Properties

Label 770.2.n.j.421.1
Level $770$
Weight $2$
Character 770.421
Analytic conductor $6.148$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \( x^{12} - 2 x^{11} + 11 x^{10} - 11 x^{9} + 39 x^{8} - 43 x^{7} + 99 x^{6} + 36 x^{5} + 431 x^{4} - 350 x^{3} + 510 x^{2} - 175 x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 421.1
Root \(-1.36475 + 0.991547i\) of defining polynomial
Character \(\chi\) \(=\) 770.421
Dual form 770.2.n.j.631.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{2} +(-0.521287 - 1.60436i) q^{3} +(0.309017 - 0.951057i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(-1.36475 - 0.991547i) q^{6} +(0.309017 - 0.951057i) q^{7} +(-0.309017 - 0.951057i) q^{8} +(0.124831 - 0.0906951i) q^{9} +O(q^{10})\) \(q+(0.809017 - 0.587785i) q^{2} +(-0.521287 - 1.60436i) q^{3} +(0.309017 - 0.951057i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(-1.36475 - 0.991547i) q^{6} +(0.309017 - 0.951057i) q^{7} +(-0.309017 - 0.951057i) q^{8} +(0.124831 - 0.0906951i) q^{9} -1.00000 q^{10} +(-1.49776 - 2.95917i) q^{11} -1.68692 q^{12} +(-0.0344432 + 0.0250244i) q^{13} +(-0.309017 - 0.951057i) q^{14} +(-0.521287 + 1.60436i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(3.81887 + 2.77457i) q^{17} +(0.0476812 - 0.146748i) q^{18} +(-0.529469 - 1.62954i) q^{19} +(-0.809017 + 0.587785i) q^{20} -1.68692 q^{21} +(-2.95107 - 1.51366i) q^{22} -6.95966 q^{23} +(-1.36475 + 0.991547i) q^{24} +(0.309017 + 0.951057i) q^{25} +(-0.0131561 + 0.0404904i) q^{26} +(-4.30482 - 3.12764i) q^{27} +(-0.809017 - 0.587785i) q^{28} +(-0.414939 + 1.27705i) q^{29} +(0.521287 + 1.60436i) q^{30} +(-4.86418 + 3.53403i) q^{31} -1.00000 q^{32} +(-3.96681 + 3.94552i) q^{33} +4.72038 q^{34} +(-0.809017 + 0.587785i) q^{35} +(-0.0476812 - 0.146748i) q^{36} +(2.62188 - 8.06932i) q^{37} +(-1.38617 - 1.00711i) q^{38} +(0.0581029 + 0.0422142i) q^{39} +(-0.309017 + 0.951057i) q^{40} +(1.20940 + 3.72216i) q^{41} +(-1.36475 + 0.991547i) q^{42} +6.42455 q^{43} +(-3.27718 + 0.510019i) q^{44} -0.154300 q^{45} +(-5.63049 + 4.09079i) q^{46} +(1.41879 + 4.36658i) q^{47} +(-0.521287 + 1.60436i) q^{48} +(-0.809017 - 0.587785i) q^{49} +(0.809017 + 0.587785i) q^{50} +(2.46067 - 7.57317i) q^{51} +(0.0131561 + 0.0404904i) q^{52} +(11.4090 - 8.28916i) q^{53} -5.32105 q^{54} +(-0.527646 + 3.27438i) q^{55} -1.00000 q^{56} +(-2.33835 + 1.69891i) q^{57} +(0.414939 + 1.27705i) q^{58} +(-3.15745 + 9.71764i) q^{59} +(1.36475 + 0.991547i) q^{60} +(-11.2179 - 8.15030i) q^{61} +(-1.85795 + 5.71818i) q^{62} +(-0.0476812 - 0.146748i) q^{63} +(-0.809017 + 0.587785i) q^{64} +0.0425741 q^{65} +(-0.890097 + 5.52362i) q^{66} +6.39600 q^{67} +(3.81887 - 2.77457i) q^{68} +(3.62798 + 11.1658i) q^{69} +(-0.309017 + 0.951057i) q^{70} +(-9.14519 - 6.64437i) q^{71} +(-0.124831 - 0.0906951i) q^{72} +(-0.614104 + 1.89002i) q^{73} +(-2.62188 - 8.06932i) q^{74} +(1.36475 - 0.991547i) q^{75} -1.71340 q^{76} +(-3.27718 + 0.510019i) q^{77} +0.0718191 q^{78} +(7.17650 - 5.21404i) q^{79} +(0.309017 + 0.951057i) q^{80} +(-2.63075 + 8.09662i) q^{81} +(3.16626 + 2.30042i) q^{82} +(8.15543 + 5.92527i) q^{83} +(-0.521287 + 1.60436i) q^{84} +(-1.45868 - 4.48935i) q^{85} +(5.19757 - 3.77626i) q^{86} +2.26515 q^{87} +(-2.35151 + 2.33889i) q^{88} +2.93362 q^{89} +(-0.124831 + 0.0906951i) q^{90} +(0.0131561 + 0.0404904i) q^{91} +(-2.15065 + 6.61903i) q^{92} +(8.20548 + 5.96163i) q^{93} +(3.71443 + 2.69869i) q^{94} +(-0.529469 + 1.62954i) q^{95} +(0.521287 + 1.60436i) q^{96} +(14.1426 - 10.2752i) q^{97} -1.00000 q^{98} +(-0.455350 - 0.233558i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} + 3 q^{3} - 3 q^{4} - 3 q^{5} + 2 q^{6} - 3 q^{7} + 3 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 3 q^{2} + 3 q^{3} - 3 q^{4} - 3 q^{5} + 2 q^{6} - 3 q^{7} + 3 q^{8} + 6 q^{9} - 12 q^{10} - q^{11} - 2 q^{12} + 2 q^{13} + 3 q^{14} + 3 q^{15} - 3 q^{16} + 7 q^{17} + 9 q^{18} + 6 q^{19} - 3 q^{20} - 2 q^{21} + q^{22} + 8 q^{23} + 2 q^{24} - 3 q^{25} - 7 q^{26} - 3 q^{27} - 3 q^{28} + 20 q^{29} - 3 q^{30} + 6 q^{31} - 12 q^{32} - 12 q^{33} + 18 q^{34} - 3 q^{35} - 9 q^{36} + 22 q^{37} - 6 q^{38} + 23 q^{39} + 3 q^{40} + 2 q^{41} + 2 q^{42} - 60 q^{43} - 11 q^{44} + 6 q^{45} + 2 q^{46} - 4 q^{47} + 3 q^{48} - 3 q^{49} + 3 q^{50} + 13 q^{51} + 7 q^{52} + 18 q^{53} + 8 q^{54} + 14 q^{55} - 12 q^{56} + 8 q^{57} - 20 q^{58} - 32 q^{59} - 2 q^{60} + 8 q^{61} + 14 q^{62} - 9 q^{63} - 3 q^{64} - 18 q^{65} - 8 q^{66} + 36 q^{67} + 7 q^{68} + 50 q^{69} + 3 q^{70} - 34 q^{71} - 6 q^{72} + 14 q^{73} - 22 q^{74} - 2 q^{75} - 24 q^{76} - 11 q^{77} - 38 q^{78} - 12 q^{79} - 3 q^{80} + 4 q^{81} - 2 q^{82} + 30 q^{83} + 3 q^{84} + 2 q^{85} - 28 q^{87} + q^{88} - 36 q^{89} - 6 q^{90} + 7 q^{91} - 2 q^{92} + 12 q^{93} - 11 q^{94} + 6 q^{95} - 3 q^{96} + 39 q^{97} - 12 q^{98} - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 0.587785i 0.572061 0.415627i
\(3\) −0.521287 1.60436i −0.300965 0.926276i −0.981152 0.193237i \(-0.938101\pi\)
0.680187 0.733039i \(-0.261899\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) −1.36475 0.991547i −0.557156 0.404797i
\(7\) 0.309017 0.951057i 0.116797 0.359466i
\(8\) −0.309017 0.951057i −0.109254 0.336249i
\(9\) 0.124831 0.0906951i 0.0416104 0.0302317i
\(10\) −1.00000 −0.316228
\(11\) −1.49776 2.95917i −0.451592 0.892225i
\(12\) −1.68692 −0.486972
\(13\) −0.0344432 + 0.0250244i −0.00955282 + 0.00694053i −0.592551 0.805533i \(-0.701879\pi\)
0.582999 + 0.812473i \(0.301879\pi\)
\(14\) −0.309017 0.951057i −0.0825883 0.254181i
\(15\) −0.521287 + 1.60436i −0.134596 + 0.414243i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 3.81887 + 2.77457i 0.926212 + 0.672932i 0.945062 0.326890i \(-0.106001\pi\)
−0.0188508 + 0.999822i \(0.506001\pi\)
\(18\) 0.0476812 0.146748i 0.0112386 0.0345888i
\(19\) −0.529469 1.62954i −0.121468 0.373841i 0.871773 0.489911i \(-0.162971\pi\)
−0.993241 + 0.116069i \(0.962971\pi\)
\(20\) −0.809017 + 0.587785i −0.180902 + 0.131433i
\(21\) −1.68692 −0.368116
\(22\) −2.95107 1.51366i −0.629171 0.322714i
\(23\) −6.95966 −1.45119 −0.725595 0.688122i \(-0.758435\pi\)
−0.725595 + 0.688122i \(0.758435\pi\)
