi\)
−0.326509 + 0.945194i \(0.605872\pi\)
\(264\) 6.34248 + 2.53179i 0.390353 + 0.155821i
\(265\) −0.962643 −0.0591347
\(266\) −0.689150 + 0.500697i −0.0422545 + 0.0306997i
\(267\) 2.37692 + 7.31542i 0.145465 + 0.447697i
\(268\) −0.132980 + 0.409271i −0.00812306 + 0.0250002i
\(269\) −13.4069 9.74071i −0.817436 0.593902i 0.0985413 0.995133i \(-0.468582\pi\)
−0.915977 + 0.401231i \(0.868582\pi\)
\(270\) −2.93228 2.13042i −0.178453 0.129654i
\(271\) −9.09263 + 27.9842i −0.552338 + 1.69992i 0.150533 + 0.988605i \(0.451901\pi\)
−0.702871 + 0.711317i \(0.748099\pi\)
\(272\) −2.30184 7.08432i −0.139569 0.429550i
\(273\) 3.78568 2.75046i 0.229120 0.166465i
\(274\) 4.81357 0.290799
\(275\) −2.12126 + 2.54956i −0.127917 + 0.153744i
\(276\) 1.34127 0.0807349
\(277\) −24.0224 + 17.4533i −1.44337 + 1.04867i −0.456040 + 0.889959i \(0.650733\pi\)
−0.987326 + 0.158707i \(0.949267\pi\)
\(278\) 3.13442 + 9.64676i 0.187990 + 0.578574i
\(279\) −0.0555594 + 0.170994i −0.00332625 + 0.0102372i
\(280\) 0.809017 + 0.587785i 0.0483480 + 0.0351269i
\(281\) 19.2607 + 13.9938i 1.14900 + 0.834797i 0.988348 0.152214i \(-0.0486402\pi\)
0.160652 + 0.987011i \(0.448640\pi\)
\(282\) 3.35664 10.3307i 0.199885 0.615182i
\(283\) −5.40892 16.6469i −0.321527 0.989558i −0.972984 0.230872i \(-0.925842\pi\)
0.651457 0.758685i \(-0.274158\pi\)
\(284\) −8.60669 + 6.25312i −0.510713 + 0.371055i
\(285\) −1.75398 −0.103897
\(286\) 7.30570 1.85393i 0.431995 0.109625i
\(287\) 4.64211 0.274015
\(288\) 1.00297 0.728698i 0.0591004 0.0429389i
\(289\) 11.8929 + 36.6025i 0.699580 + 2.15309i
\(290\) −0.731260 + 2.25059i −0.0429411 + 0.132159i
\(291\) 2.46512 + 1.79102i 0.144508 + 0.104991i
\(292\) 0.940503 + 0.683315i 0.0550387 + 0.0399880i
\(293\) 7.14368 21.9860i 0.417338 1.28443i −0.492805 0.870140i \(-0.664028\pi\)
0.910143 0.414294i \(-0.135972\pi\)
\(294\) −0.636285 1.95828i −0.0371089 0.114209i
\(295\) −0.843775 + 0.613038i −0.0491265 + 0.0356925i
\(296\) −2.32711 −0.135261
\(297\) −0.788500 + 11.9952i −0.0457534 + 0.696032i
\(298\) −1.88432 −0.109156
\(299\) 1.19763 0.870127i 0.0692605 0.0503207i
\(300\) 0.636285 + 1.95828i 0.0367359 + 0.113062i
\(301\) −3.63368 + 11.1833i −0.209442 + 0.644595i
\(302\) 11.6357 + 8.45385i 0.669561 + 0.486465i
\(303\) 23.2419 + 16.8862i 1.33521 + 0.970088i
\(304\) −0.263232 + 0.810144i −0.0150974 + 0.0464650i
\(305\) −1.10902 3.41320i −0.0635020 0.195439i
\(306\) −7.47099 + 5.42800i −0.427088 + 0.310298i
\(307\) −17.1933 −0.981271 −0.490635 0.871365i \(-0.663235\pi\)
−0.490635 + 0.871365i \(0.663235\pi\)
\(308\) 0.217548 3.30948i 0.0123959 0.188575i
\(309\) −2.89418 −0.164644
\(310\) −0.117329 + 0.0852442i −0.00666382 + 0.00484155i
\(311\) −4.31715 13.2868i −0.244803 0.753427i −0.995669 0.0929716i \(-0.970363\pi\)
0.750866 0.660455i \(-0.229637\pi\)
\(312\) 1.44600 4.45034i 0.0818638 0.251951i
\(313\) −8.47796 6.15960i −0.479202 0.348161i 0.321814 0.946803i \(-0.395707\pi\)
−0.801017 + 0.598642i \(0.795707\pi\)
\(314\) −10.2414 7.44079i −0.577954 0.419908i
\(315\) 0.383099 1.17906i 0.0215852 0.0664324i
\(316\) 3.30857 + 10.1827i 0.186122 + 0.572824i
\(317\) 26.1115 18.9711i 1.46657 1.06553i 0.484980 0.874526i \(-0.338827\pi\)
0.981590 0.191000i \(-0.0611729\pi\)
\(318\) 1.98214 0.111153
\(319\) 7.60736 1.93048i 0.425930 0.108086i
\(320\) 1.00000 0.0559017
\(321\) 31.5308 22.9085i 1.75988 1.27863i
\(322\) −0.201293 0.619516i −0.0112176 0.0345243i
\(323\) 1.96079 6.03468i 0.109101 0.335779i
\(324\) 9.04664 + 6.57277i 0.502591 + 0.365154i
\(325\) 1.83855 + 1.33578i 0.101984 + 0.0740959i
\(326\) 2.76657 8.51464i 0.153226 0.471582i
