Properties

Label 770.2.n.i.71.3
Level $770$
Weight $2$
Character 770.71
Analytic conductor $6.148$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 3 x^{11} + 11 x^{10} - 21 x^{9} + 61 x^{8} - 34 x^{7} + 141 x^{6} + 192 x^{5} + 289 x^{4} - 55 x^{3} + 222 x^{2} - 24 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 71.3
Root \(2.26282 + 1.64404i\) of defining polynomial
Character \(\chi\) \(=\) 770.71
Dual form 770.2.n.i.141.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(2.13924 + 1.55425i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(0.309017 - 0.951057i) q^{5} +(-0.817115 + 2.51482i) q^{6} +(-0.809017 + 0.587785i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(1.23360 + 3.79662i) q^{9} +O(q^{10})\) \(q+(0.309017 + 0.951057i) q^{2} +(2.13924 + 1.55425i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(0.309017 - 0.951057i) q^{5} +(-0.817115 + 2.51482i) q^{6} +(-0.809017 + 0.587785i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(1.23360 + 3.79662i) q^{9} +1.00000 q^{10} +(1.10093 + 3.12857i) q^{11} -2.64424 q^{12} +(0.945705 + 2.91058i) q^{13} +(-0.809017 - 0.587785i) q^{14} +(2.13924 - 1.55425i) q^{15} +(0.309017 - 0.951057i) q^{16} +(-0.0211240 + 0.0650130i) q^{17} +(-3.22960 + 2.34644i) q^{18} +(-2.24162 - 1.62863i) q^{19} +(0.309017 + 0.951057i) q^{20} -2.64424 q^{21} +(-2.63524 + 2.01383i) q^{22} +1.83120 q^{23} +(-0.817115 - 2.51482i) q^{24} +(-0.809017 - 0.587785i) q^{25} +(-2.47589 + 1.79884i) q^{26} +(-0.810584 + 2.49472i) q^{27} +(0.309017 - 0.951057i) q^{28} +(-2.67733 + 1.94520i) q^{29} +(2.13924 + 1.55425i) q^{30} +(1.27491 + 3.92378i) q^{31} +1.00000 q^{32} +(-2.50741 + 8.40387i) q^{33} -0.0683587 q^{34} +(0.309017 + 0.951057i) q^{35} +(-3.22960 - 2.34644i) q^{36} +(4.55839 - 3.31186i) q^{37} +(0.856222 - 2.63518i) q^{38} +(-2.50067 + 7.69627i) q^{39} +(-0.809017 + 0.587785i) q^{40} +(4.15234 + 3.01685i) q^{41} +(-0.817115 - 2.51482i) q^{42} +2.84053 q^{43} +(-2.72960 - 1.88395i) q^{44} +3.99201 q^{45} +(0.565872 + 1.74157i) q^{46} +(-9.64311 - 7.00613i) q^{47} +(2.13924 - 1.55425i) q^{48} +(0.309017 - 0.951057i) q^{49} +(0.309017 - 0.951057i) q^{50} +(-0.146235 + 0.106246i) q^{51} +(-2.47589 - 1.79884i) q^{52} +(0.0382035 + 0.117578i) q^{53} -2.62310 q^{54} +(3.31565 - 0.0802696i) q^{55} +1.00000 q^{56} +(-2.26406 - 6.96805i) q^{57} +(-2.67733 - 1.94520i) q^{58} +(9.05528 - 6.57904i) q^{59} +(-0.817115 + 2.51482i) q^{60} +(0.783832 - 2.41239i) q^{61} +(-3.33777 + 2.42503i) q^{62} +(-3.22960 - 2.34644i) q^{63} +(0.309017 + 0.951057i) q^{64} +3.06037 q^{65} +(-8.76738 + 0.212252i) q^{66} -2.20818 q^{67} +(-0.0211240 - 0.0650130i) q^{68} +(3.91737 + 2.84613i) q^{69} +(-0.809017 + 0.587785i) q^{70} +(4.24118 - 13.0530i) q^{71} +(1.23360 - 3.79662i) q^{72} +(-5.65426 + 4.10806i) q^{73} +(4.55839 + 3.31186i) q^{74} +(-0.817115 - 2.51482i) q^{75} +2.77079 q^{76} +(-2.72960 - 1.88395i) q^{77} -8.09234 q^{78} +(-3.83620 - 11.8066i) q^{79} +(-0.809017 - 0.587785i) q^{80} +(4.07737 - 2.96238i) q^{81} +(-1.58605 + 4.88137i) q^{82} +(-0.943632 + 2.90420i) q^{83} +(2.13924 - 1.55425i) q^{84} +(0.0553034 + 0.0401802i) q^{85} +(0.877773 + 2.70151i) q^{86} -8.75076 q^{87} +(0.948252 - 3.17818i) q^{88} +13.5707 q^{89} +(1.23360 + 3.79662i) q^{90} +(-2.47589 - 1.79884i) q^{91} +(-1.48147 + 1.07635i) q^{92} +(-3.37118 + 10.3754i) q^{93} +(3.68334 - 11.3362i) q^{94} +(-2.24162 + 1.62863i) q^{95} +(2.13924 + 1.55425i) q^{96} +(-0.848181 - 2.61043i) q^{97} +1.00000 q^{98} +(-10.5199 + 8.03923i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 2 q^{3} - 3 q^{4} - 3 q^{5} - 3 q^{6} - 3 q^{7} - 3 q^{8} - 15 q^{9} + O(q^{10}) \) \( 12 q - 3 q^{2} + 2 q^{3} - 3 q^{4} - 3 q^{5} - 3 q^{6} - 3 q^{7} - 3 q^{8} - 15 q^{9} + 12 q^{10} + q^{11} + 2 q^{12} - 6 q^{13} - 3 q^{14} + 2 q^{15} - 3 q^{16} - 6 q^{17} - 13 q^{19} - 3 q^{20} + 2 q^{21} + q^{22} - 12 q^{23} - 3 q^{24} - 3 q^{25} + 4 q^{26} - 7 q^{27} - 3 q^{28} - 26 q^{29} + 2 q^{30} + 12 q^{32} - 15 q^{33} + 14 q^{34} - 3 q^{35} - 