\(24\) −1.36475 + 0.991547i −0.278578 + 0.202399i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) −0.0131561 + 0.0404904i −0.00258013 + 0.00794082i
\(27\) −4.30482 3.12764i −0.828463 0.601914i
\(28\) −0.809017 0.587785i −0.152890 0.111081i
\(29\) −0.414939 + 1.27705i −0.0770523 + 0.237143i −0.982162 0.188035i \(-0.939788\pi\)
0.905110 + 0.425177i \(0.139788\pi\)
\(30\) 0.521287 + 1.60436i 0.0951736 + 0.292914i
\(31\) −4.86418 + 3.53403i −0.873632 + 0.634731i −0.931559 0.363590i \(-0.881551\pi\)
0.0579271 + 0.998321i \(0.481551\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.96681 + 3.94552i −0.690533 + 0.686827i
\(34\) 4.72038 0.809539
\(35\) −0.809017 + 0.587785i −0.136749 + 0.0993538i
\(36\) −0.0476812 0.146748i −0.00794687 0.0244580i
\(37\) 2.62188 8.06932i 0.431035 1.32659i −0.466061 0.884753i \(-0.654327\pi\)
0.897096 0.441836i \(-0.145673\pi\)
\(38\) −1.38617 1.00711i −0.224866 0.163375i
\(39\) 0.0581029 + 0.0422142i 0.00930391 + 0.00675969i
\(40\) −0.309017 + 0.951057i −0.0488599 + 0.150375i
\(41\) 1.20940 + 3.72216i 0.188877 + 0.581304i 0.999994 0.00358082i \(-0.00113981\pi\)
−0.811117 + 0.584885i \(0.801140\pi\)
\(42\) −1.36475 + 0.991547i −0.210585 + 0.152999i
\(43\) 6.42455 0.979735 0.489867 0.871797i \(-0.337045\pi\)
0.489867 + 0.871797i \(0.337045\pi\)
\(44\) −3.27718 + 0.510019i −0.494053 + 0.0768883i
\(45\) −0.154300 −0.0230016
\(46\) −5.63049 + 4.09079i −0.830170 + 0.603154i
\(47\) 1.41879 + 4.36658i 0.206951 + 0.636931i 0.999628 + 0.0272881i \(0.00868715\pi\)
−0.792676 + 0.609643i \(0.791313\pi\)
\(48\) −0.521287 + 1.60436i −0.0752413 + 0.231569i
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 0.809017 + 0.587785i 0.114412 + 0.0831254i
\(51\) 2.46067 7.57317i 0.344563 1.06046i
\(52\) 0.0131561 + 0.0404904i 0.00182443 + 0.00561501i
\(53\) 11.4090 8.28916i 1.56715 1.13860i 0.637333 0.770588i \(-0.280037\pi\)
0.929820 0.368015i \(-0.119963\pi\)
\(54\) −5.32105 −0.724104
\(55\) −0.527646 + 3.27438i −0.0711478 + 0.441518i
\(56\) −1.00000 −0.133631
\(57\) −2.33835 + 1.69891i −0.309722 + 0.225027i
\(58\) 0.414939 + 1.27705i 0.0544842 + 0.167685i
\(59\) −3.15745 + 9.71764i −0.411065 + 1.26513i 0.504658 + 0.863319i \(0.331619\pi\)
−0.915723 + 0.401809i \(0.868381\pi\)
\(60\) 1.36475 + 0.991547i 0.176188 + 0.128008i
\(61\) −11.2179 8.15030i −1.43631 1.04354i −0.988798 0.149261i \(-0.952310\pi\)
−0.447511 0.894278i \(-0.647690\pi\)
\(62\) −1.85795 + 5.71818i −0.235960 + 0.726210i
\(63\) −0.0476812 0.146748i −0.00600727 0.0184885i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 0.0425741 0.00528067
\(66\) −0.890097 + 5.52362i −0.109563 + 0.679911i
\(67\) 6.39600 0.781396 0.390698 0.920519i \(-0.372234\pi\)
0.390698 + 0.920519i \(0.372234\pi\)
\(68\) 3.81887 2.77457i 0.463106 0.336466i
\(69\) 3.62798 + 11.1658i 0.436758 + 1.34420i
\(70\) −0.309017 + 0.951057i −0.0369346 + 0.113673i
\(71\) −9.14519 6.64437i −1.08533 0.788542i −0.106729 0.994288i \(-0.534038\pi\)
−0.978605 + 0.205746i \(0.934038\pi\)
\(72\) −0.124831 0.0906951i −0.0147115 0.0106885i
\(73\) −0.614104 + 1.89002i −0.0718754 + 0.221210i −0.980541 0.196315i \(-0.937102\pi\)
0.908665 + 0.417525i \(0.137102\pi\)
\(74\) −2.62188 8.06932i −0.304788 0.938040i
\(75\) 1.36475 0.991547i 0.157587 0.114494i
\(76\) −1.71340 −0.196540
\(77\) −3.27718 + 0.510019i −0.373469 + 0.0581221i
\(78\) 0.0718191 0.00813192
\(79\) 7.17650 5.21404i 0.807420 0.586625i −0.105662 0.994402i \(-0.533696\pi\)
0.913081 + 0.407777i \(0.133696\pi\)
\(80\) 0.309017 + 0.951057i 0.0345492 + 0.106331i
\(81\) −2.63075 + 8.09662i −0.292306 + 0.899625i
\(82\) 3.16626 + 2.30042i 0.349655 + 0.254039i
\(83\) 8.15543 + 5.92527i 0.895175 + 0.650383i 0.937222 0.348733i \(-0.113388\pi\)
−0.0420472 + 0.999116i \(0.513388\pi\)
\(84\) −0.521287 + 1.60436i −0.0568771 + 0.175050i
\(85\) −1.45868 4.48935i −0.158216 0.486938i
\(86\) 5.19757 3.77626i 0.560469 0.407204i
\(87\) 2.26515 0.242849
\(88\) −2.35151 + 2.33889i −0.250672 + 0.249326i
\(89\) 2.93362 0.310963 0.155481 0.987839i \(-0.450307\pi\)
0.155481 + 0.987839i \(0.450307\pi\)
\(90\) −0.124831 + 0.0906951i −0.0131584 + 0.00956010i
\(91\) 0.0131561 + 0.0404904i 0.00137914 + 0.00424455i
\(92\) −2.15065 + 6.61903i −0.224221 + 0.690082i
\(93\) 8.20548 + 5.96163i 0.850868 + 0.618192i
\(94\) 3.71443 + 2.69869i 0.383115 + 0.278349i
\(95\) −0.529469 + 1.62954i −0.0543223 + 0.167187i
\(96\) 0.521287 + 1.60436i 0.0532036 + 0.163744i
\(97\) 14.1426 10.2752i 1.43596 1.04329i 0.447097 0.894485i \(-0.352458\pi\)
0.988867 0.148803i \(-0.0475422\pi\)
\(98\) −1.00000 −0.101015
\(99\) −0.455350 0.233558i −0.0457644 0.0234734i
\(100\) 1.00000 0.100000
\(101\) 4.61879 3.35575i 0.459587 0.333909i −0.333782 0.942650i \(-0.608325\pi\)
0.793369 + 0.608741i \(0.208325\pi\)
\(102\) −2.46067 7.57317i −0.243643 0.749856i
\(103\) 4.14242 12.7491i 0.408165 1.25620i −0.510058 0.860140i \(-0.670376\pi\)
0.918223 0.396063i \(-0.129624\pi\)
\(104\) 0.0344432 + 0.0250244i 0.00337743 + 0.00245385i
\(105\) 1.36475 + 0.991547i 0.133186 + 0.0967651i
\(106\) 4.35787 13.4121i 0.423274 1.30270i
\(107\) −4.93405 15.1854i −0.476992 1.46803i −0.843252 0.537519i \(-0.819362\pi\)
0.366259 0.930513i \(-0.380638\pi\)
\(108\) −4.30482 + 3.12764i −0.414232 + 0.300957i
\(109\) 15.9501 1.52774 0.763871 0.645369i \(-0.223297\pi\)
0.763871 + 0.645369i \(0.223297\pi\)
\(110\) 1.49776 + 2.95917i 0.142806 + 0.282146i
\(111\) −14.3128 −1.35851
\(112\) −0.809017 + 0.587785i −0.0764449 + 0.0555405i
\(113\) 2.67326 + 8.22746i 0.251480 + 0.773975i 0.994503 + 0.104709i \(0.0333911\pi\)
−0.743023 + 0.669266i \(0.766609\pi\)
\(114\) −0.893171 + 2.74890i −0.0836532 + 0.257458i
\(115\) 5.63049 + 4.09079i 0.525046 + 0.381468i
\(116\) 1.08633 + 0.789261i 0.100863 + 0.0732811i
\(117\) −0.00202999 + 0.00624766i −0.000187672 + 0.000577596i
\(118\) 3.15745 + 9.71764i 0.290667 + 0.894581i
\(119\) 3.81887 2.77457i 0.350075 0.254344i
\(120\) 1.68692 0.153994
\(121\) −6.51343 + 8.86427i −0.592130 + 0.805842i
\(122\) −13.8661 −1.25538
\(123\) 5.34123 3.88063i 0.481602 0.349904i
\(124\) 1.85795 + 5.71818i 0.166849 + 0.513508i