\(327\) −6.89879 21.2323i −0.381504 1.17415i
\(328\) 3.75555 2.72857i 0.207366 0.150660i
\(329\) −5.27536 −0.290840
\(330\) 4.36781 5.24969i 0.240440 0.288986i
\(331\) 27.1275 1.49106 0.745532 0.666470i \(-0.232196\pi\)
0.745532 + 0.666470i \(0.232196\pi\)
\(332\) −0.876708 + 0.636966i −0.0481156 + 0.0349580i
\(333\) 0.891513 + 2.74380i 0.0488546 + 0.150359i
\(334\) −1.96678 + 6.05314i −0.107618 + 0.331213i
\(335\) 0.348147 + 0.252943i 0.0190213 + 0.0138198i
\(336\) −1.66582 1.21029i −0.0908777 0.0660265i
\(337\) 7.98182 24.5655i 0.434797 1.33817i −0.458497 0.888696i \(-0.651612\pi\)
0.893294 0.449473i \(-0.148388\pi\)
\(338\) 2.42128 + 7.45193i 0.131700 + 0.405332i
\(339\) 28.5868 20.7695i 1.55262 1.12805i
\(340\) −7.44890 −0.403973
\(341\) 0.446721 + 0.178322i 0.0241913 + 0.00965669i
\(342\) 1.05605 0.0571047
\(343\) −0.809017 + 0.587785i −0.0436828 + 0.0317374i
\(344\) 3.63368 + 11.1833i 0.195915 + 0.602964i
\(345\) 0.414475 1.27562i 0.0223146 0.0686772i
\(346\) −19.7586 14.3555i −1.06223 0.771754i
\(347\) −5.02278 3.64926i −0.269637 0.195903i 0.444748 0.895656i \(-0.353293\pi\)
−0.714385 + 0.699753i \(0.753293\pi\)
\(348\) 1.50571 4.63410i 0.0807145 0.248414i
\(349\) −3.19990 9.84828i −0.171287 0.527166i 0.828158 0.560495i \(-0.189389\pi\)
−0.999444 + 0.0333289i \(0.989389\pi\)
\(350\) 0.809017 0.587785i 0.0432438 0.0314184i
\(351\) 8.23692 0.439654
\(352\) −1.76927 2.80530i −0.0943022 0.149523i
\(353\) 27.4798 1.46260 0.731300 0.682055i \(-0.238914\pi\)
0.731300 + 0.682055i \(0.238914\pi\)
\(354\) 1.73738 1.26228i 0.0923409 0.0670896i
\(355\) 3.28746 + 10.1178i 0.174480 + 0.536995i
\(356\) 1.15437 3.55279i 0.0611816 0.188298i
\(357\) 12.4085 + 9.01530i 0.656727 + 0.477140i
\(358\) 4.69851 + 3.41367i 0.248324 + 0.180418i
\(359\) 0.00949977 0.0292373i 0.000501379 0.00154309i −0.950806 0.309788i \(-0.899742\pi\)
0.951307 + 0.308245i \(0.0997418\pi\)
\(360\) −0.383099 1.17906i −0.0201911 0.0621418i
\(361\) 14.7843 10.7414i 0.778120 0.565337i
\(362\) 12.8812 0.677019
\(363\) −22.4548 2.96492i −1.17857 0.155618i
\(364\) −2.27257 −0.119115
\(365\) 0.940503 0.683315i 0.0492282 0.0357663i
\(366\) 2.28353 + 7.02798i 0.119362 + 0.367359i
\(367\) −3.18068 + 9.78913i −0.166030 + 0.510988i −0.999111 0.0421633i \(-0.986575\pi\)
0.833081 + 0.553152i \(0.186575\pi\)
\(368\) −0.526992 0.382882i −0.0274714 0.0199591i
\(369\) −4.65588 3.38270i −0.242376 0.176096i
\(370\) −0.719116 + 2.21321i −0.0373851 + 0.115059i
\(371\) −0.297473 0.915528i −0.0154440 0.0475318i
\(372\) 0.241587 0.175523i 0.0125257 0.00910045i
\(373\) −12.2144 −0.632438 −0.316219 0.948686i \(-0.602413\pi\)
−0.316219 + 0.948686i \(0.602413\pi\)
\(374\) 13.1791 + 20.8964i 0.681474 + 1.08053i
\(375\) 2.05906 0.106329
\(376\) −4.26786 + 3.10078i −0.220098 + 0.159911i
\(377\) −1.66184 5.11461i −0.0855891 0.263416i
\(378\) 1.12003 3.44710i 0.0576082 0.177300i
\(379\) −0.565995 0.411219i −0.0290732 0.0211229i 0.573154 0.819448i \(-0.305720\pi\)
−0.602227 + 0.798325i \(0.705720\pi\)
\(380\) 0.689150 + 0.500697i 0.0353526 + 0.0256852i
\(381\) 7.07471 21.7737i 0.362448 1.11550i
\(382\) 1.74864 + 5.38175i 0.0894680 + 0.275354i
\(383\) 30.2999 22.0141i 1.54825 1.12487i 0.603366 0.797464i \(-0.293826\pi\)
0.944884 0.327405i \(-0.106174\pi\)
\(384\) −2.05906 −0.105076
\(385\) −3.08028 1.22959i −0.156986 0.0626655i
\(386\) −13.7878 −0.701783
\(387\) 11.7937 8.56863i 0.599508 0.435568i
\(388\) −0.457292 1.40740i −0.0232155 0.0714500i
\(389\) −2.67263 + 8.22550i −0.135508 + 0.417049i −0.995669 0.0929732i \(-0.970363\pi\)
0.860161 + 0.510022i \(0.170363\pi\)