18 q^{37} + 2 q^{38} - 40 q^{39} - 3 q^{40} + 16 q^{41} - 3 q^{42} + 38 q^{43} + 6 q^{44} + 30 q^{45} + 8 q^{46} - 26 q^{47} + 2 q^{48} - 3 q^{49} - 3 q^{50} - 13 q^{51} + 4 q^{52} + 8 q^{54} + 11 q^{55} + 12 q^{56} - 41 q^{57} - 26 q^{58} + 21 q^{59} - 3 q^{60} + 4 q^{61} - 3 q^{64} + 4 q^{65} - 30 q^{66} + 10 q^{67} - 6 q^{68} + 18 q^{69} - 3 q^{70} - 4 q^{71} - 15 q^{72} - 14 q^{73} - 18 q^{74} - 3 q^{75} + 22 q^{76} + 6 q^{77} + 40 q^{78} - 2 q^{79} - 3 q^{80} + 26 q^{81} - 29 q^{82} + 35 q^{83} + 2 q^{84} - q^{85} - 37 q^{86} + 28 q^{87} - 19 q^{88} + 2 q^{89} - 15 q^{90} + 4 q^{91} - 2 q^{92} + 6 q^{93} + 4 q^{94} - 13 q^{95} + 2 q^{96} + 19 q^{97} + 12 q^{98} - 81 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) 2.13924 + 1.55425i 1.23509 + 0.897344i 0.997261 0.0739635i \(-0.0235648\pi\)
0.237827 + 0.971307i \(0.423565\pi\)
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) 0.309017 0.951057i 0.138197 0.425325i
\(6\) −0.817115 + 2.51482i −0.333586 + 1.02667i
\(7\) −0.809017 + 0.587785i −0.305780 + 0.222162i
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) 1.23360 + 3.79662i 0.411199 + 1.26554i
\(10\) 1.00000 0.316228
\(11\) 1.10093 + 3.12857i 0.331944 + 0.943299i
\(12\) −2.64424 −0.763326
\(13\) 0.945705 + 2.91058i 0.262291 + 0.807250i 0.992305 + 0.123817i \(0.0395137\pi\)
−0.730014 + 0.683433i \(0.760486\pi\)
\(14\) −0.809017 0.587785i −0.216219 0.157092i
\(15\) 2.13924 1.55425i 0.552348 0.401304i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −0.0211240 + 0.0650130i −0.00512332 + 0.0157680i −0.953585 0.301122i \(-0.902639\pi\)
0.948462 + 0.316890i \(0.102639\pi\)
\(18\) −3.22960 + 2.34644i −0.761224 + 0.553062i
\(19\) −2.24162 1.62863i −0.514263 0.373634i 0.300176 0.953884i \(-0.402955\pi\)
−0.814438 + 0.580250i \(0.802955\pi\)
\(20\) 0.309017 + 0.951057i 0.0690983 + 0.212663i
\(21\) −2.64424 −0.577021
\(22\) −2.63524 + 2.01383i −0.561835 + 0.429350i
\(23\) 1.83120 0.381831 0.190916 0.981606i \(-0.438854\pi\)
0.190916 + 0.981606i \(0.438854\pi\)
\(24\) −0.817115 2.51482i −0.166793 0.513336i
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) −2.47589 + 1.79884i −0.485561 + 0.352781i
\(27\) −0.810584 + 2.49472i −0.155997 + 0.480109i
\(28\) 0.309017 0.951057i 0.0583987 0.179733i
\(29\) −2.67733 + 1.94520i −0.497168 + 0.361214i −0.807934 0.589272i \(-0.799414\pi\)
0.310766 + 0.950486i \(0.399414\pi\)
\(30\) 2.13924 + 1.55425i 0.390569 + 0.283765i
\(31\) 1.27491 + 3.92378i 0.228981 + 0.704733i 0.997863 + 0.0653412i \(0.0208136\pi\)
−0.768881 + 0.639391i \(0.779186\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.50741 + 8.40387i −0.436484 + 1.46293i
\(34\) −0.0683587 −0.0117234
\(35\) 0.309017 + 0.951057i 0.0522334 + 0.160758i
\(36\) −3.22960 2.34644i −0.538267 0.391074i
\(37\) 4.55839 3.31186i 0.749395 0.544467i −0.146244 0.989248i \(-0.546719\pi\)
0.895639 + 0.444781i \(0.146719\pi\)
\(38\) 0.856222 2.63518i 0.138898 0.427483i
\(39\) −2.50067 + 7.69627i −0.400428 + 1.23239i
\(40\) −0.809017 + 0.587785i −0.127917 + 0.0929370i
\(41\) 4.15234 + 3.01685i 0.648486 + 0.471153i 0.862755 0.505622i \(-0.168737\pi\)
−0.214269 + 0.976775i \(0.568737\pi\)
\(42\) −0.817115 2.51482i −0.126084 0.388045i
\(43\) 2.84053 0.433177 0.216589 0.976263i \(-0.430507\pi\)
0.216589 + 0.976263i \(0.430507\pi\)
\(44\) −2.72960 1.88395i −0.411503 0.284017i
\(45\) 3.99201 0.595093
\(46\) 0.565872 + 1.74157i 0.0834332 + 0.256781i
\(47\) −9.64311 7.00613i −1.40659 1.02195i −0.993807 0.111120i \(-0.964556\pi\)
−0.412785 0.910829i \(-0.635444\pi\)
\(48\) 2.13924 1.55425i 0.308772 0.224336i
\(49\) 0.309017 0.951057i 0.0441453 0.135865i
\(50\) 0.309017 0.951057i 0.0437016 0.134500i
\(51\) −0.146235 + 0.106246i −0.0204770 + 0.0148774i
\(52\) −2.47589 1.79884i −0.343344 0.249454i
\(53\) 0.0382035 + 0.117578i 0.00524765 + 0.0161506i 0.953646 0.300931i \(-0.0972972\pi\)
−0.948398 + 0.317081i \(0.897297\pi\)
\(54\) −2.62310 −0.356959
\(55\) 3.31565 0.0802696i 0.447083 0.0108235i
\(56\) 1.00000 0.133631