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) −0.124831 0.0906951i −0.0111208 0.00807976i
\(127\) 1.47907 + 1.07461i 0.131247 + 0.0953563i 0.651472 0.758673i \(-0.274152\pi\)
−0.520225 + 0.854029i \(0.674152\pi\)
\(128\) −0.309017 + 0.951057i −0.0273135 + 0.0840623i
\(129\) −3.34904 10.3073i −0.294866 0.907505i
\(130\) 0.0344432 0.0250244i 0.00302087 0.00219479i
\(131\) −1.61678 −0.141259 −0.0706294 0.997503i \(-0.522501\pi\)
−0.0706294 + 0.997503i \(0.522501\pi\)
\(132\) 2.52660 + 4.99189i 0.219912 + 0.434488i
\(133\) −1.71340 −0.148570
\(134\) 5.17447 3.75947i 0.447006 0.324769i
\(135\) 1.64430 + 5.06062i 0.141518 + 0.435549i
\(136\) 1.45868 4.48935i 0.125081 0.384958i
\(137\) −8.30594 6.03462i −0.709624 0.515572i 0.173428 0.984847i \(-0.444516\pi\)
−0.883053 + 0.469274i \(0.844516\pi\)
\(138\) 9.49818 + 6.90083i 0.808539 + 0.587438i
\(139\) −0.601835 + 1.85226i −0.0510470 + 0.157106i −0.973330 0.229408i \(-0.926321\pi\)
0.922283 + 0.386514i \(0.126321\pi\)
\(140\) 0.309017 + 0.951057i 0.0261167 + 0.0803789i
\(141\) 6.26595 4.55248i 0.527689 0.383388i
\(142\) −11.3041 −0.948617
\(143\) 0.125639 + 0.0644428i 0.0105065 + 0.00538898i
\(144\) −0.154300 −0.0128583
\(145\) 1.08633 0.789261i 0.0902144 0.0655446i
\(146\) 0.614104 + 1.89002i 0.0508236 + 0.156419i
\(147\) −0.521287 + 1.60436i −0.0429950 + 0.132325i
\(148\) −6.86418 4.98712i −0.564232 0.409938i
\(149\) 5.23370 + 3.80250i 0.428761 + 0.311513i 0.781153 0.624339i \(-0.214632\pi\)
−0.352392 + 0.935852i \(0.614632\pi\)
\(150\) 0.521287 1.60436i 0.0425629 0.130995i
\(151\) −7.29619 22.4554i −0.593756 1.82739i −0.560825 0.827934i \(-0.689516\pi\)
−0.0329305 0.999458i \(-0.510484\pi\)
\(152\) −1.38617 + 1.00711i −0.112433 + 0.0816873i
\(153\) 0.728353 0.0588839
\(154\) −2.35151 + 2.33889i −0.189490 + 0.188473i
\(155\) 6.01245 0.482932
\(156\) 0.0581029 0.0422142i 0.00465196 0.00337984i
\(157\) 3.55033 + 10.9268i 0.283347 + 0.872054i 0.986889 + 0.161400i \(0.0516009\pi\)
−0.703542 + 0.710654i \(0.748399\pi\)
\(158\) 2.74118 8.43649i 0.218077 0.671171i
\(159\) −19.2462 13.9831i −1.52632 1.10894i
\(160\) 0.809017 + 0.587785i 0.0639584 + 0.0464685i
\(161\) −2.15065 + 6.61903i −0.169495 + 0.521653i
\(162\) 2.63075 + 8.09662i 0.206691 + 0.636131i
\(163\) 11.4311 8.30519i 0.895354 0.650513i −0.0419142 0.999121i \(-0.513346\pi\)
0.937269 + 0.348608i \(0.113346\pi\)
\(164\) 3.91371 0.305609
\(165\) 5.52833 0.860361i 0.430380 0.0669790i
\(166\) 10.0807 0.782412
\(167\) 12.6219 9.17034i 0.976711 0.709622i 0.0197402 0.999805i \(-0.493716\pi\)
0.956971 + 0.290183i \(0.0937161\pi\)
\(168\) 0.521287 + 1.60436i 0.0402182 + 0.123779i
\(169\) −4.01666 + 12.3620i −0.308974 + 0.950924i
\(170\) −3.81887 2.77457i −0.292894 0.212800i
\(171\) −0.213885 0.155397i −0.0163562 0.0118835i
\(172\) 1.98530 6.11011i 0.151377 0.465892i
\(173\) 1.91954 + 5.90774i 0.145940 + 0.449157i 0.997131 0.0756996i \(-0.0241190\pi\)
−0.851191 + 0.524856i \(0.824119\pi\)
\(174\) 1.83254 1.33142i 0.138925 0.100935i
\(175\) 1.00000 0.0755929
\(176\) −0.527646 + 3.27438i −0.0397728 + 0.246816i
\(177\) 17.2365 1.29557
\(178\) 2.37335 1.72434i 0.177890 0.129245i
\(179\) 4.91555 + 15.1285i 0.367406 + 1.13076i 0.948461 + 0.316894i \(0.102640\pi\)
−0.581055 + 0.813864i \(0.697360\pi\)
\(180\) −0.0476812 + 0.146748i −0.00355395 + 0.0109379i
\(181\) 5.33901 + 3.87902i 0.396845 + 0.288325i 0.768255 0.640144i \(-0.221125\pi\)
−0.371409 + 0.928469i \(0.621125\pi\)
\(182\) 0.0344432 + 0.0250244i 0.00255310 + 0.00185493i
\(183\) −7.22823 + 22.2462i −0.534326 + 1.64449i
\(184\) 2.15065 + 6.61903i 0.158548 + 0.487962i
\(185\) −6.86418 + 4.98712i −0.504664 + 0.366660i
\(186\) 10.1425 0.743686
\(187\) 2.49069 15.4563i 0.182137 1.13028i
\(188\) 4.59129 0.334854
\(189\) −4.30482 + 3.12764i −0.313130 + 0.227502i
\(190\) 0.529469 + 1.62954i 0.0384117 + 0.118219i
\(191\) 5.30552 16.3287i 0.383894 1.18150i −0.553386 0.832925i \(-0.686664\pi\)
0.937280 0.348579i \(-0.113336\pi\)
\(192\) 1.36475 + 0.991547i 0.0984921 + 0.0715587i
\(193\) 8.26691 + 6.00626i 0.595065 + 0.432340i 0.844124 0.536148i \(-0.180121\pi\)
−0.249059 + 0.968488i \(0.580121\pi\)
\(194\) 5.40199 16.6256i 0.387841 1.19365i
\(195\) −0.0221933 0.0683041i −0.00158930 0.00489136i
\(196\) −0.809017 + 0.587785i −0.0577869 + 0.0419847i
\(197\) −7.33268 −0.522432 −0.261216 0.965280i \(-0.584124\pi\)
−0.261216 + 0.965280i \(0.584124\pi\)
\(198\) −0.505667 + 0.0786958i −0.0359362 + 0.00559267i
\(199\) −8.90352 −0.631154 −0.315577 0.948900i \(-0.602198\pi\)
−0.315577 + 0.948900i \(0.602198\pi\)
\(200\) 0.809017 0.587785i 0.0572061 0.0415627i
\(201\) −3.33415 10.2615i −0.235173 0.723788i
\(202\) 1.76422 5.42972i 0.124130 0.382033i
\(203\) 1.08633 + 0.789261i 0.0762451 + 0.0553953i
\(204\) −6.44213 4.68048i −0.451039 0.327699i
\(205\) 1.20940 3.72216i 0.0844684 0.259967i
\(206\) −4.14242 12.7491i −0.288616 0.888269i
\(207\) −0.868782 + 0.631207i −0.0603846 + 0.0438719i
\(208\) 0.0425741 0.00295198
\(209\) −4.02907 + 4.00745i −0.278696 + 0.277201i
\(210\) 1.68692 0.116409
\(211\) −3.67914 + 2.67305i −0.253283 + 0.184021i −0.707180 0.707033i \(-0.750033\pi\)
0.453898 + 0.891054i \(0.350033\pi\)
\(212\) −4.35787 13.4121i −0.299300 0.921150i
\(213\) −5.89267 + 18.1358i −0.403759 + 1.24264i
\(214\) −12.9175 9.38512i −0.883022 0.641553i
\(215\) −5.19757 3.77626i −0.354471 0.257539i
\(216\) −1.64430 + 5.06062i −0.111880 + 0.344332i
\(217\) 1.85795 + 5.71818i 0.126126 + 0.388176i
\(218\) 12.9039 9.37523i 0.873962 0.634970i
\(219\) 3.35239 0.226533
\(220\) 2.95107 + 1.51366i 0.198961 + 0.102051i
\(221\) −0.200966 −0.0135184
\(222\) −11.5793 + 8.41287i −0.777153 + 0.564635i
\(223\) 5.58399 + 17.1857i 0.373931 + 1.15084i 0.944197 + 0.329382i \(0.106840\pi\)
−0.570265 + 0.821461i \(0.693160\pi\)
\(224\) −0.309017 + 0.951057i −0.0206471 + 0.0635451i
\(225\) 0.124831 + 0.0906951i 0.00832207 + 0.00604634i
\(226\) 6.99870 + 5.08485i 0.465546 + 0.338239i
\(227\) 0.299901 0.923001i 0.0199052 0.0612618i −0.940611 0.339488i \(-0.889746\pi\)
0.960516 + 0.278226i \(0.0897464\pi\)
\(228\) 0.893171 + 2.74890i 0.0591517 + 0.182050i