\(390\) −3.78568 2.75046i −0.191696 0.139275i
\(391\) 3.92551 + 2.85205i 0.198522 + 0.144234i
\(392\) −0.309017 + 0.951057i −0.0156077 + 0.0480356i
\(393\) −6.94578 21.3769i −0.350368 1.07832i
\(394\) 2.28810 1.66240i 0.115273 0.0837507i
\(395\) 10.7068 0.538716
\(396\) −2.62980 + 3.16077i −0.132153 + 0.158835i
\(397\) 9.10554 0.456994 0.228497 0.973545i \(-0.426619\pi\)
0.228497 + 0.973545i \(0.426619\pi\)
\(398\) −0.415182 + 0.301648i −0.0208112 + 0.0151202i
\(399\) −0.542010 1.66814i −0.0271345 0.0835113i
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) −15.5758 11.3165i −0.777819 0.565118i 0.126505 0.991966i \(-0.459624\pi\)
−0.904324 + 0.426848i \(0.859624\pi\)
\(402\) −0.716856 0.520826i −0.0357535 0.0259764i
\(403\) 0.101846 0.313451i 0.00507333 0.0156141i
\(404\) −4.31148 13.2694i −0.214504 0.660176i
\(405\) 9.04664 6.57277i 0.449531 0.326603i
\(406\) −2.36641 −0.117443
\(407\) 7.48103 1.89842i 0.370821 0.0941014i
\(408\) 15.3377 0.759331
\(409\) −21.6505 + 15.7300i −1.07055 + 0.777798i −0.976010 0.217724i \(-0.930137\pi\)
−0.0945361 + 0.995521i \(0.530137\pi\)
\(410\) −1.43449 4.41491i −0.0708445 0.218037i
\(411\) −3.06280 + 9.42634i −0.151077 + 0.464967i
\(412\) 1.13714 + 0.826181i 0.0560229 + 0.0407030i
\(413\) −0.843775 0.613038i −0.0415194 0.0301656i
\(414\) −0.249550 + 0.768036i −0.0122647 + 0.0377469i
\(415\) 0.334873 + 1.03063i 0.0164382 + 0.0505917i
\(416\) −1.83855 + 1.33578i −0.0901422 + 0.0654922i
\(417\) −20.8855 −1.02277
\(418\) 0.185315 2.81914i 0.00906404 0.137888i
\(419\) −24.4437 −1.19415 −0.597075 0.802185i \(-0.703671\pi\)
−0.597075 + 0.802185i \(0.703671\pi\)
\(420\) −1.66582 + 1.21029i −0.0812835 + 0.0590559i
\(421\) −2.42703 7.46962i −0.118286 0.364047i 0.874332 0.485328i \(-0.161300\pi\)
−0.992618 + 0.121281i \(0.961300\pi\)
\(422\) 6.30844 19.4154i 0.307090 0.945127i
\(423\) 5.29101 + 3.84415i 0.257258 + 0.186909i
\(424\) −0.778794 0.565827i −0.0378216 0.0274790i
\(425\) −2.30184 + 7.08432i −0.111655 + 0.343640i
\(426\) −6.76908 20.8331i −0.327963 1.00937i
\(427\) 2.90344 2.10947i 0.140507 0.102085i
\(428\) −18.9282 −0.914927
\(429\) −1.01798 + 15.4863i −0.0491487 + 0.747684i
\(430\) 11.7588 0.567061
\(431\) 19.2683 13.9993i 0.928123 0.674321i −0.0174092 0.999848i \(-0.505542\pi\)
0.945533 + 0.325527i \(0.105542\pi\)
\(432\) −1.12003 3.44710i −0.0538875 0.165849i
\(433\) 4.77092 14.6834i 0.229276 0.705638i −0.768553 0.639786i \(-0.779023\pi\)
0.997829 0.0658530i \(-0.0209768\pi\)
\(434\) −0.117329 0.0852442i −0.00563195 0.00409185i
\(435\) −3.94200 2.86403i −0.189004 0.137320i
\(436\) −3.35045 + 10.3116i −0.160458 + 0.493838i
\(437\) −0.171469 0.527726i −0.00820246 0.0252446i
\(438\) −1.93655 + 1.40699i −0.0925321 + 0.0672285i
\(439\) 29.0621 1.38706 0.693530 0.720428i \(-0.256054\pi\)
0.693530 + 0.720428i \(0.256054\pi\)
\(440\) −3.21473 + 0.815786i −0.153256 + 0.0388911i
\(441\) 1.23973 0.0590350
\(442\) 13.6952 9.95011i 0.651412 0.473279i
\(443\) 10.7268 + 33.0136i 0.509644 + 1.56852i 0.792820 + 0.609456i \(0.208612\pi\)
−0.283176 + 0.959068i \(0.591388\pi\)
\(444\) 1.48071 4.55714i 0.0702712 0.216272i
\(445\) −3.02219 2.19575i −0.143265 0.104088i
\(446\) 12.4019 + 9.01050i 0.587246 + 0.426660i
\(447\) 1.19897 3.69004i 0.0567091 0.174533i
\(448\) 0.309017 + 0.951057i 0.0145997 + 0.0449332i
\(449\) 24.8578 18.0603i 1.17311 0.852316i 0.181734 0.983348i \(-0.441829\pi\)
0.991378 + 0.131031i \(0.0418289\pi\)
\(450\) −1.23973 −0.0584416
\(451\) −9.84715 + 11.8353i −0.463684 + 0.557304i
\(452\) −17.1609 −0.807179
\(453\) −23.9587 + 17.4070i −1.12568 + 0.817852i