\(57\) −2.26406 6.96805i −0.299882 0.922941i
\(58\) −2.67733 1.94520i −0.351551 0.255417i
\(59\) 9.05528 6.57904i 1.17890 0.856519i 0.186850 0.982388i \(-0.440172\pi\)
0.992047 + 0.125870i \(0.0401722\pi\)
\(60\) −0.817115 + 2.51482i −0.105489 + 0.324662i
\(61\) 0.783832 2.41239i 0.100359 0.308874i −0.888254 0.459353i \(-0.848081\pi\)
0.988613 + 0.150478i \(0.0480814\pi\)
\(62\) −3.33777 + 2.42503i −0.423897 + 0.307979i
\(63\) −3.22960 2.34644i −0.406891 0.295624i
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) 3.06037 0.379592
\(66\) −8.76738 + 0.212252i −1.07919 + 0.0261264i
\(67\) −2.20818 −0.269773 −0.134886 0.990861i \(-0.543067\pi\)
−0.134886 + 0.990861i \(0.543067\pi\)
\(68\) −0.0211240 0.0650130i −0.00256166 0.00788398i
\(69\) 3.91737 + 2.84613i 0.471595 + 0.342634i
\(70\) −0.809017 + 0.587785i −0.0966960 + 0.0702538i
\(71\) 4.24118 13.0530i 0.503335 1.54911i −0.300216 0.953871i \(-0.597059\pi\)
0.803551 0.595235i \(-0.202941\pi\)
\(72\) 1.23360 3.79662i 0.145381 0.447436i
\(73\) −5.65426 + 4.10806i −0.661781 + 0.480812i −0.867264 0.497848i \(-0.834124\pi\)
0.205483 + 0.978661i \(0.434124\pi\)
\(74\) 4.55839 + 3.31186i 0.529902 + 0.384996i
\(75\) −0.817115 2.51482i −0.0943523 0.290387i
\(76\) 2.77079 0.317832
\(77\) −2.72960 1.88395i −0.311067 0.214696i
\(78\) −8.09234 −0.916277
\(79\) −3.83620 11.8066i −0.431607 1.32835i −0.896524 0.442995i \(-0.853916\pi\)
0.464918 0.885354i \(-0.346084\pi\)
\(80\) −0.809017 0.587785i −0.0904508 0.0657164i
\(81\) 4.07737 2.96238i 0.453041 0.329153i
\(82\) −1.58605 + 4.88137i −0.175150 + 0.539057i
\(83\) −0.943632 + 2.90420i −0.103577 + 0.318778i −0.989394 0.145258i \(-0.953599\pi\)
0.885817 + 0.464035i \(0.153599\pi\)
\(84\) 2.13924 1.55425i 0.233410 0.169582i
\(85\) 0.0553034 + 0.0401802i 0.00599849 + 0.00435816i
\(86\) 0.877773 + 2.70151i 0.0946527 + 0.291311i
\(87\) −8.75076 −0.938180
\(88\) 0.948252 3.17818i 0.101084 0.338795i
\(89\) 13.5707 1.43849 0.719246 0.694756i \(-0.244487\pi\)
0.719246 + 0.694756i \(0.244487\pi\)
\(90\) 1.23360 + 3.79662i 0.130033 + 0.400199i
\(91\) −2.47589 1.79884i −0.259544 0.188569i
\(92\) −1.48147 + 1.07635i −0.154454 + 0.112217i
\(93\) −3.37118 + 10.3754i −0.349575 + 1.07588i
\(94\) 3.68334 11.3362i 0.379907 1.16923i
\(95\) −2.24162 + 1.62863i −0.229985 + 0.167094i
\(96\) 2.13924 + 1.55425i 0.218335 + 0.158630i
\(97\) −0.848181 2.61043i −0.0861197 0.265049i 0.898718 0.438527i \(-0.144500\pi\)
−0.984838 + 0.173478i \(0.944500\pi\)
\(98\) 1.00000 0.101015
\(99\) −10.5199 + 8.03923i −1.05729 + 0.807973i
\(100\) 1.00000 0.100000
\(101\) −1.71183 5.26848i −0.170334 0.524234i 0.829056 0.559166i \(-0.188879\pi\)
−0.999390 + 0.0349321i \(0.988879\pi\)
\(102\) −0.146235 0.106246i −0.0144795 0.0105199i
\(103\) 2.92619 2.12600i 0.288326 0.209481i −0.434215 0.900809i \(-0.642974\pi\)
0.722541 + 0.691328i \(0.242974\pi\)
\(104\) 0.945705 2.91058i 0.0927340 0.285406i
\(105\) −0.817115 + 2.51482i −0.0797423 + 0.245421i
\(106\) −0.100018 + 0.0726674i −0.00971461 + 0.00705808i
\(107\) −5.32480 3.86870i −0.514768 0.374001i 0.299861 0.953983i \(-0.403060\pi\)
−0.814629 + 0.579982i \(0.803060\pi\)
\(108\) −0.810584 2.49472i −0.0779984 0.240055i
\(109\) 1.14986 0.110137 0.0550683 0.998483i \(-0.482462\pi\)
0.0550683 + 0.998483i \(0.482462\pi\)
\(110\) 1.10093 + 3.12857i 0.104970 + 0.298297i
\(111\) 14.8989 1.41414
\(112\) 0.309017 + 0.951057i 0.0291994 + 0.0898664i
\(113\) 9.83248 + 7.14372i 0.924962 + 0.672024i 0.944754 0.327780i \(-0.106300\pi\)
−0.0197919 + 0.999804i \(0.506300\pi\)
\(114\) 5.92738 4.30649i 0.555150 0.403340i
\(115\) 0.565872 1.74157i 0.0527678 0.162403i
\(116\) 1.02265 3.14739i 0.0949507 0.292228i
\(117\) −9.88376 + 7.18097i −0.913754 + 0.663881i
\(118\) 9.05528 + 6.57904i 0.833606 + 0.605650i
\(119\) −0.0211240 0.0650130i −0.00193643 0.00595973i
\(120\) −2.64424 −0.241385
\(121\) −8.57589 + 6.88870i −0.779626 + 0.626245i
\(122\) 2.53653 0.229647
\(123\) 4.19390 + 12.9075i 0.378151 + 1.16383i
\(124\) −3.33777 2.42503i −0.299741 0.217774i