\(229\) 1.99255 1.44767i 0.131671 0.0956648i −0.520000 0.854166i \(-0.674068\pi\)
0.651671 + 0.758501i \(0.274068\pi\)
\(230\) 6.95966 0.458907
\(231\) 2.52660 + 4.99189i 0.166238 + 0.328442i
\(232\) 1.34277 0.0881573
\(233\) 5.38030 3.90901i 0.352475 0.256088i −0.397432 0.917632i \(-0.630098\pi\)
0.749907 + 0.661544i \(0.230098\pi\)
\(234\) 0.00202999 + 0.00624766i 0.000132704 + 0.000408422i
\(235\) 1.41879 4.36658i 0.0925515 0.284844i
\(236\) 8.26632 + 6.00583i 0.538091 + 0.390946i
\(237\) −12.1062 8.79566i −0.786382 0.571340i
\(238\) 1.45868 4.48935i 0.0945520 0.291001i
\(239\) 6.50571 + 20.0225i 0.420819 + 1.29515i 0.906941 + 0.421257i \(0.138411\pi\)
−0.486122 + 0.873891i \(0.661589\pi\)
\(240\) 1.36475 0.991547i 0.0880941 0.0640041i
\(241\) −7.93244 −0.510973 −0.255487 0.966813i \(-0.582236\pi\)
−0.255487 + 0.966813i \(0.582236\pi\)
\(242\) −0.0591910 + 10.9998i −0.00380494 + 0.707097i
\(243\) −1.60191 −0.102763
\(244\) −11.2179 + 8.15030i −0.718154 + 0.521770i
\(245\) 0.309017 + 0.951057i 0.0197424 + 0.0607608i
\(246\) 2.04017 6.27899i 0.130076 0.400334i
\(247\) 0.0590148 + 0.0428768i 0.00375502 + 0.00272818i
\(248\) 4.86418 + 3.53403i 0.308876 + 0.224411i
\(249\) 5.25492 16.1730i 0.333017 1.02492i
\(250\) −0.309017 0.951057i −0.0195440 0.0601501i
\(251\) −15.3253 + 11.1345i −0.967323 + 0.702801i −0.954840 0.297121i \(-0.903974\pi\)
−0.0124831 + 0.999922i \(0.503974\pi\)
\(252\) −0.154300 −0.00971997
\(253\) 10.4239 + 20.5949i 0.655345 + 1.29479i
\(254\) 1.82824 0.114714
\(255\) −6.44213 + 4.68048i −0.403422 + 0.293103i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −8.30015 + 25.5452i −0.517749 + 1.59347i 0.260475 + 0.965481i \(0.416121\pi\)
−0.778224 + 0.627987i \(0.783879\pi\)
\(258\) −8.76789 6.37024i −0.545865 0.396594i
\(259\) −6.86418 4.98712i −0.426519 0.309884i
\(260\) 0.0131561 0.0404904i 0.000815908 0.00251111i
\(261\) 0.0640250 + 0.197049i 0.00396305 + 0.0121970i
\(262\) −1.30800 + 0.950320i −0.0808087 + 0.0587109i
\(263\) −13.3750 −0.824740 −0.412370 0.911017i \(-0.635299\pi\)
−0.412370 + 0.911017i \(0.635299\pi\)
\(264\) 4.97822 + 2.55343i 0.306389 + 0.157153i
\(265\) −14.1024 −0.866301
\(266\) −1.38617 + 1.00711i −0.0849913 + 0.0617498i
\(267\) −1.52926 4.70657i −0.0935890 0.288037i
\(268\) 1.97647 6.08296i 0.120732 0.371576i
\(269\) 3.28444 + 2.38629i 0.200256 + 0.145494i 0.683394 0.730050i \(-0.260503\pi\)
−0.483138 + 0.875544i \(0.660503\pi\)
\(270\) 4.30482 + 3.12764i 0.261983 + 0.190342i
\(271\) 7.11437 21.8958i 0.432167 1.33007i −0.463794 0.885943i \(-0.653512\pi\)
0.895962 0.444131i \(-0.146488\pi\)
\(272\) −1.45868 4.48935i −0.0884453 0.272207i
\(273\) 0.0581029 0.0422142i 0.00351655 0.00255492i
\(274\) −10.2667 −0.620235
\(275\) 2.35151 2.33889i 0.141801 0.141040i
\(276\) 11.7404 0.706689
\(277\) 18.0299 13.0995i 1.08331 0.787073i 0.105055 0.994466i \(-0.466498\pi\)
0.978258 + 0.207394i \(0.0664981\pi\)
\(278\) 0.601835 + 1.85226i 0.0360956 + 0.111091i
\(279\) −0.286681 + 0.882314i −0.0171632 + 0.0528227i
\(280\) 0.809017 + 0.587785i 0.0483480 + 0.0351269i
\(281\) 1.81996 + 1.32228i 0.108569 + 0.0788803i 0.640745 0.767754i \(-0.278625\pi\)
−0.532176 + 0.846634i \(0.678625\pi\)
\(282\) 2.39338 7.36607i 0.142524 0.438643i
\(283\) −1.14656 3.52875i −0.0681559 0.209762i 0.911178 0.412013i \(-0.135174\pi\)
−0.979334 + 0.202251i \(0.935174\pi\)
\(284\) −9.14519 + 6.64437i −0.542667 + 0.394271i
\(285\) 2.89036 0.171210
\(286\) 0.139523 0.0217136i 0.00825016 0.00128395i
\(287\) 3.91371 0.231019
\(288\) −0.124831 + 0.0906951i −0.00735574 + 0.00534426i
\(289\) 1.63223 + 5.02347i 0.0960133 + 0.295498i
\(290\) 0.414939 1.27705i 0.0243661 0.0749911i
\(291\) −23.8574 17.3334i −1.39855 1.01610i
\(292\) 1.60774 + 1.16810i 0.0940862 + 0.0683576i
\(293\) 0.572205 1.76107i 0.0334286 0.102883i −0.932950 0.360006i \(-0.882775\pi\)
0.966379 + 0.257123i \(0.0827747\pi\)
\(294\) 0.521287 + 1.60436i 0.0304021 + 0.0935680i
\(295\) 8.26632 6.00583i 0.481284 0.349673i
\(296\) −8.48459 −0.493157
\(297\) −2.80763 + 17.4232i −0.162915 + 1.01099i
\(298\) 6.46920 0.374751
\(299\) 0.239713 0.174162i 0.0138630 0.0100720i
\(300\) −0.521287 1.60436i −0.0300965 0.0926276i
\(301\) 1.98530 6.11011i 0.114431 0.352181i
\(302\) −19.1017 13.8782i −1.09918 0.798600i
\(303\) −7.79153 5.66088i −0.447612 0.325209i
\(304\) −0.529469 + 1.62954i −0.0303671 + 0.0934603i
\(305\) 4.28487 + 13.1875i 0.245351 + 0.755112i
\(306\) 0.589250 0.428115i 0.0336852 0.0244737i
\(307\) −6.66980 −0.380666 −0.190333 0.981720i \(-0.560957\pi\)
−0.190333 + 0.981720i \(0.560957\pi\)
\(308\) −0.527646 + 3.27438i −0.0300654 + 0.186575i
\(309\) −22.6134 −1.28643
\(310\) 4.86418 3.53403i 0.276267 0.200719i
\(311\) 4.66520 + 14.3580i 0.264539 + 0.814168i 0.991799 + 0.127806i \(0.0407935\pi\)
−0.727260 + 0.686362i \(0.759207\pi\)
\(312\) 0.0221933 0.0683041i 0.00125645 0.00386696i
\(313\) −5.93611 4.31284i −0.335529 0.243776i 0.407244 0.913319i \(-0.366490\pi\)
−0.742773 + 0.669543i \(0.766490\pi\)
\(314\) 9.29489 + 6.75314i 0.524541 + 0.381102i
\(315\) −0.0476812 + 0.146748i −0.00268653 + 0.00826830i
\(316\) −2.74118 8.43649i −0.154203 0.474589i
\(317\) −18.1948 + 13.2193i −1.02192 + 0.742468i −0.966675 0.256005i \(-0.917594\pi\)
−0.0552441 + 0.998473i \(0.517594\pi\)
\(318\) −23.7896 −1.33405
\(319\) 4.40050 0.684839i 0.246381 0.0383436i
\(320\) 1.00000 0.0559017
\(321\) −21.7908 + 15.8319i −1.21624 + 0.883653i
\(322\) 2.15065 + 6.61903i 0.119851 + 0.368864i
\(323\) 2.49929 7.69203i 0.139064 0.427996i
\(324\) 6.88740 + 5.00399i 0.382633 + 0.277999i
\(325\) −0.0344432 0.0250244i −0.00191056 0.00138811i
\(326\) 4.36630 13.4381i 0.241827 0.744267i
\(327\) −8.31457 25.5896i −0.459797 1.41511i
\(328\) 3.16626 2.30042i 0.174827 0.127020i
\(329\) 4.59129 0.253126
\(330\) 3.96681 3.94552i 0.218366 0.217194i
\(331\) 10.3154 0.566987 0.283494 0.958974i \(-0.408507\pi\)
0.283494 + 0.958974i \(0.408507\pi\)
\(332\) 8.15543 5.92527i 0.447587 0.325191i
\(333\) −0.404556 1.24509i −0.0221695 0.0682307i
\(334\) 4.82113 14.8379i 0.263801 0.811895i
\(335\) −5.17447 3.75947i −0.282712 0.205402i
\(336\) 1.36475 + 0.991547i 0.0744531 + 0.0540933i