\(454\) 8.90051 + 27.3930i 0.417722 + 1.28561i
\(455\) −0.702263 + 2.16134i −0.0329226 + 0.101325i
\(456\) −1.41900 1.03097i −0.0664508 0.0482794i
\(457\) −16.5794 12.0456i −0.775551 0.563470i 0.128090 0.991763i \(-0.459115\pi\)
−0.903640 + 0.428292i \(0.859115\pi\)
\(458\) −2.18450 + 6.72319i −0.102075 + 0.314154i
\(459\) 8.34300 + 25.6771i 0.389418 + 1.19850i
\(460\) −0.526992 + 0.382882i −0.0245711 + 0.0178520i
\(461\) 17.5629 0.817988 0.408994 0.912537i \(-0.365880\pi\)
0.408994 + 0.912537i \(0.365880\pi\)
\(462\) 6.34248 + 2.53179i 0.295079 + 0.117790i
\(463\) 13.6361 0.633721 0.316861 0.948472i \(-0.397371\pi\)
0.316861 + 0.948472i \(0.397371\pi\)
\(464\) −1.91446 + 1.39094i −0.0888767 + 0.0645727i
\(465\) −0.0922780 0.284002i −0.00427929 0.0131703i
\(466\) −7.75905 + 23.8799i −0.359431 + 1.10621i
\(467\) 24.8538 + 18.0573i 1.15010 + 0.835594i 0.988494 0.151262i \(-0.0483337\pi\)
0.161603 + 0.986856i \(0.448334\pi\)
\(468\) 2.27931 + 1.65602i 0.105361 + 0.0765494i
\(469\) −0.132980 + 0.409271i −0.00614046 + 0.0188984i
\(470\) 1.63018 + 5.01717i 0.0751945 + 0.231425i
\(471\) 21.0876 15.3210i 0.971666 0.705957i
\(472\) −1.04296 −0.0480063
\(473\) −20.8045 32.9870i −0.956591 1.51674i
\(474\) −22.0459 −1.01260
\(475\) 0.689150 0.500697i 0.0316204 0.0229735i
\(476\) −2.30184 7.08432i −0.105505 0.324709i
\(477\) −0.368787 + 1.13501i −0.0168856 + 0.0519686i
\(478\) 7.35540 + 5.34401i 0.336428 + 0.244429i
\(479\) −28.0591 20.3861i −1.28205 0.931466i −0.282440 0.959285i \(-0.591144\pi\)
−0.999613 + 0.0278193i \(0.991144\pi\)
\(480\) −0.636285 + 1.95828i −0.0290423 + 0.0893830i
\(481\) −1.63424 5.02968i −0.0745150 0.229334i
\(482\) 9.57949 6.95991i 0.436334 0.317015i
\(483\) 1.34127 0.0610298
\(484\) 7.97624 + 7.57494i 0.362556 + 0.344315i
\(485\) −1.47983 −0.0671956
\(486\) −9.83075 + 7.14246i −0.445932 + 0.323989i
\(487\) 10.9779 + 33.7864i 0.497455 + 1.53101i 0.813096 + 0.582130i \(0.197780\pi\)
−0.315641 + 0.948879i \(0.602220\pi\)
\(488\) 1.10902 3.41320i 0.0502028 0.154508i
\(489\) 14.9138 + 10.8355i 0.674423 + 0.489997i
\(490\) 0.809017 + 0.587785i 0.0365477 + 0.0265534i
\(491\) 8.05325 24.7854i 0.363438 1.11855i −0.587515 0.809213i \(-0.699894\pi\)
0.950953 0.309334i \(-0.100106\pi\)
\(492\) 2.95371 + 9.09058i 0.133163 + 0.409835i
\(493\) 14.2606 10.3610i 0.642267 0.466634i
\(494\) −1.93586 −0.0870983
\(495\) 2.19342 + 3.47783i 0.0985869 + 0.156317i
\(496\) −0.145026 −0.00651187
\(497\) −8.60669 + 6.25312i −0.386063 + 0.280491i
\(498\) −0.689523 2.12213i −0.0308983 0.0950951i
\(499\) 4.22071 12.9900i 0.188945 0.581513i −0.811049 0.584978i \(-0.801103\pi\)
0.999994 + 0.00346524i \(0.00110302\pi\)
\(500\) −0.809017 0.587785i −0.0361803 0.0262866i
\(501\) −10.6023 7.70304i −0.473677 0.344147i
\(502\) 3.79548 11.6813i 0.169400 0.521361i
\(503\) 10.4115 + 32.0434i 0.464228 + 1.42875i 0.859951 + 0.510376i \(0.170494\pi\)
−0.395724 + 0.918370i \(0.629506\pi\)
\(504\) 1.00297 0.728698i 0.0446757 0.0324588i
\(505\) −13.9523 −0.620867
\(506\) 2.00649 + 0.800950i 0.0891993 + 0.0356066i
\(507\) −16.1336 −0.716519
\(508\) −8.99528 + 6.53545i −0.399101 + 0.289964i
\(509\) 7.75019 + 23.8526i 0.343521 + 1.05725i 0.962371 + 0.271740i \(0.0875990\pi\)
−0.618850 + 0.785510i \(0.712401\pi\)
\(510\) 4.73962 14.5871i 0.209874 0.645926i
\(511\) 0.940503 + 0.683315i 0.0416054 + 0.0302281i
\(512\) 0.809017 + 0.587785i 0.0357538 + 0.0259767i
\(513\) 0.954082 2.93636i 0.0421238 0.129644i
\(514\) 7.37965 + 22.7122i 0.325503 + 1.00179i
\(515\) 1.13714 0.826181i 0.0501084 0.0364059i
\(516\) −24.2121 −1.06588
\(517\) 11.1904 13.4498i 0.492155 0.591523i