\(125\) −0.809017 + 0.587785i −0.0723607 + 0.0525731i
\(126\) 1.23360 3.79662i 0.109898 0.338230i
\(127\) 4.25873 13.1070i 0.377901 1.16306i −0.563600 0.826048i \(-0.690584\pi\)
0.941501 0.337011i \(-0.109416\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) 6.07657 + 4.41489i 0.535012 + 0.388709i
\(130\) 0.945705 + 2.91058i 0.0829438 + 0.255275i
\(131\) 4.89161 0.427382 0.213691 0.976901i \(-0.431452\pi\)
0.213691 + 0.976901i \(0.431452\pi\)
\(132\) −2.91113 8.27269i −0.253382 0.720045i
\(133\) 2.77079 0.240258
\(134\) −0.682366 2.10011i −0.0589475 0.181422i
\(135\) 2.12214 + 1.54182i 0.182644 + 0.132699i
\(136\) 0.0553034 0.0401802i 0.00474222 0.00344543i
\(137\) −5.88858 + 18.1232i −0.503096 + 1.54837i 0.300853 + 0.953670i \(0.402729\pi\)
−0.803949 + 0.594698i \(0.797271\pi\)
\(138\) −1.49630 + 4.60514i −0.127374 + 0.392016i
\(139\) −6.19156 + 4.49843i −0.525161 + 0.381552i −0.818545 0.574443i \(-0.805219\pi\)
0.293384 + 0.955995i \(0.405219\pi\)
\(140\) −0.809017 0.587785i −0.0683744 0.0496769i
\(141\) −9.73963 29.9755i −0.820225 2.52439i
\(142\) 13.7247 1.15175
\(143\) −8.06479 + 6.16306i −0.674412 + 0.515381i
\(144\) 3.99201 0.332667
\(145\) 1.02265 + 3.14739i 0.0849265 + 0.261377i
\(146\) −5.65426 4.10806i −0.467950 0.339986i
\(147\) 2.13924 1.55425i 0.176441 0.128192i
\(148\) −1.74115 + 5.35871i −0.143122 + 0.440483i
\(149\) −4.53555 + 13.9590i −0.371567 + 1.14357i 0.574199 + 0.818716i \(0.305314\pi\)
−0.945766 + 0.324850i \(0.894686\pi\)
\(150\) 2.13924 1.55425i 0.174668 0.126904i
\(151\) 8.97481 + 6.52058i 0.730360 + 0.530637i 0.889677 0.456590i \(-0.150929\pi\)
−0.159318 + 0.987227i \(0.550929\pi\)
\(152\) 0.856222 + 2.63518i 0.0694488 + 0.213741i
\(153\) −0.272888 −0.0220617
\(154\) 0.948252 3.17818i 0.0764123 0.256105i
\(155\) 4.12571 0.331385
\(156\) −2.50067 7.69627i −0.200214 0.616195i
\(157\) −10.6743 7.75530i −0.851899 0.618941i 0.0737701 0.997275i \(-0.476497\pi\)
−0.925669 + 0.378335i \(0.876497\pi\)
\(158\) 10.0433 7.29689i 0.799003 0.580510i
\(159\) −0.101019 + 0.310905i −0.00801135 + 0.0246564i
\(160\) 0.309017 0.951057i 0.0244299 0.0751876i
\(161\) −1.48147 + 1.07635i −0.116756 + 0.0848284i
\(162\) 4.07737 + 2.96238i 0.320348 + 0.232747i
\(163\) −1.14609 3.52729i −0.0897685 0.276279i 0.896087 0.443879i \(-0.146398\pi\)
−0.985855 + 0.167600i \(0.946398\pi\)
\(164\) −5.13257 −0.400787
\(165\) 7.21772 + 4.98162i 0.561899 + 0.387819i
\(166\) −3.05366 −0.237010
\(167\) −2.70523 8.32583i −0.209337 0.644272i −0.999507 0.0313851i \(-0.990008\pi\)
0.790171 0.612887i \(-0.209992\pi\)
\(168\) 2.13924 + 1.55425i 0.165046 + 0.119913i
\(169\) 2.94010 2.13611i 0.226162 0.164316i
\(170\) −0.0211240 + 0.0650130i −0.00162014 + 0.00498627i
\(171\) 3.41804 10.5197i 0.261384 0.804458i
\(172\) −2.29804 + 1.66962i −0.175224 + 0.127308i
\(173\) 2.45841 + 1.78614i 0.186910 + 0.135798i 0.677305 0.735702i \(-0.263148\pi\)
−0.490396 + 0.871500i \(0.663148\pi\)
\(174\) −2.70413 8.32247i −0.205000 0.630925i
\(175\) 1.00000 0.0755929
\(176\) 3.31565 0.0802696i 0.249927 0.00605055i
\(177\) 29.5968 2.22463
\(178\) 4.19358 + 12.9065i 0.314322 + 0.967384i
\(179\) 5.90572 + 4.29075i 0.441414 + 0.320706i 0.786197 0.617977i \(-0.212047\pi\)
−0.344783 + 0.938683i \(0.612047\pi\)
\(180\) −3.22960 + 2.34644i −0.240720 + 0.174894i
\(181\) 3.37913 10.3999i 0.251169 0.773018i −0.743391 0.668857i \(-0.766784\pi\)
0.994560 0.104162i \(-0.0332160\pi\)
\(182\) 0.945705 2.91058i 0.0701003 0.215747i
\(183\) 5.42624 3.94239i 0.401119 0.291430i
\(184\) −1.48147 1.07635i −0.109216 0.0793497i
\(185\) −1.74115 5.35871i −0.128012 0.393980i
\(186\) −10.9094 −0.799914
\(187\) −0.226654 + 0.00548713i −0.0165746 + 0.000401258i
\(188\) 11.9195 0.869322
\(189\) −0.810584 2.49472i −0.0589613 0.181464i
\(190\) −2.24162 1.62863i −0.162624 0.118153i
\(191\) −18.3258 + 13.3145i −1.32601 + 0.963403i −0.326174 + 0.945310i \(0.605759\pi\)
−0.999836 + 0.0180930i \(0.994241\pi\)
\(192\) −0.817115 + 2.51482i −0.0589702 + 0.181492i