\(337\) −8.40752 + 25.8757i −0.457987 + 1.40954i 0.409606 + 0.912262i \(0.365666\pi\)
−0.867593 + 0.497275i \(0.834334\pi\)
\(338\) 4.01666 + 12.3620i 0.218478 + 0.672405i
\(339\) 11.8062 8.57774i 0.641227 0.465879i
\(340\) −4.72038 −0.255999
\(341\) 17.7432 + 9.10082i 0.960847 + 0.492837i
\(342\) −0.264377 −0.0142958
\(343\) −0.809017 + 0.587785i −0.0436828 + 0.0317374i
\(344\) −1.98530 6.11011i −0.107040 0.329435i
\(345\) 3.62798 11.1658i 0.195324 0.601146i
\(346\) 5.02542 + 3.65118i 0.270168 + 0.196289i
\(347\) 5.38238 + 3.91053i 0.288941 + 0.209928i 0.722808 0.691049i \(-0.242851\pi\)
−0.433867 + 0.900977i \(0.642851\pi\)
\(348\) 0.699970 2.15428i 0.0375223 0.115482i
\(349\) −7.86699 24.2121i −0.421110 1.29604i −0.906670 0.421841i \(-0.861384\pi\)
0.485560 0.874204i \(-0.338616\pi\)
\(350\) 0.809017 0.587785i 0.0432438 0.0314184i
\(351\) 0.226539 0.0120918
\(352\) 1.49776 + 2.95917i 0.0798309 + 0.157725i
\(353\) −29.0584 −1.54662 −0.773311 0.634026i \(-0.781401\pi\)
−0.773311 + 0.634026i \(0.781401\pi\)
\(354\) 13.9446 10.1314i 0.741148 0.538476i
\(355\) 3.49315 + 10.7508i 0.185397 + 0.570594i
\(356\) 0.906538 2.79004i 0.0480464 0.147872i
\(357\) −6.44213 4.68048i −0.340953 0.247717i
\(358\) 12.8691 + 9.34994i 0.680152 + 0.494160i
\(359\) −8.75211 + 26.9362i −0.461918 + 1.42164i 0.400898 + 0.916122i \(0.368698\pi\)
−0.862817 + 0.505516i \(0.831302\pi\)
\(360\) 0.0476812 + 0.146748i 0.00251302 + 0.00773428i
\(361\) 12.9963 9.44234i 0.684014 0.496965i
\(362\) 6.59938 0.346856
\(363\) 17.6168 + 5.82904i 0.924643 + 0.305945i
\(364\) 0.0425741 0.00223149
\(365\) 1.60774 1.16810i 0.0841532 0.0611409i
\(366\) 7.22823 + 22.2462i 0.377826 + 1.16283i
\(367\) −8.50364 + 26.1715i −0.443887 + 1.36614i 0.439814 + 0.898089i \(0.355044\pi\)
−0.883700 + 0.468053i \(0.844956\pi\)
\(368\) 5.63049 + 4.09079i 0.293509 + 0.213247i
\(369\) 0.488553 + 0.354954i 0.0254330 + 0.0184782i
\(370\) −2.62188 + 8.06932i −0.136305 + 0.419504i
\(371\) −4.35787 13.4121i −0.226249 0.696324i
\(372\) 8.20548 5.96163i 0.425434 0.309096i
\(373\) −22.9306 −1.18730 −0.593650 0.804724i \(-0.702313\pi\)
−0.593650 + 0.804724i \(0.702313\pi\)
\(374\) −7.07000 13.9684i −0.365581 0.722290i
\(375\) −1.68692 −0.0871122
\(376\) 3.71443 2.69869i 0.191557 0.139175i
\(377\) −0.0176657 0.0543694i −0.000909829 0.00280016i
\(378\) −1.64430 + 5.06062i −0.0845734 + 0.260290i
\(379\) −12.4702 9.06012i −0.640550 0.465387i 0.219489 0.975615i \(-0.429561\pi\)
−0.860039 + 0.510228i \(0.829561\pi\)
\(380\) 1.38617 + 1.00711i 0.0711089 + 0.0516636i
\(381\) 0.953036 2.93314i 0.0488255 0.150270i
\(382\) −5.30552 16.3287i −0.271454 0.835449i
\(383\) 24.9927 18.1582i 1.27707 0.927843i 0.277606 0.960695i \(-0.410459\pi\)
0.999460 + 0.0328519i \(0.0104590\pi\)
\(384\) 1.68692 0.0860853
\(385\) 2.95107 + 1.51366i 0.150401 + 0.0771433i
\(386\) 10.2185 0.520106
\(387\) 0.801984 0.582675i 0.0407671 0.0296190i
\(388\) −5.40199 16.6256i −0.274245 0.844038i
\(389\) 0.139877 0.430497i 0.00709204 0.0218270i −0.947448 0.319910i \(-0.896347\pi\)
0.954540 + 0.298083i \(0.0963473\pi\)
\(390\) −0.0581029 0.0422142i −0.00294216 0.00213760i
\(391\) −26.5780 19.3101i −1.34411 0.976553i
\(392\) −0.309017 + 0.951057i −0.0156077 + 0.0480356i
\(393\) 0.842807 + 2.59389i 0.0425140 + 0.130845i
\(394\) −5.93227 + 4.31004i −0.298863 + 0.217137i
\(395\) −8.87065 −0.446331
\(396\) −0.362837 + 0.360890i −0.0182333 + 0.0181354i
\(397\) 24.1263 1.21086 0.605431 0.795897i \(-0.293001\pi\)
0.605431 + 0.795897i \(0.293001\pi\)
\(398\) −7.20310 + 5.23336i −0.361059 + 0.262325i
\(399\) 0.893171 + 2.74890i 0.0447145 + 0.137617i
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) 9.08207 + 6.59851i 0.453537 + 0.329514i 0.790991 0.611828i \(-0.209566\pi\)
−0.337454 + 0.941342i \(0.609566\pi\)
\(402\) −8.72892 6.34193i −0.435359 0.316307i
\(403\) 0.0791006 0.243447i 0.00394028 0.0121269i
\(404\) −1.76422 5.42972i −0.0877733 0.270138i
\(405\) 6.88740 5.00399i 0.342238 0.248650i
\(406\) 1.34277 0.0666406
\(407\) −27.8055 + 4.32730i −1.37827 + 0.214496i
\(408\) −7.96291 −0.394223
\(409\) 24.6566 17.9140i 1.21919 0.885792i 0.223156 0.974783i \(-0.428364\pi\)
0.996032 + 0.0889907i \(0.0283641\pi\)
\(410\) −1.20940 3.72216i −0.0597282 0.183824i
\(411\) −5.35190 + 16.4715i −0.263990 + 0.812477i
\(412\) −10.8450 7.87936i −0.534295 0.388188i
\(413\) 8.26632 + 6.00583i 0.406759 + 0.295528i
\(414\) −0.331845 + 1.02132i −0.0163093 + 0.0501949i
\(415\) −3.11510 9.58728i −0.152914 0.470621i
\(416\) 0.0344432 0.0250244i 0.00168872 0.00122692i
\(417\) 3.28541 0.160887
\(418\) −0.904067 + 5.61032i −0.0442194 + 0.274410i
\(419\) 11.8710 0.579937 0.289968 0.957036i \(-0.406355\pi\)
0.289968 + 0.957036i \(0.406355\pi\)
\(420\) 1.36475 0.991547i 0.0665928 0.0483825i
\(421\) 7.34459 + 22.6043i 0.357953 + 1.10167i 0.954277 + 0.298923i \(0.0966274\pi\)
−0.596324 + 0.802744i \(0.703373\pi\)
\(422\) −1.40531 + 4.32509i −0.0684093 + 0.210542i
\(423\) 0.573136 + 0.416408i 0.0278668 + 0.0202464i
\(424\) −11.4090 8.28916i −0.554072 0.402557i
\(425\) −1.45868 + 4.48935i −0.0707563 + 0.217765i
\(426\) 5.89267 + 18.1358i 0.285501 + 0.878681i
\(427\) −11.2179 + 8.15030i −0.542874 + 0.394421i
\(428\) −15.9669 −0.771790
\(429\) 0.0378951 0.235163i 0.00182959 0.0113538i
\(430\) −6.42455 −0.309819
\(431\) −22.0004 + 15.9842i −1.05972 + 0.769932i −0.974037 0.226391i \(-0.927307\pi\)
−0.0856833 + 0.996322i \(0.527307\pi\)
\(432\) 1.64430 + 5.06062i 0.0791112 + 0.243479i
\(433\) −0.683128 + 2.10245i −0.0328290 + 0.101037i −0.966128 0.258062i \(-0.916916\pi\)
0.933299 + 0.359099i \(0.116916\pi\)
\(434\) 4.86418 + 3.53403i 0.233488 + 0.169639i
\(435\) −1.83254 1.33142i −0.0878638 0.0638368i
\(436\) 4.92885 15.1694i 0.236049 0.726484i
\(437\) 3.68492 + 11.3410i 0.176274 + 0.542515i
\(438\) 2.71214 1.97048i 0.129591 0.0941533i
\(439\) −6.47985 −0.309267 −0.154633 0.987972i \(-0.549420\pi\)
−0.154633 + 0.987972i \(0.549420\pi\)
\(440\) 3.27718 0.510019i 0.156233 0.0243142i
\(441\) −0.154300 −0.00734760
\(442\) −0.162585 + 0.118125i −0.00773338 + 0.00561863i
\(443\) 5.27776 + 16.2433i 0.250754 + 0.771741i 0.994637 + 0.103431i \(0.0329820\pi\)