\(518\) −2.32711 −0.102247
\(519\) 40.6841 29.5588i 1.78584 1.29749i
\(520\) 0.702263 + 2.16134i 0.0307963 + 0.0947811i
\(521\) −7.18506 + 22.1133i −0.314783 + 0.968803i 0.661061 + 0.750332i \(0.270107\pi\)
−0.975844 + 0.218470i \(0.929893\pi\)
\(522\) 2.37343 + 1.72439i 0.103882 + 0.0754747i
\(523\) −0.160733 0.116779i −0.00702836 0.00510640i 0.584266 0.811563i \(-0.301383\pi\)
−0.591294 + 0.806456i \(0.701383\pi\)
\(524\) −3.37328 + 10.3819i −0.147362 + 0.453534i
\(525\) 0.636285 + 1.95828i 0.0277698 + 0.0854665i
\(526\) −8.56764 + 6.22475i −0.373567 + 0.271412i
\(527\) 1.08029 0.0470580
\(528\) 6.61933 1.67975i 0.288069 0.0731019i
\(529\) −22.5757 −0.981551
\(530\) −0.778794 + 0.565827i −0.0338287 + 0.0245780i
\(531\) 0.399558 + 1.22971i 0.0173393 + 0.0533650i
\(532\) −0.263232 + 0.810144i −0.0114125 + 0.0351242i
\(533\) 8.53475 + 6.20086i 0.369681 + 0.268589i
\(534\) 6.22287 + 4.52118i 0.269290 + 0.195651i
\(535\) −5.84913 + 18.0018i −0.252880 + 0.778284i
\(536\) 0.132980 + 0.409271i 0.00574387 + 0.0176778i
\(537\) −9.67452 + 7.02895i −0.417486 + 0.303321i
\(538\) −16.5719 −0.714465
\(539\) 0.217548 3.30948i 0.00937044 0.142549i
\(540\) −3.62450 −0.155973
\(541\) −26.3290 + 19.1291i −1.13197 + 0.822425i −0.985980 0.166861i \(-0.946637\pi\)
−0.145991 + 0.989286i \(0.546637\pi\)
\(542\) 9.09263 + 27.9842i 0.390562 + 1.20203i
\(543\) −8.19610 + 25.2250i −0.351728 + 1.08251i
\(544\) −6.02629 4.37835i −0.258375 0.187720i
\(545\) 8.77160 + 6.37294i 0.375734 + 0.272987i
\(546\) 1.44600 4.45034i 0.0618832 0.190457i
\(547\) −7.65443 23.5579i −0.327280 1.00726i −0.970401 0.241499i \(-0.922361\pi\)
0.643121 0.765764i \(-0.277639\pi\)
\(548\) 3.89426 2.82935i 0.166355 0.120864i
\(549\) −4.44922 −0.189888
\(550\) −0.217548 + 3.30948i −0.00927626 + 0.141117i
\(551\) −2.01579 −0.0858755
\(552\) 1.08511 0.788378i 0.0461853 0.0335556i
\(553\) 3.30857 + 10.1827i 0.140695 + 0.433014i
\(554\) −9.17574 + 28.2400i −0.389840 + 1.19980i
\(555\) −3.87654 2.81647i −0.164550 0.119552i
\(556\) 8.20603 + 5.96203i 0.348013 + 0.252846i
\(557\) 11.5552 35.5634i 0.489612 1.50687i −0.335577 0.942013i \(-0.608931\pi\)
0.825189 0.564857i \(-0.191069\pi\)
\(558\) 0.0555594 + 0.170994i 0.00235202 + 0.00723876i
\(559\) −21.6192 + 15.7072i −0.914393 + 0.664346i
\(560\) 1.00000 0.0422577
\(561\) −49.3067 + 12.5123i −2.08173 + 0.528271i
\(562\) 23.8076 1.00426
\(563\) −13.9919 + 10.1657i −0.589688 + 0.428433i −0.842204 0.539159i \(-0.818742\pi\)
0.252516 + 0.967593i \(0.418742\pi\)
\(564\) −3.35664 10.3307i −0.141340 0.434999i
\(565\) −5.30300 + 16.3209i −0.223099 + 0.686627i
\(566\) −14.1607 10.2884i −0.595220 0.432453i
\(567\) 9.04664 + 6.57277i 0.379923 + 0.276030i
\(568\) −3.28746 + 10.1178i −0.137939 + 0.424532i
\(569\) 11.8699 + 36.5317i 0.497611 + 1.53149i 0.812847 + 0.582477i \(0.197916\pi\)
−0.315236 + 0.949013i \(0.602084\pi\)
\(570\) −1.41900 + 1.03097i −0.0594354 + 0.0431824i
\(571\) −5.08249 −0.212696 −0.106348 0.994329i \(-0.533916\pi\)
−0.106348 + 0.994329i \(0.533916\pi\)
\(572\) 4.82072 5.79404i 0.201565 0.242261i
\(573\) −11.6516 −0.486754
\(574\) 3.75555 2.72857i 0.156754 0.113888i
\(575\) 0.201293 + 0.619516i 0.00839450 + 0.0258356i
\(576\) 0.383099 1.17906i 0.0159625 0.0491274i
\(577\) −33.4419 24.2970i −1.39221 1.01150i −0.995619 0.0934986i \(-0.970195\pi\)
−0.396586 0.917998i \(-0.629805\pi\)
\(578\) 31.1359 + 22.6216i 1.29508 + 0.940933i
\(579\) 8.77300 27.0005i 0.364593 1.12210i
\(580\) 0.731260 + 2.25059i 0.0303639 + 0.0934505i
\(581\) −0.876708 + 0.636966i −0.0363720 + 0.0264258i
\(582\) 3.04706 0.126305