\(193\) −5.24600 + 16.1455i −0.377615 + 1.16218i 0.564082 + 0.825718i \(0.309230\pi\)
−0.941697 + 0.336461i \(0.890770\pi\)
\(194\) 2.22057 1.61334i 0.159427 0.115831i
\(195\) 6.54684 + 4.75656i 0.468829 + 0.340624i
\(196\) 0.309017 + 0.951057i 0.0220726 + 0.0679326i
\(197\) 26.3241 1.87551 0.937757 0.347293i \(-0.112899\pi\)
0.937757 + 0.347293i \(0.112899\pi\)
\(198\) −10.8966 7.52075i −0.774387 0.534477i
\(199\) 16.9127 1.19891 0.599456 0.800408i \(-0.295384\pi\)
0.599456 + 0.800408i \(0.295384\pi\)
\(200\) 0.309017 + 0.951057i 0.0218508 + 0.0672499i
\(201\) −4.72383 3.43206i −0.333193 0.242079i
\(202\) 4.48164 3.25610i 0.315327 0.229099i
\(203\) 1.02265 3.14739i 0.0717760 0.220904i
\(204\) 0.0558569 0.171910i 0.00391077 0.0120361i
\(205\) 4.15234 3.01685i 0.290012 0.210706i
\(206\) 2.92619 + 2.12600i 0.203877 + 0.148125i
\(207\) 2.25896 + 6.95237i 0.157009 + 0.483223i
\(208\) 3.06037 0.212198
\(209\) 2.62741 8.80607i 0.181742 0.609129i
\(210\) −2.64424 −0.182470
\(211\) −5.08280 15.6432i −0.349914 1.07693i −0.958900 0.283744i \(-0.908423\pi\)
0.608986 0.793181i \(-0.291577\pi\)
\(212\) −0.100018 0.0726674i −0.00686927 0.00499082i
\(213\) 29.3604 21.3316i 2.01174 1.46162i
\(214\) 2.03389 6.25968i 0.139034 0.427903i
\(215\) 0.877773 2.70151i 0.0598636 0.184241i
\(216\) 2.12214 1.54182i 0.144393 0.104908i
\(217\) −3.33777 2.42503i −0.226583 0.164622i
\(218\) 0.355326 + 1.09358i 0.0240657 + 0.0740667i
\(219\) −18.4807 −1.24881
\(220\) −2.63524 + 2.01383i −0.177668 + 0.135772i
\(221\) −0.209203 −0.0140725
\(222\) 4.60402 + 14.1697i 0.309002 + 0.951009i
\(223\) −16.5585 12.0305i −1.10884 0.805620i −0.126361 0.991984i \(-0.540330\pi\)
−0.982481 + 0.186364i \(0.940330\pi\)
\(224\) −0.809017 + 0.587785i −0.0540547 + 0.0392731i
\(225\) 1.23360 3.79662i 0.0822399 0.253108i
\(226\) −3.75567 + 11.5588i −0.249824 + 0.768878i
\(227\) −19.1770 + 13.9329i −1.27282 + 0.924759i −0.999311 0.0371106i \(-0.988185\pi\)
−0.273510 + 0.961869i \(0.588185\pi\)
\(228\) 5.92738 + 4.30649i 0.392550 + 0.285204i
\(229\) −8.23123 25.3331i −0.543935 1.67406i −0.723508 0.690316i \(-0.757472\pi\)
0.179573 0.983745i \(-0.442528\pi\)
\(230\) 1.83120 0.120746
\(231\) −2.91113 8.27269i −0.191539 0.544303i
\(232\) 3.30937 0.217271
\(233\) 9.37458 + 28.8520i 0.614149 + 1.89016i 0.413545 + 0.910484i \(0.364290\pi\)
0.200604 + 0.979672i \(0.435710\pi\)
\(234\) −9.88376 7.18097i −0.646122 0.469435i
\(235\) −9.64311 + 7.00613i −0.629047 + 0.457029i
\(236\) −3.45881 + 10.6451i −0.225149 + 0.692938i
\(237\) 10.1438 31.2195i 0.658914 2.02793i
\(238\) 0.0553034 0.0401802i 0.00358478 0.00260450i
\(239\) 8.05118 + 5.84952i 0.520787 + 0.378374i 0.816900 0.576779i \(-0.195691\pi\)
−0.296113 + 0.955153i \(0.595691\pi\)
\(240\) −0.817115 2.51482i −0.0527446 0.162331i
\(241\) −30.1849 −1.94438 −0.972191 0.234189i \(-0.924757\pi\)
−0.972191 + 0.234189i \(0.924757\pi\)
\(242\) −9.20164 6.02743i −0.591504 0.387458i
\(243\) 21.1960 1.35973
\(244\) 0.783832 + 2.41239i 0.0501797 + 0.154437i
\(245\) −0.809017 0.587785i −0.0516862 0.0375522i
\(246\) −10.9798 + 7.97728i −0.700045 + 0.508613i
\(247\) 2.62035 8.06462i 0.166729 0.513139i
\(248\) 1.27491 3.92378i 0.0809572 0.249161i
\(249\) −6.53249 + 4.74614i −0.413980 + 0.300774i
\(250\) −0.809017 0.587785i −0.0511667 0.0371748i
\(251\) −0.361544 1.11272i −0.0228204 0.0702341i 0.938998 0.343923i \(-0.111756\pi\)
−0.961818 + 0.273689i \(0.911756\pi\)
\(252\) 3.99201 0.251473
\(253\) 2.01603 + 5.72903i 0.126747 + 0.360181i
\(254\) 13.7815 0.864730
\(255\) 0.0558569 + 0.171910i 0.00349790 + 0.0107654i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 0.793578 0.576568i 0.0495020 0.0359653i −0.562759 0.826621i \(-0.690260\pi\)
0.612261 + 0.790656i \(0.290260\pi\)
\(258\) −2.32104 + 7.14344i −0.144502 + 0.444731i
\(259\) −1.74115 + 5.35871i −0.108190 + 0.332974i
\(260\) −2.47589 + 1.79884i −0.153548 + 0.111559i
\(261\) −10.6879 7.76524i −0.661567 0.480656i
\(262\) 1.51159 + 4.65219i 0.0933863 + 0.287413i