−0.743883 + 0.668310i \(0.767018\pi\)
\(444\) −4.42291 + 13.6123i −0.209902 + 0.646011i
\(445\) −2.37335 1.72434i −0.112507 0.0817414i
\(446\) 14.6191 + 10.6214i 0.692233 + 0.502937i
\(447\) 3.37231 10.3789i 0.159505 0.490906i
\(448\) 0.309017 + 0.951057i 0.0145997 + 0.0449332i
\(449\) −10.6246 + 7.71925i −0.501408 + 0.364294i −0.809554 0.587045i \(-0.800291\pi\)
0.308147 + 0.951339i \(0.400291\pi\)
\(450\) 0.154300 0.00727376
\(451\) 9.20313 9.15374i 0.433358 0.431033i
\(452\) 8.65087 0.406903
\(453\) −32.2230 + 23.4114i −1.51397 + 1.09996i
\(454\) −0.299901 0.923001i −0.0140751 0.0433186i
\(455\) 0.0131561 0.0404904i 0.000616769 0.00189822i
\(456\) 2.33835 + 1.69891i 0.109503 + 0.0795589i
\(457\) −12.5000 9.08176i −0.584724 0.424827i 0.255700 0.966756i \(-0.417694\pi\)
−0.840424 + 0.541929i \(0.817694\pi\)
\(458\) 0.761085 2.34238i 0.0355632 0.109452i
\(459\) −7.76170 23.8881i −0.362285 1.11500i
\(460\) 5.63049 4.09079i 0.262523 0.190734i
\(461\) −33.8352 −1.57586 −0.787932 0.615763i \(-0.788848\pi\)
−0.787932 + 0.615763i \(0.788848\pi\)
\(462\) 4.97822 + 2.55343i 0.231608 + 0.118796i
\(463\) 31.7915 1.47748 0.738738 0.673993i \(-0.235422\pi\)
0.738738 + 0.673993i \(0.235422\pi\)
\(464\) 1.08633 0.789261i 0.0504314 0.0366405i
\(465\) −3.13421 9.64612i −0.145346 0.447328i
\(466\) 2.05509 6.32492i 0.0952002 0.292996i
\(467\) 13.7772 + 10.0097i 0.637531 + 0.463194i 0.859001 0.511974i \(-0.171085\pi\)
−0.221470 + 0.975167i \(0.571085\pi\)
\(468\) 0.00531457 + 0.00386126i 0.000245666 + 0.000178487i
\(469\) 1.97647 6.08296i 0.0912650 0.280885i
\(470\) −1.41879 4.36658i −0.0654438 0.201415i
\(471\) 15.6797 11.3920i 0.722485 0.524916i
\(472\) 10.2177 0.470309
\(473\) −9.62244 19.0114i −0.442440 0.874144i
\(474\) −14.9641 −0.687323
\(475\) 1.38617 1.00711i 0.0636017 0.0462093i
\(476\) −1.45868 4.48935i −0.0668584 0.205769i
\(477\) 0.672418 2.06949i 0.0307879 0.0947554i
\(478\) 17.0322 + 12.3746i 0.779033 + 0.566001i
\(479\) −24.2477 17.6170i −1.10791 0.804942i −0.125574 0.992084i \(-0.540077\pi\)
−0.982333 + 0.187143i \(0.940077\pi\)
\(480\) 0.521287 1.60436i 0.0237934 0.0732285i
\(481\) 0.111624 + 0.343544i 0.00508963 + 0.0156643i
\(482\) −6.41748 + 4.66257i −0.292308 + 0.212374i
\(483\) 11.7404 0.534207
\(484\) 6.41766 + 8.93385i 0.291712 + 0.406084i
\(485\) −17.4812 −0.793781
\(486\) −1.29597 + 0.941579i −0.0587865 + 0.0427109i
\(487\) 0.226524 + 0.697170i 0.0102648 + 0.0315918i 0.956058 0.293178i \(-0.0947130\pi\)
−0.945793 + 0.324770i \(0.894713\pi\)
\(488\) −4.28487 + 13.1875i −0.193967 + 0.596969i
\(489\) −19.2834 14.0102i −0.872025 0.633563i
\(490\) 0.809017 + 0.587785i 0.0365477 + 0.0265534i
\(491\) 3.13633 9.65263i 0.141541 0.435617i −0.855009 0.518613i \(-0.826449\pi\)
0.996550 + 0.0829954i \(0.0264487\pi\)
\(492\) −2.04017 6.27899i −0.0919778 0.283079i
\(493\) −5.12787 + 3.72561i −0.230948 + 0.167793i
\(494\) 0.0729463 0.00328201
\(495\) 0.231104 + 0.456600i 0.0103873 + 0.0205226i
\(496\) 6.01245 0.269967
\(497\) −9.14519 + 6.64437i −0.410218 + 0.298041i
\(498\) −5.25492 16.1730i −0.235479 0.724729i
\(499\) −3.45090 + 10.6208i −0.154483 + 0.475451i −0.998108 0.0614823i \(-0.980417\pi\)
0.843625 + 0.536933i \(0.180417\pi\)
\(500\) −0.809017 0.587785i −0.0361803 0.0262866i
\(501\) −21.2921 15.4696i −0.951262 0.691132i
\(502\) −5.85374 + 18.0159i −0.261265 + 0.804091i
\(503\) −2.30604 7.09725i −0.102821 0.316451i 0.886392 0.462936i \(-0.153204\pi\)
−0.989213 + 0.146485i \(0.953204\pi\)
\(504\) −0.124831 + 0.0906951i −0.00556042 + 0.00403988i
\(505\) −5.70914 −0.254053
\(506\) 20.5385 + 10.5346i 0.913047 + 0.468319i
\(507\) 21.9269 0.973808
\(508\) 1.47907 1.07461i 0.0656233 0.0476781i
\(509\) −9.52514 29.3154i −0.422194 1.29938i −0.905655 0.424015i \(-0.860620\pi\)
0.483461 0.875366i \(-0.339380\pi\)
\(510\) −2.46067 + 7.57317i −0.108960 + 0.335346i
\(511\) 1.60774 + 1.16810i 0.0711224 + 0.0516735i
\(512\) 0.809017 + 0.587785i 0.0357538 + 0.0259767i
\(513\) −2.81733 + 8.67085i −0.124388 + 0.382827i
\(514\) 8.30015 + 25.5452i 0.366104 + 1.12675i
\(515\) −10.8450 + 7.87936i −0.477888 + 0.347206i
\(516\) −10.8377 −0.477103
\(517\) 10.7965 10.7385i 0.474828 0.472280i
\(518\) −8.48459 −0.372791
\(519\) 8.47748 6.15925i 0.372120 0.270361i
\(520\) −0.0131561 0.0404904i −0.000576934 0.00177562i
\(521\) −4.50694 + 13.8709i −0.197453 + 0.607697i 0.802487 + 0.596670i \(0.203510\pi\)
−0.999939 + 0.0110266i \(0.996490\pi\)
\(522\) 0.167620 + 0.121783i 0.00733651 + 0.00533029i
\(523\) 7.75498 + 5.63432i 0.339102 + 0.246372i 0.744283 0.667865i \(-0.232792\pi\)
−0.405181 + 0.914236i \(0.632792\pi\)
\(524\) −0.499613 + 1.53765i −0.0218257 + 0.0671725i
\(525\) −0.521287 1.60436i −0.0227508 0.0700199i
\(526\) −10.8206 + 7.86164i −0.471802 + 0.342784i
\(527\) −28.3811 −1.23630
\(528\) 5.52833 0.860361i 0.240590 0.0374424i
\(529\) 25.4369 1.10595
\(530\) −11.4090 + 8.28916i −0.495577 + 0.360058i
\(531\) 0.487194 + 1.49943i 0.0211424 + 0.0650697i
\(532\) −0.529469 + 1.62954i −0.0229554 + 0.0706494i
\(533\) −0.134801 0.0979384i −0.00583886 0.00424218i
\(534\) −4.00365 2.90882i −0.173255 0.125877i
\(535\) −4.93405 + 15.1854i −0.213317 + 0.656524i
\(536\) −1.97647 6.08296i −0.0853706 0.262744i
\(537\) 21.7091 15.7726i 0.936818 0.680638i
\(538\) 4.05979 0.175030
\(539\) −0.527646 + 3.27438i −0.0227273 + 0.141038i
\(540\) 5.32105 0.228982
\(541\) −1.38485 + 1.00615i −0.0595394 + 0.0432579i −0.617157 0.786840i \(-0.711716\pi\)
0.557617 + 0.830098i \(0.311716\pi\)
\(542\) −7.11437 21.8958i −0.305588 0.940505i
\(543\) 3.44017 10.5878i 0.147632 0.454364i
\(544\) −3.81887 2.77457i −0.163733 0.118959i
\(545\) −12.9039 9.37523i −0.552742 0.401591i
\(546\) 0.0221933 0.0683041i 0.000949787 0.00292314i
\(547\) 5.40069 + 16.6216i 0.230917 + 0.710688i 0.997637 + 0.0687070i \(0.0218873\pi\)
−0.766720 + 0.641981i \(0.778113\pi\)
\(548\) −8.30594 + 6.03462i −0.354812 + 0.257786i
\(549\) −2.13954 −0.0913133
\(550\) 0.527646 3.27438i 0.0224989 0.139620i
\(551\) 2.30070 0.0980131
\(552\) 9.49818 6.90083i 0.404270 0.293719i
\(553\) −2.74118 8.43649i −0.116567 0.358756i