\(583\) 2.96521 + 1.18365i 0.122806 + 0.0490219i
\(584\) 1.16253 0.0481056
\(585\) 2.27931 1.65602i 0.0942379 0.0684679i
\(586\) −7.14368 21.9860i −0.295102 0.908232i
\(587\) −2.13878 + 6.58248i −0.0882767 + 0.271688i −0.985443 0.170005i \(-0.945622\pi\)
0.897167 + 0.441692i \(0.145622\pi\)
\(588\) −1.66582 1.21029i −0.0686971 0.0499114i
\(589\) −0.0999447 0.0726141i −0.00411815 0.00299201i
\(590\) −0.322293 + 0.991917i −0.0132686 + 0.0408366i
\(591\) 1.79957 + 5.53851i 0.0740245 + 0.227824i
\(592\) −1.88267 + 1.36784i −0.0773773 + 0.0562179i
\(593\) 22.7439 0.933979 0.466989 0.884263i \(-0.345339\pi\)
0.466989 + 0.884263i \(0.345339\pi\)
\(594\) 6.41269 + 10.1678i 0.263116 + 0.417190i
\(595\) −7.44890 −0.305375
\(596\) −1.52445 + 1.10758i −0.0624438 + 0.0453681i
\(597\) −0.326537 1.00498i −0.0133643 0.0411311i
\(598\) 0.457453 1.40789i 0.0187066 0.0575731i
\(599\) −3.34147 2.42772i −0.136529 0.0991939i 0.517425 0.855729i \(-0.326891\pi\)
−0.653953 + 0.756535i \(0.726891\pi\)
\(600\) 1.66582 + 1.21029i 0.0680066 + 0.0494097i
\(601\) 1.19615 3.68139i 0.0487922 0.150167i −0.923692 0.383136i \(-0.874844\pi\)
0.972484 + 0.232969i \(0.0748441\pi\)
\(602\) 3.63368 + 11.1833i 0.148098 + 0.455798i
\(603\) 0.431610 0.313583i 0.0175765 0.0127701i
\(604\) 14.3826 0.585218
\(605\) 9.66899 5.24507i 0.393100 0.213242i
\(606\) 28.7285 1.16702
\(607\) −24.0865 + 17.4999i −0.977643 + 0.710299i −0.957181 0.289492i \(-0.906514\pi\)
−0.0204621 + 0.999791i \(0.506514\pi\)
\(608\) 0.263232 + 0.810144i 0.0106755 + 0.0328557i
\(609\) 1.50571 4.63410i 0.0610144 0.187783i
\(610\) −2.90344 2.10947i −0.117557 0.0854100i
\(611\) −9.69901 7.04674i −0.392380 0.285081i
\(612\) −2.85367 + 8.78268i −0.115353 + 0.355019i
\(613\) −8.07315 24.8466i −0.326071 1.00354i −0.970955 0.239264i \(-0.923094\pi\)
0.644883 0.764281i \(-0.276906\pi\)
\(614\) −13.9096 + 10.1059i −0.561347 + 0.407843i
\(615\) 9.55840 0.385432
\(616\) −1.76927 2.80530i −0.0712857 0.113029i
\(617\) 13.3021 0.535524 0.267762 0.963485i \(-0.413716\pi\)
0.267762 + 0.963485i \(0.413716\pi\)
\(618\) −2.34144 + 1.70116i −0.0941866 + 0.0684306i
\(619\) −2.87138 8.83720i −0.115411 0.355197i 0.876622 0.481180i \(-0.159792\pi\)
−0.992032 + 0.125983i \(0.959792\pi\)
\(620\) −0.0448155 + 0.137928i −0.00179984 + 0.00553932i
\(621\) 1.91008 + 1.38775i 0.0766489 + 0.0556887i
\(622\) −11.3024 8.21171i −0.453187 0.329259i
\(623\) 1.15437 3.55279i 0.0462490 0.142340i
\(624\) −1.44600 4.45034i −0.0578864 0.178156i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) −10.4793 −0.418838
\(627\) 5.40276 + 2.15667i 0.215765 + 0.0861292i
\(628\) −12.6590 −0.505150
\(629\) 14.0238 10.1889i 0.559167 0.406258i
\(630\) −0.383099 1.17906i −0.0152630 0.0469748i
\(631\) −9.18101 + 28.2562i −0.365490 + 1.12486i 0.584183 + 0.811622i \(0.301415\pi\)
−0.949674 + 0.313241i \(0.898585\pi\)
\(632\) 8.66195 + 6.29328i 0.344554 + 0.250333i
\(633\) 34.0069 + 24.7075i 1.35165 + 0.982033i
\(634\) 9.97372 30.6959i 0.396107 1.21909i
\(635\) 3.43589 + 10.5746i 0.136349 + 0.419639i
\(636\) 1.60359 1.16507i 0.0635863 0.0461981i
\(637\) −2.27257 −0.0900425
\(638\) 5.01977 6.03329i 0.198735 0.238860i
\(639\) 13.1889 0.521743
\(640\) 0.809017 0.587785i 0.0319792 0.0232343i
\(641\) −5.29679 16.3018i −0.209211 0.643884i −0.999514 0.0311686i \(-0.990077\pi\)
0.790303 0.612716i \(-0.209923\pi\)
\(642\) 12.0437 37.0667i 0.475327 1.46291i
\(643\) 20.8173 + 15.1247i 0.820955 + 0.596459i 0.916986 0.398920i \(-0.130615\pi\)
−0.0960309 + 0.995378i \(0.530615\pi\)
\(644\) −0.526992 0.382882i −0.0207664 0.0150877i