\(263\) −15.9923 −0.986125 −0.493063 0.869994i \(-0.664123\pi\)
−0.493063 + 0.869994i \(0.664123\pi\)
\(264\) 6.96820 5.32505i 0.428863 0.327734i
\(265\) 0.123629 0.00759448
\(266\) 0.856222 + 2.63518i 0.0524983 + 0.161573i
\(267\) 29.0309 + 21.0922i 1.77666 + 1.29082i
\(268\) 1.78646 1.29794i 0.109125 0.0792842i
\(269\) 4.66762 14.3655i 0.284590 0.875878i −0.701931 0.712245i \(-0.747679\pi\)
0.986521 0.163633i \(-0.0523214\pi\)
\(270\) −0.810584 + 2.49472i −0.0493305 + 0.151824i
\(271\) 0.404143 0.293627i 0.0245499 0.0178366i −0.575443 0.817842i \(-0.695170\pi\)
0.599993 + 0.800006i \(0.295170\pi\)
\(272\) 0.0553034 + 0.0401802i 0.00335326 + 0.00243628i
\(273\) −2.50067 7.69627i −0.151347 0.465800i
\(274\) −19.0559 −1.15121
\(275\) 0.948252 3.17818i 0.0571818 0.191651i
\(276\) −4.84213 −0.291462
\(277\) −3.43198 10.5625i −0.206208 0.634642i −0.999662 0.0260116i \(-0.991719\pi\)
0.793454 0.608630i \(-0.208281\pi\)
\(278\) −6.19156 4.49843i −0.371345 0.269798i
\(279\) −13.3244 + 9.68075i −0.797711 + 0.579571i
\(280\) 0.309017 0.951057i 0.0184673 0.0568365i
\(281\) 4.77469 14.6950i 0.284834 0.876629i −0.701614 0.712557i \(-0.747537\pi\)
0.986448 0.164072i \(-0.0524629\pi\)
\(282\) 25.4987 18.5259i 1.51843 1.10320i
\(283\) −11.5802 8.41353i −0.688373 0.500132i 0.187752 0.982216i \(-0.439880\pi\)
−0.876125 + 0.482084i \(0.839880\pi\)
\(284\) 4.24118 + 13.0530i 0.251668 + 0.774553i
\(285\) −7.32664 −0.433993
\(286\) −8.35358 5.76558i −0.493957 0.340926i
\(287\) −5.13257 −0.302966
\(288\) 1.23360 + 3.79662i 0.0726905 + 0.223718i
\(289\) 13.7495 + 9.98960i 0.808795 + 0.587624i
\(290\) −2.67733 + 1.94520i −0.157218 + 0.114226i
\(291\) 2.24279 6.90261i 0.131475 0.404638i
\(292\) 2.15974 6.64698i 0.126389 0.388985i
\(293\) 14.2184 10.3302i 0.830645 0.603499i −0.0890967 0.996023i \(-0.528398\pi\)
0.919742 + 0.392524i \(0.128398\pi\)
\(294\) 2.13924 + 1.55425i 0.124763 + 0.0906454i
\(295\) −3.45881 10.6451i −0.201380 0.619783i
\(296\) −5.63448 −0.327498
\(297\) −8.69730 + 0.210555i −0.504669 + 0.0122177i
\(298\) −14.6774 −0.850237
\(299\) 1.73177 + 5.32985i 0.100151 + 0.308233i
\(300\) 2.13924 + 1.55425i 0.123509 + 0.0897344i
\(301\) −2.29804 + 1.66962i −0.132457 + 0.0962355i
\(302\) −3.42807 + 10.5505i −0.197263 + 0.607114i
\(303\) 4.52650 13.9311i 0.260041 0.800323i
\(304\) −2.24162 + 1.62863i −0.128566 + 0.0934084i
\(305\) −2.05210 1.49094i −0.117503 0.0853708i
\(306\) −0.0843272 0.259532i −0.00482066 0.0148365i
\(307\) 5.38032 0.307071 0.153536 0.988143i \(-0.450934\pi\)
0.153536 + 0.988143i \(0.450934\pi\)
\(308\) 3.31565 0.0802696i 0.188927 0.00457378i
\(309\) 9.56413 0.544084
\(310\) 1.27491 + 3.92378i 0.0724103 + 0.222856i
\(311\) −13.6747 9.93522i −0.775419 0.563375i 0.128182 0.991751i \(-0.459086\pi\)
−0.903601 + 0.428376i \(0.859086\pi\)
\(312\) 6.54684 4.75656i 0.370642 0.269287i
\(313\) −0.418788 + 1.28890i −0.0236713 + 0.0728528i −0.962194 0.272364i \(-0.912195\pi\)
0.938523 + 0.345217i \(0.112195\pi\)
\(314\) 4.07721 12.5483i 0.230090 0.708144i
\(315\) −3.22960 + 2.34644i −0.181967 + 0.132207i
\(316\) 10.0433 + 7.29689i 0.564980 + 0.410482i
\(317\) 9.06089 + 27.8866i 0.508910 + 1.56627i 0.794096 + 0.607793i \(0.207945\pi\)
−0.285185 + 0.958472i \(0.592055\pi\)
\(318\) −0.326905 −0.0183319
\(319\) −9.03325 6.23469i −0.505765 0.349076i
\(320\) 1.00000 0.0559017
\(321\) −5.37810 16.5521i −0.300176 0.923848i
\(322\) −1.48147 1.07635i −0.0825592 0.0599827i
\(323\) 0.153234 0.111331i 0.00852618 0.00619463i
\(324\) −1.55742 + 4.79323i −0.0865231 + 0.266291i
\(325\) 0.945705 2.91058i 0.0524583 0.161450i
\(326\) 3.00050 2.17999i 0.166182 0.120738i
\(327\) 2.45982 + 1.78717i 0.136028 + 0.0988305i
\(328\) −1.58605 4.88137i −0.0875751 0.269528i
\(329\) 11.9195 0.657145
\(330\) −2.50741 + 8.40387i −0.138028 + 0.462618i
\(331\) 7.10546 0.390551 0.195276 0.980748i \(-0.437440\pi\)
0.195276 + 0.980748i \(0.437440\pi\)
\(332\) −0.943632 2.90420i −0.0517886 0.159389i
\(333\) 18.1971 + 13.2210i 0.997196 + 0.724506i