\(554\) 6.88682 21.1954i 0.292593 0.900508i
\(555\) 11.5793 + 8.41287i 0.491515 + 0.357106i
\(556\) 1.57562 + 1.14476i 0.0668213 + 0.0485485i
\(557\) −7.93849 + 24.4322i −0.336365 + 1.03522i 0.629681 + 0.776854i \(0.283186\pi\)
−0.966046 + 0.258371i \(0.916814\pi\)
\(558\) 0.286681 + 0.882314i 0.0121362 + 0.0373513i
\(559\) −0.221282 + 0.160771i −0.00935923 + 0.00679988i
\(560\) 1.00000 0.0422577
\(561\) −26.0958 + 4.06123i −1.10177 + 0.171465i
\(562\) 2.24959 0.0948932
\(563\) 15.6491 11.3697i 0.659531 0.479177i −0.206973 0.978347i \(-0.566361\pi\)
0.866505 + 0.499169i \(0.166361\pi\)
\(564\) −2.39338 7.36607i −0.100780 0.310168i
\(565\) 2.67326 8.22746i 0.112465 0.346132i
\(566\) −3.00173 2.18089i −0.126172 0.0916695i
\(567\) 6.88740 + 5.00399i 0.289244 + 0.210148i
\(568\) −3.49315 + 10.7508i −0.146569 + 0.451094i
\(569\) 0.469462 + 1.44485i 0.0196809 + 0.0605714i 0.960415 0.278575i \(-0.0898619\pi\)
−0.940734 + 0.339146i \(0.889862\pi\)
\(570\) 2.33835 1.69891i 0.0979428 0.0711596i
\(571\) 4.97687 0.208276 0.104138 0.994563i \(-0.466792\pi\)
0.104138 + 0.994563i \(0.466792\pi\)
\(572\) 0.100113 0.0995762i 0.00418595 0.00416349i
\(573\) −28.9628 −1.20994
\(574\) 3.16626 2.30042i 0.132157 0.0960177i
\(575\) −2.15065 6.61903i −0.0896885 0.276033i
\(576\) −0.0476812 + 0.146748i −0.00198672 + 0.00611449i
\(577\) 25.5732 + 18.5800i 1.06463 + 0.773497i 0.974939 0.222473i \(-0.0714129\pi\)
0.0896883 + 0.995970i \(0.471413\pi\)
\(578\) 4.27322 + 3.10468i 0.177743 + 0.129138i
\(579\) 5.32675 16.3941i 0.221372 0.681314i
\(580\) −0.414939 1.27705i −0.0172294 0.0530267i
\(581\) 8.15543 5.92527i 0.338344 0.245822i
\(582\) −29.4894 −1.22238
\(583\) −41.6171 21.3462i −1.72360 0.884069i
\(584\) 1.98728 0.0822343
\(585\) 0.00531457 0.00386126i 0.000219731 0.000159644i
\(586\) −0.572205 1.76107i −0.0236376 0.0727490i
\(587\) 2.19984 6.77043i 0.0907973 0.279445i −0.895338 0.445387i \(-0.853066\pi\)
0.986136 + 0.165941i \(0.0530662\pi\)
\(588\) 1.36475 + 0.991547i 0.0562812 + 0.0408907i
\(589\) 8.33426 + 6.05520i 0.343407 + 0.249500i
\(590\) 3.15745 9.71764i 0.129990 0.400069i
\(591\) 3.82243 + 11.7642i 0.157234 + 0.483916i
\(592\) −6.86418 + 4.98712i −0.282116 + 0.204969i
\(593\) −18.4209 −0.756456 −0.378228 0.925713i \(-0.623466\pi\)
−0.378228 + 0.925713i \(0.623466\pi\)
\(594\) 7.96966 + 15.7459i 0.326999 + 0.646063i
\(595\) −4.72038 −0.193517
\(596\) 5.23370 3.80250i 0.214381 0.155757i
\(597\) 4.64129 + 14.2844i 0.189955 + 0.584623i
\(598\) 0.0915622 0.281800i 0.00374426 0.0115236i
\(599\) 0.989585 + 0.718975i 0.0404333 + 0.0293765i 0.607818 0.794076i \(-0.292045\pi\)
−0.567385 + 0.823453i \(0.692045\pi\)
\(600\) −1.36475 0.991547i −0.0557156 0.0404797i
\(601\) −6.39321 + 19.6763i −0.260784 + 0.802612i 0.731850 + 0.681465i \(0.238657\pi\)
−0.992635 + 0.121146i \(0.961343\pi\)
\(602\) −1.98530 6.11011i −0.0809146 0.249030i
\(603\) 0.798420 0.580086i 0.0325142 0.0236229i
\(604\) −23.6110 −0.960717
\(605\) 10.4798 3.34284i 0.426063 0.135906i
\(606\) −9.63087 −0.391227
\(607\) 8.33557 6.05615i 0.338330 0.245811i −0.405627 0.914039i \(-0.632947\pi\)
0.743957 + 0.668227i \(0.232947\pi\)
\(608\) 0.529469 + 1.62954i 0.0214728 + 0.0660864i
\(609\) 0.699970 2.15428i 0.0283642 0.0872960i
\(610\) 11.2179 + 8.15030i 0.454201 + 0.329996i
\(611\) −0.158139 0.114895i −0.00639761 0.00464814i
\(612\) 0.225074 0.692705i 0.00909806 0.0280009i
\(613\) −13.2106 40.6579i −0.533569 1.64216i −0.746720 0.665138i \(-0.768373\pi\)
0.213151 0.977019i \(-0.431627\pi\)
\(614\) −5.39598 + 3.92041i −0.217764 + 0.158215i
\(615\) −6.60212 −0.266223
\(616\) 1.49776 + 2.95917i 0.0603465 + 0.119229i
\(617\) 10.3582 0.417004 0.208502 0.978022i \(-0.433141\pi\)
0.208502 + 0.978022i \(0.433141\pi\)
\(618\) −18.2947 + 13.2918i −0.735919 + 0.534676i
\(619\) 4.41589 + 13.5907i 0.177490 + 0.546257i 0.999738 0.0228714i \(-0.00728084\pi\)
−0.822249 + 0.569128i \(0.807281\pi\)
\(620\) 1.85795 5.71818i 0.0746171 0.229648i
\(621\) 29.9601 + 21.7673i 1.20226 + 0.873492i
\(622\) 12.2137 + 8.87374i 0.489723 + 0.355805i
\(623\) 0.906538 2.79004i 0.0363197 0.111780i
\(624\) −0.0221933 0.0683041i −0.000888445 0.00273435i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) −7.33744 −0.293263
\(627\) 8.52967 + 4.37503i 0.340642 + 0.174722i
\(628\) 11.4891 0.458466
\(629\) 32.4015 23.5411i 1.29193 0.938645i
\(630\) 0.0476812 + 0.146748i 0.00189967 + 0.00584657i
\(631\) −3.59946 + 11.0780i −0.143292 + 0.441008i −0.996787 0.0800929i \(-0.974478\pi\)
0.853495 + 0.521100i \(0.174478\pi\)
\(632\) −7.17650 5.21404i −0.285466 0.207403i
\(633\) 6.20642 + 4.50923i 0.246683 + 0.179226i
\(634\) −6.94978 + 21.3892i −0.276011 + 0.849475i
\(635\) −0.564956 1.73876i −0.0224196 0.0690005i
\(636\) −19.2462 + 13.9831i −0.763160 + 0.554468i
\(637\) 0.0425741 0.00168685
\(638\) 3.15754 3.14060i 0.125008 0.124337i
\(639\) −1.74422 −0.0690001
\(640\) 0.809017 0.587785i 0.0319792 0.0232343i
\(641\) 5.56992 + 17.1425i 0.219999 + 0.677087i 0.998761 + 0.0497672i \(0.0158479\pi\)
−0.778762 + 0.627319i \(0.784152\pi\)
\(642\) −8.32335 + 25.6166i −0.328496 + 1.01101i
\(643\) 8.62576 + 6.26698i 0.340167 + 0.247146i 0.744732 0.667363i \(-0.232577\pi\)
−0.404565 + 0.914509i \(0.632577\pi\)
\(644\) 5.63049 + 4.09079i 0.221872 + 0.161200i
\(645\) −3.34904 + 10.3073i −0.131868 + 0.405848i
\(646\) −2.49929 7.69203i −0.0983334 0.302639i
\(647\) 17.5810 12.7734i 0.691182 0.502173i −0.185867 0.982575i \(-0.559509\pi\)
0.877048 + 0.480402i \(0.159509\pi\)
\(648\) 8.51329 0.334434
\(649\) 33.4853 5.21124i 1.31441 0.204559i
\(650\) −0.0425741 −0.00166989
\(651\) 8.20548 5.96163i 0.321598 0.233655i
\(652\) −4.36630 13.4381i −0.170997 0.526276i
\(653\) 0.328175 1.01002i 0.0128425 0.0395251i −0.944430 0.328713i \(-0.893385\pi\)
0.957272 + 0.289188i \(0.0933852\pi\)
\(654\) −21.7678 15.8153i −0.851190 0.618426i
\(655\) 1.30800 + 0.950320i 0.0511079 + 0.0371321i
\(656\) 1.20940 3.72216i 0.0472193 0.145326i
\(657\) 0.0947560 + 0.291629i 0.00369679 + 0.0113775i
\(658\) 3.71443 2.69869i 0.144804 0.105206i
\(659\) 33.2641 1.29578 0.647892 0.761732i \(-0.275651\pi\)
0.647892 + 0.761732i \(0.275651\pi\)