\(645\) −7.48197 + 23.0271i −0.294602 + 0.906692i
\(646\) −1.96079 6.03468i −0.0771461 0.237431i
\(647\) 17.5057 12.7186i 0.688220 0.500021i −0.187855 0.982197i \(-0.560153\pi\)
0.876074 + 0.482176i \(0.160153\pi\)
\(648\) 11.1823 0.439281
\(649\) 3.35285 0.850835i 0.131611 0.0333982i
\(650\) 2.27257 0.0891375
\(651\) 0.241587 0.175523i 0.00946854 0.00687929i
\(652\) −2.76657 8.51464i −0.108347 0.333459i
\(653\) 11.9176 36.6785i 0.466371 1.43534i −0.390880 0.920442i \(-0.627829\pi\)
0.857250 0.514900i \(-0.172171\pi\)
\(654\) −18.0613 13.1223i −0.706251 0.513122i
\(655\) 8.83135 + 6.41635i 0.345070 + 0.250708i
\(656\) 1.43449 4.41491i 0.0560075 0.172373i
\(657\) −0.445362 1.37068i −0.0173752 0.0534755i
\(658\) −4.26786 + 3.10078i −0.166378 + 0.120881i
\(659\) −41.3104 −1.60923 −0.804613 0.593799i \(-0.797627\pi\)
−0.804613 + 0.593799i \(0.797627\pi\)
\(660\) 0.447944 6.81443i 0.0174362 0.265251i
\(661\) −17.6230 −0.685456 −0.342728 0.939435i \(-0.611351\pi\)
−0.342728 + 0.939435i \(0.611351\pi\)
\(662\) 21.9466 15.9452i 0.852980 0.619726i
\(663\) 10.7711 + 33.1501i 0.418316 + 1.28744i
\(664\) −0.334873 + 1.03063i −0.0129956 + 0.0399963i
\(665\) 0.689150 + 0.500697i 0.0267241 + 0.0194162i
\(666\) 2.33401 + 1.69576i 0.0904412 + 0.0657093i
\(667\) 0.476341 1.46603i 0.0184440 0.0567648i
\(668\) 1.96678 + 6.05314i 0.0760971 + 0.234203i
\(669\) −25.5363 + 18.5532i −0.987289 + 0.717307i
\(670\) 0.430333 0.0166252
\(671\) −0.780745 + 11.8772i −0.0301403 + 0.458515i
\(672\) −2.05906 −0.0794300
\(673\) 19.3403 14.0516i 0.745515 0.541649i −0.148918 0.988850i \(-0.547579\pi\)
0.894434 + 0.447201i \(0.147579\pi\)
\(674\) −7.98182 24.5655i −0.307448 0.946228i
\(675\) −1.12003 + 3.44710i −0.0431100 + 0.132679i
\(676\) 6.33899 + 4.60555i 0.243807 + 0.177136i
\(677\) 3.75632 + 2.72913i 0.144367 + 0.104889i 0.657625 0.753346i \(-0.271561\pi\)
−0.513257 + 0.858235i \(0.671561\pi\)
\(678\) 10.9192 33.6058i 0.419349 1.29062i
\(679\) −0.457292 1.40740i −0.0175493 0.0540111i
\(680\) −6.02629 + 4.37835i −0.231098 + 0.167902i
\(681\) −59.3064 −2.27263
\(682\) 0.466220 0.118310i 0.0178525 0.00453034i
\(683\) −25.5818 −0.978859 −0.489430 0.872043i \(-0.662795\pi\)
−0.489430 + 0.872043i \(0.662795\pi\)
\(684\) 0.854363 0.620731i 0.0326674 0.0237342i
\(685\) −1.48748 4.57798i −0.0568335 0.174916i
\(686\) −0.309017 + 0.951057i −0.0117983 + 0.0363115i
\(687\) −11.7760 8.55573i −0.449281 0.326422i
\(688\) 9.51309 + 6.91166i 0.362683 + 0.263505i
\(689\) 0.676028 2.08060i 0.0257546 0.0792646i
\(690\) −0.414475 1.27562i −0.0157788 0.0485621i
\(691\) −18.2344 + 13.2481i −0.693671 + 0.503981i −0.877865 0.478909i \(-0.841033\pi\)
0.184194 + 0.982890i \(0.441033\pi\)
\(692\) −24.4230 −0.928421
\(693\) −2.62980 + 3.16077i −0.0998980 + 0.120068i
\(694\) −6.20850 −0.235671
\(695\) 8.20603 5.96203i 0.311272 0.226153i
\(696\) −1.50571 4.63410i −0.0570738 0.175655i
\(697\) −10.6854 + 32.8862i −0.404738 + 1.24566i
\(698\) −8.37744 6.08657i −0.317091 0.230380i
\(699\) −41.8266 30.3888i −1.58203 1.14941i
\(700\) 0.309017 0.951057i 0.0116797 0.0359466i
\(701\) 10.7951 + 33.2238i 0.407724 + 1.25484i 0.918599 + 0.395190i \(0.129321\pi\)
−0.510876 + 0.859655i \(0.670679\pi\)
\(702\) 6.66381 4.84154i 0.251509 0.182732i
\(703\) −1.98232 −0.0747645
\(704\) −3.08028 1.22959i −0.116092 0.0463418i
\(705\) −10.8623 −0.409098
\(706\) 22.2316 16.1522i 0.836698 0.607896i
\(707\) −4.31148 13.2694i −0.162150 0.499046i
\(708\) 0.663622 2.04242i 0.0249404 0.0767588i
\(709\) 1.76548 + 1.28270i 0.0663040 + 0.0481727i 0.620444 0.784251i \(-0.286953\pi\)
−0.554140 + 0.832424i \(0.686953\pi\)