\(334\) 7.08237 5.14564i 0.387530 0.281557i
\(335\) −0.682366 + 2.10011i −0.0372817 + 0.114741i
\(336\) −0.817115 + 2.51482i −0.0445773 + 0.137195i
\(337\) −23.2713 + 16.9076i −1.26767 + 0.921016i −0.999107 0.0422456i \(-0.986549\pi\)
−0.268563 + 0.963262i \(0.586549\pi\)
\(338\) 2.94010 + 2.13611i 0.159920 + 0.116189i
\(339\) 9.93091 + 30.5642i 0.539373 + 1.66002i
\(340\) −0.0683587 −0.00370727
\(341\) −10.8722 + 8.30849i −0.588764 + 0.449930i
\(342\) 11.0610 0.598112
\(343\) 0.309017 + 0.951057i 0.0166853 + 0.0513522i
\(344\) −2.29804 1.66962i −0.123902 0.0900201i
\(345\) 3.91737 2.84613i 0.210904 0.153231i
\(346\) −0.939030 + 2.89004i −0.0504825 + 0.155369i
\(347\) −7.96934 + 24.5271i −0.427817 + 1.31668i 0.472455 + 0.881355i \(0.343368\pi\)
−0.900271 + 0.435329i \(0.856632\pi\)
\(348\) 7.07951 5.14357i 0.379502 0.275724i
\(349\) −29.6887 21.5701i −1.58920 1.15462i −0.905070 0.425263i \(-0.860182\pi\)
−0.684131 0.729359i \(-0.739818\pi\)
\(350\) 0.309017 + 0.951057i 0.0165177 + 0.0508361i
\(351\) −8.02766 −0.428485
\(352\) 1.10093 + 3.12857i 0.0586800 + 0.166753i
\(353\) 16.9704 0.903241 0.451620 0.892210i \(-0.350846\pi\)
0.451620 + 0.892210i \(0.350846\pi\)
\(354\) 9.14592 + 28.1482i 0.486100 + 1.49606i
\(355\) −11.1035 8.06720i −0.589315 0.428162i
\(356\) −10.9789 + 7.97666i −0.581882 + 0.422762i
\(357\) 0.0558569 0.171910i 0.00295626 0.00909844i
\(358\) −2.25578 + 6.94259i −0.119222 + 0.366927i
\(359\) −17.1365 + 12.4504i −0.904430 + 0.657107i −0.939600 0.342274i \(-0.888803\pi\)
0.0351697 + 0.999381i \(0.488803\pi\)
\(360\) −3.22960 2.34644i −0.170215 0.123668i
\(361\) −3.49891 10.7685i −0.184153 0.566765i
\(362\) 10.9351 0.574736
\(363\) −29.0526 + 1.40751i −1.52486 + 0.0738750i
\(364\) 3.06037 0.160407
\(365\) 2.15974 + 6.64698i 0.113046 + 0.347919i
\(366\) 5.42624 + 3.94239i 0.283634 + 0.206072i
\(367\) −29.5264 + 21.4522i −1.54126 + 1.11979i −0.591728 + 0.806138i \(0.701554\pi\)
−0.949537 + 0.313656i \(0.898446\pi\)
\(368\) 0.565872 1.74157i 0.0294981 0.0907858i
\(369\) −6.33153 + 19.4864i −0.329606 + 1.01442i
\(370\) 4.55839 3.31186i 0.236979 0.172176i
\(371\) −0.100018 0.0726674i −0.00519268 0.00377270i
\(372\) −3.37118 10.3754i −0.174788 0.537941i
\(373\) −6.23055 −0.322606 −0.161303 0.986905i \(-0.551570\pi\)
−0.161303 + 0.986905i \(0.551570\pi\)
\(374\) −0.0752584 0.213865i −0.00389152 0.0110587i
\(375\) −2.64424 −0.136548
\(376\) 3.68334 + 11.3362i 0.189954 + 0.584617i
\(377\) −8.19362 5.95301i −0.421993 0.306596i
\(378\) 2.12214 1.54182i 0.109151 0.0793027i
\(379\) 0.143280 0.440972i 0.00735982 0.0226512i −0.947309 0.320321i \(-0.896209\pi\)
0.954669 + 0.297669i \(0.0962093\pi\)
\(380\) 0.856222 2.63518i 0.0439233 0.135182i
\(381\) 29.4819 21.4199i 1.51041 1.09737i
\(382\) −18.3258 13.3145i −0.937631 0.681229i
\(383\) 9.42337 + 29.0022i 0.481512 + 1.48194i 0.836970 + 0.547249i \(0.184325\pi\)
−0.355458 + 0.934692i \(0.615675\pi\)
\(384\) −2.64424 −0.134938
\(385\) −2.63524 + 2.01383i −0.134304 + 0.102634i
\(386\) −16.9764 −0.864076
\(387\) 3.50408 + 10.7844i 0.178122 + 0.548204i
\(388\) 2.22057 + 1.61334i 0.112732 + 0.0819047i
\(389\) 11.3092 8.21658i 0.573397 0.416597i −0.262941 0.964812i \(-0.584692\pi\)
0.836338 + 0.548215i \(0.184692\pi\)
\(390\) −2.50067 + 7.69627i −0.126626 + 0.389716i
\(391\) −0.0386823 + 0.119052i −0.00195625 + 0.00602071i
\(392\) −0.809017 + 0.587785i −0.0408615 + 0.0296876i
\(393\) 10.4643 + 7.60275i 0.527854 + 0.383508i
\(394\) 8.13459 + 25.0357i 0.409815 + 1.26128i
\(395\) −12.4142 −0.624627
\(396\) 3.78543 12.6873i 0.190225 0.637561i
\(397\) −11.9510 −0.599801 −0.299901 0.953970i \(-0.596953\pi\)
−0.299901 + 0.953970i \(0.596953\pi\)
\(398\) 5.22632 + 16.0850i 0.261972 + 0.806267i
\(399\) 5.92738 + 4.30649i 0.296740 + 0.215594i
\(400\) −0.809017 + 0.587785i −0.0404508 + 0.0293893i
\(401\) −4.46772 + 13.7502i −0.223107 + 0.686654i 0.775371 + 0.631506i \(0.217563\pi\)
−0.998478 + 0.0551475i \(0.982437\pi\)
\(402\) 1.80434 5.55319i 0.0899923 0.276968i
\(403\) −10.2148 + 7.42148i −0.508835 + 0.369690i