\(660\) 0.890097 5.52362i 0.0346470 0.215007i
\(661\) −8.99126 −0.349719 −0.174860 0.984593i \(-0.555947\pi\)
−0.174860 + 0.984593i \(0.555947\pi\)
\(662\) 8.34536 6.06326i 0.324351 0.235655i
\(663\) 0.104761 + 0.322421i 0.00406858 + 0.0125218i
\(664\) 3.11510 9.58728i 0.120889 0.372059i
\(665\) 1.38617 + 1.00711i 0.0537532 + 0.0390540i
\(666\) −1.05914 0.769511i −0.0410409 0.0298179i
\(667\) 2.88784 8.88785i 0.111818 0.344139i
\(668\) −4.82113 14.8379i −0.186535 0.574097i
\(669\) 24.6612 17.9174i 0.953457 0.692727i
\(670\) −6.39600 −0.247099
\(671\) −7.31641 + 45.4030i −0.282447 + 1.75276i
\(672\) 1.68692 0.0650744
\(673\) 7.59648 5.51916i 0.292823 0.212748i −0.431668 0.902032i \(-0.642075\pi\)
0.724491 + 0.689284i \(0.242075\pi\)
\(674\) 8.40752 + 25.8757i 0.323845 + 0.996694i
\(675\) 1.64430 5.06062i 0.0632890 0.194783i
\(676\) 10.5158 + 7.64014i 0.404452 + 0.293852i
\(677\) −30.5048 22.1630i −1.17239 0.851794i −0.181101 0.983465i \(-0.557966\pi\)
−0.991294 + 0.131670i \(0.957966\pi\)
\(678\) 4.50958 13.8791i 0.173190 0.533023i
\(679\) −5.40199 16.6256i −0.207310 0.638033i
\(680\) −3.81887 + 2.77457i −0.146447 + 0.106400i
\(681\) −1.63716 −0.0627360
\(682\) 19.7039 3.06647i 0.754500 0.117421i
\(683\) 11.5317 0.441248 0.220624 0.975359i \(-0.429191\pi\)
0.220624 + 0.975359i \(0.429191\pi\)
\(684\) −0.213885 + 0.155397i −0.00817810 + 0.00594174i
\(685\) 3.17259 + 9.76422i 0.121218 + 0.373072i
\(686\) −0.309017 + 0.951057i −0.0117983 + 0.0363115i
\(687\) −3.36127 2.44211i −0.128240 0.0931721i
\(688\) −5.19757 3.77626i −0.198156 0.143968i
\(689\) −0.185532 + 0.571010i −0.00706822 + 0.0217537i
\(690\) −3.62798 11.1658i −0.138115 0.425074i
\(691\) 10.2972 7.48133i 0.391722 0.284603i −0.374439 0.927252i \(-0.622165\pi\)
0.766161 + 0.642649i \(0.222165\pi\)
\(692\) 6.21176 0.236136
\(693\) −0.362837 + 0.360890i −0.0137830 + 0.0137091i
\(694\) 6.65299 0.252544
\(695\) 1.57562 1.14476i 0.0597668 0.0434231i
\(696\) −0.699970 2.15428i −0.0265323 0.0816580i
\(697\) −5.70884 + 17.5700i −0.216238 + 0.665512i
\(698\) −20.5960 14.9639i −0.779572 0.566392i
\(699\) −9.07613 6.59420i −0.343291 0.249415i
\(700\) 0.309017 0.951057i 0.0116797 0.0359466i
\(701\) 3.46061 + 10.6507i 0.130705 + 0.402270i 0.994897 0.100892i \(-0.0321697\pi\)
−0.864192 + 0.503162i \(0.832170\pi\)
\(702\) 0.183274 0.133156i 0.00691723 0.00502566i
\(703\) −14.5375 −0.548291
\(704\) 2.95107 + 1.51366i 0.111223 + 0.0570483i
\(705\) −7.74515 −0.291699
\(706\) −23.5087 + 17.0801i −0.884763 + 0.642818i
\(707\) −1.76422 5.42972i −0.0663504 0.204205i
\(708\) 5.32637 16.3929i 0.200177 0.616082i
\(709\) 23.0362 + 16.7368i 0.865144 + 0.628564i 0.929280 0.369377i \(-0.120429\pi\)
−0.0641354 + 0.997941i \(0.520429\pi\)
\(710\) 9.14519 + 6.64437i 0.343213 + 0.249359i
\(711\) 0.422963 1.30175i 0.0158624 0.0488193i
\(712\) −0.906538 2.79004i −0.0339739 0.104561i
\(713\) 33.8530 24.5957i 1.26781 0.921115i
\(714\) −7.96291 −0.298004
\(715\) −0.0637658 0.125984i −0.00238471 0.00471154i
\(716\) 15.9071 0.594475
\(717\) 28.7319 20.8749i 1.07301 0.779589i
\(718\) 8.75211 + 26.9362i 0.326626 + 1.00525i
\(719\) −13.7812 + 42.4140i −0.513951 + 1.58178i 0.271233 + 0.962514i \(0.412569\pi\)
−0.785183 + 0.619263i \(0.787431\pi\)
\(720\) 0.124831 + 0.0906951i 0.00465218 + 0.00338001i
\(721\) −10.8450 7.87936i −0.403889 0.293443i
\(722\) 4.96413 15.2780i 0.184746 0.568589i
\(723\) 4.13508 + 12.7265i 0.153785 + 0.473302i
\(724\) 5.33901 3.87902i 0.198423 0.144163i
\(725\) −1.34277 −0.0498693
\(726\) 17.6785 5.63911i 0.656112 0.209287i
\(727\) 50.4565 1.87133 0.935664 0.352892i \(-0.114802\pi\)
0.935664 + 0.352892i \(0.114802\pi\)
\(728\) 0.0344432 0.0250244i 0.00127655 0.000927467i
\(729\) 8.72731 + 26.8599i 0.323234 + 0.994811i
\(730\) 0.614104 1.89002i 0.0227290 0.0699527i
\(731\) 24.5345 + 17.8254i 0.907442 + 0.659295i
\(732\) 18.9238 + 13.7489i 0.699442 + 0.508174i
\(733\) 11.7734 36.2348i 0.434860 1.33836i −0.458370 0.888762i \(-0.651566\pi\)
0.893230 0.449600i \(-0.148434\pi\)
\(734\) 8.50364 + 26.1715i 0.313875 + 0.966008i
\(735\) 1.36475 0.991547i 0.0503395 0.0365738i
\(736\) 6.95966 0.256537
\(737\) −9.57967 18.9269i −0.352872 0.697181i
\(738\) 0.603884 0.0222293
\(739\) −0.613466 + 0.445709i −0.0225667 + 0.0163957i −0.599011 0.800740i \(-0.704440\pi\)
0.576445 + 0.817136i \(0.304440\pi\)
\(740\) 2.62188 + 8.06932i 0.0963823 + 0.296634i
\(741\) 0.0380260 0.117032i 0.00139692 0.00429928i
\(742\) −11.4090 8.28916i −0.418839 0.304305i
\(743\) 28.0830 + 20.4035i 1.03027 + 0.748532i 0.968362 0.249550i \(-0.0802827\pi\)
0.0619040 + 0.998082i \(0.480283\pi\)
\(744\) 3.13421 9.64612i 0.114906 0.353644i
\(745\) −1.99909 6.15258i −0.0732411 0.225413i
\(746\) −18.5512 + 13.4782i −0.679208 + 0.493473i
\(747\) 1.55544 0.0569107
\(748\) −13.9302 7.14506i −0.509338 0.261249i
\(749\) −15.9669 −0.583418
\(750\) −1.36475 + 0.991547i −0.0498335 + 0.0362062i
\(751\) −14.2175 43.7570i −0.518804 1.59672i −0.776252 0.630423i \(-0.782881\pi\)
0.257447 0.966292i \(-0.417119\pi\)
\(752\) 1.41879 4.36658i 0.0517379 0.159233i
\(753\) 25.8525 + 18.7830i 0.942118 + 0.684489i
\(754\) −0.0462493 0.0336021i −0.00168430 0.00122372i
\(755\) −7.29619 + 22.4554i −0.265536 + 0.817235i
\(756\) 1.64430 + 5.06062i 0.0598025 + 0.184053i
\(757\) 18.7292 13.6075i 0.680723 0.494574i −0.192874 0.981223i \(-0.561781\pi\)
0.873597 + 0.486649i \(0.161781\pi\)
\(758\) −15.4140 −0.559862
\(759\) 27.6077 27.4595i 1.00209 0.996717i
\(760\) 1.71340 0.0621514
\(761\) −5.82188 + 4.22984i −0.211043 + 0.153332i −0.688285 0.725440i \(-0.741636\pi\)
0.477242 + 0.878772i \(0.341636\pi\)
\(762\) −0.953036 2.93314i −0.0345249 0.106257i
\(763\) 4.92885 15.1694i 0.178436 0.549170i
\(764\) −13.8900 10.0917i −0.502524 0.365105i
\(765\) −0.589250 0.428115i −0.0213044 0.0154785i
\(766\) 9.54636 29.3807i 0.344924 1.06157i
\(767\) −0.134426 0.413720i −0.00485383 0.0149386i
\(768\) 1.36475 0.991547i 0.0492461 0.0357794i
\(769\) 8.64296 0.311673 0.155837 0.987783i \(-0.450193\pi\)
0.155837 + 0.987783i \(0.450193\pi\)
\(770\) 3.27718 0.510019i 0.118101 0.0183798i
\(771\) 45.3104 1.63181
\(772\) 8.26691