\(710\) 8.60669 + 6.25312i 0.323003 + 0.234676i
\(711\) 4.10175 12.6239i 0.153828 0.473433i
\(712\) −1.15437 3.55279i −0.0432619 0.133147i
\(713\) 0.0764277 0.0555279i 0.00286224 0.00207954i
\(714\) 15.3377 0.574001
\(715\) −4.02078 6.37524i −0.150369 0.238420i
\(716\) 5.80767 0.217043
\(717\) −15.1452 + 11.0036i −0.565609 + 0.410939i
\(718\) −0.00949977 0.0292373i −0.000354528 0.00109113i
\(719\) 7.14442 21.9882i 0.266442 0.820023i −0.724916 0.688837i \(-0.758121\pi\)
0.991358 0.131186i \(-0.0418785\pi\)
\(720\) −1.00297 0.728698i −0.0373783 0.0271570i
\(721\) 1.13714 + 0.826181i 0.0423493 + 0.0307686i
\(722\) 5.64709 17.3800i 0.210163 0.646815i
\(723\) 7.53419 + 23.1878i 0.280199 + 0.862365i
\(724\) 10.4211 7.57136i 0.387297 0.281387i
\(725\) 2.36641 0.0878861
\(726\) −19.9090 + 10.7999i −0.738894 + 0.400822i
\(727\) −48.6753 −1.80527 −0.902633 0.430410i \(-0.858369\pi\)
−0.902633 + 0.430410i \(0.858369\pi\)
\(728\) −1.83855 + 1.33578i −0.0681411 + 0.0495074i
\(729\) 2.63472 + 8.10884i 0.0975823 + 0.300327i
\(730\) 0.359240 1.10563i 0.0132961 0.0409211i
\(731\) −70.8621 51.4843i −2.62093 1.90422i
\(732\) 5.97836 + 4.34353i 0.220967 + 0.160542i
\(733\) 6.75777 20.7983i 0.249604 0.768201i −0.745241 0.666795i \(-0.767666\pi\)
0.994845 0.101407i \(-0.0323343\pi\)
\(734\) 3.18068 + 9.78913i 0.117401 + 0.361323i
\(735\) −1.66582 + 1.21029i −0.0614445 + 0.0446421i
\(736\) −0.651398 −0.0240109
\(737\) −0.761373 1.20721i −0.0280455 0.0444683i
\(738\) −5.75499 −0.211844
\(739\) 0.144097 0.104692i 0.00530068 0.00385117i −0.585132 0.810938i \(-0.698957\pi\)
0.590432 + 0.807087i \(0.298957\pi\)
\(740\) 0.719116 + 2.21321i 0.0264352 + 0.0813593i
\(741\) 1.23176 3.79096i 0.0452497 0.139264i
\(742\) −0.778794 0.565827i −0.0285904 0.0207722i
\(743\) 29.9848 + 21.7852i 1.10004 + 0.799222i 0.981066 0.193676i \(-0.0620409\pi\)
0.118969 + 0.992898i \(0.462041\pi\)
\(744\) 0.0922780 0.284002i 0.00338307 0.0104120i
\(745\) 0.582287 + 1.79210i 0.0213334 + 0.0656573i
\(746\) −9.88166 + 7.17945i −0.361793 + 0.262858i
\(747\) 1.34346 0.0491548
\(748\) 22.9447 + 9.15906i 0.838941 + 0.334889i
\(749\) −18.9282 −0.691620
\(750\) 1.66582 1.21029i 0.0608270 0.0441934i
\(751\) −8.16602 25.1324i −0.297982 0.917095i −0.982203 0.187821i \(-0.939858\pi\)
0.684221 0.729275i \(-0.260142\pi\)
\(752\) −1.63018 + 5.01717i −0.0594465 + 0.182957i
\(753\) 20.4603 + 14.8652i 0.745613 + 0.541720i
\(754\) −4.35075 3.16101i −0.158445 0.115117i
\(755\) 4.44445 13.6786i 0.161750 0.497816i
\(756\) −1.12003 3.44710i −0.0407351 0.125370i
\(757\) −7.60920 + 5.52841i −0.276561 + 0.200933i −0.717416 0.696645i \(-0.754675\pi\)
0.440855 + 0.897578i \(0.354675\pi\)
\(758\) −0.699608 −0.0254109
\(759\) −2.84519 + 3.41964i −0.103274 + 0.124125i
\(760\) 0.851836 0.0308993
\(761\) 18.3955 13.3651i 0.666835 0.484484i −0.202129 0.979359i \(-0.564786\pi\)
0.868964 + 0.494875i \(0.164786\pi\)
\(762\) −7.07471 21.7737i −0.256290 0.788778i
\(763\) −3.35045 + 10.3116i −0.121295 + 0.373306i
\(764\) 4.57799 + 3.32610i 0.165626 + 0.120334i
\(765\) 7.47099 + 5.42800i 0.270114 + 0.196250i
\(766\) 11.5735 35.6196i 0.418168 1.28699i
\(767\) −0.732434 2.25420i −0.0264467 0.0813945i
\(768\) −1.66582 + 1.21029i −0.0601099 + 0.0436724i
\(769\) 13.3469 0.481300 0.240650 0.970612i \(-0.422639\pi\)
0.240650 + 0.970612i \(0.422639\pi\)
\(770\) −3.21473 + 0.815786i −0.115851 + 0.0293989i
\(771\) −49.1726 −1.77091
\(772\) −11.1546 + 8.10429i −0.401463 + 0.291680i
\(773\) −0.662276 2.03828i −0.0238204 0.0733117i 0.938440 0.345443i \(-0.112271\pi\)
−0.962260 + 0.272132i \(0.912271\pi\)