\(404\) 4.48164 + 3.25610i 0.222970 + 0.161997i
\(405\) −1.55742 4.79323i −0.0773886 0.238178i
\(406\) 3.30937 0.164241
\(407\) 15.3799 + 10.6151i 0.762353 + 0.526171i
\(408\) 0.180757 0.00894880
\(409\) −1.09522 3.37073i −0.0541550 0.166672i 0.920321 0.391164i \(-0.127928\pi\)
−0.974476 + 0.224492i \(0.927928\pi\)
\(410\) 4.15234 + 3.01685i 0.205069 + 0.148992i
\(411\) −40.7650 + 29.6175i −2.01079 + 1.46092i
\(412\) −1.11770 + 3.43994i −0.0550653 + 0.169474i
\(413\) −3.45881 + 10.6451i −0.170197 + 0.523812i
\(414\) −5.91404 + 4.29680i −0.290659 + 0.211176i
\(415\) 2.47046 + 1.79490i 0.121270 + 0.0881080i
\(416\) 0.945705 + 2.91058i 0.0463670 + 0.142703i
\(417\) −20.2369 −0.991003
\(418\) 9.18699 0.222410i 0.449350 0.0108784i
\(419\) −35.5085 −1.73471 −0.867353 0.497694i \(-0.834180\pi\)
−0.867353 + 0.497694i \(0.834180\pi\)
\(420\) −0.817115 2.51482i −0.0398711 0.122711i
\(421\) 21.5352 + 15.6463i 1.04956 + 0.762552i 0.972129 0.234446i \(-0.0753276\pi\)
0.0774331 + 0.996998i \(0.475328\pi\)
\(422\) 13.3069 9.66806i 0.647772 0.470634i
\(423\) 14.7039 45.2540i 0.714929 2.20032i
\(424\) 0.0382035 0.117578i 0.00185533 0.00571011i
\(425\) 0.0553034 0.0401802i 0.00268261 0.00194903i
\(426\) 29.3604 + 21.3316i 1.42252 + 1.03352i
\(427\) 0.783832 + 2.41239i 0.0379323 + 0.116744i
\(428\) 6.58182 0.318144
\(429\) −26.8314 + 0.649569i −1.29543 + 0.0313615i
\(430\) 2.84053 0.136983
\(431\) 8.04799 + 24.7692i 0.387658 + 1.19309i 0.934534 + 0.355875i \(0.115817\pi\)
−0.546875 + 0.837214i \(0.684183\pi\)
\(432\) 2.12214 + 1.54182i 0.102101 + 0.0741809i
\(433\) −1.36900 + 0.994636i −0.0657899 + 0.0477992i −0.620194 0.784448i \(-0.712946\pi\)
0.554404 + 0.832248i \(0.312946\pi\)
\(434\) 1.27491 3.92378i 0.0611979 0.188348i
\(435\) −2.70413 + 8.32247i −0.129653 + 0.399032i
\(436\) −0.930257 + 0.675871i −0.0445512 + 0.0323684i
\(437\) −4.10485 2.98235i −0.196362 0.142665i
\(438\) −5.71086 17.5762i −0.272876 0.839824i
\(439\) 12.8065 0.611223 0.305611 0.952156i \(-0.401139\pi\)
0.305611 + 0.952156i \(0.401139\pi\)
\(440\) −2.72960 1.88395i −0.130129 0.0898139i
\(441\) 3.99201 0.190096
\(442\) −0.0646472 0.198964i −0.00307495 0.00946373i
\(443\) −0.569870 0.414035i −0.0270753 0.0196714i 0.574165 0.818739i \(-0.305327\pi\)
−0.601241 + 0.799068i \(0.705327\pi\)
\(444\) −12.0535 + 8.75737i −0.572033 + 0.415606i
\(445\) 4.19358 12.9065i 0.198795 0.611827i
\(446\) 6.32480 19.4657i 0.299488 0.921729i
\(447\) −31.3983 + 22.8122i −1.48509 + 1.07898i
\(448\) −0.809017 0.587785i −0.0382225 0.0277702i
\(449\) −5.68794 17.5057i −0.268431 0.826144i −0.990883 0.134724i \(-0.956985\pi\)
0.722453 0.691421i \(-0.243015\pi\)
\(450\) 3.99201 0.188185
\(451\) −4.86697 + 16.3122i −0.229177 + 0.768113i
\(452\) −12.1536 −0.571658
\(453\) 9.06465 + 27.8981i 0.425894 + 1.31077i
\(454\) −19.1770 13.9329i −0.900020 0.653903i
\(455\) −2.47589 + 1.79884i −0.116071 + 0.0843308i
\(456\) −2.26406 + 6.96805i −0.106024 + 0.326309i
\(457\) 5.25190 16.1637i 0.245673 0.756105i −0.749852 0.661606i \(-0.769875\pi\)
0.995525 0.0944988i \(-0.0301248\pi\)
\(458\) 21.5496 15.6567i 1.00695 0.731591i
\(459\) −0.145066 0.105397i −0.00677112 0.00491951i
\(460\) 0.565872 + 1.74157i 0.0263839 + 0.0812013i
\(461\) 13.3276 0.620729 0.310364 0.950618i \(-0.399549\pi\)
0.310364 + 0.950618i \(0.399549\pi\)
\(462\) 6.96820 5.32505i 0.324190 0.247744i
\(463\) −34.9814 −1.62572 −0.812861 0.582457i \(-0.802091\pi\)
−0.812861 + 0.582457i \(0.802091\pi\)
\(464\) 1.02265 + 3.14739i 0.0474754 + 0.146114i
\(465\) 8.82587 + 6.41237i 0.409290 + 0.297366i
\(466\) −24.5430 + 17.8315i −1.13693 + 0.826028i
\(467\) −1.10585 + 3.40346i −0.0511728 + 0.157494i −0.973377 0.229209i \(-0.926386\pi\)
0.922204 + 0.386703i \(0.126386\pi\)
\(468\) 3.77526 11.6191i 0.174511 0.537091i
\(469\) 1.78646 1.29794i 0.0824910 0.0599332i
\(470\) −9.64311 7.00613i −0.444803 0.323169i
\(471\) −10.7811 33.1808i −0.496767 1.52889i
\(472\) −11.1929 −0.515197
\(473\) 3.12724 + 8.88681i 0.143791 + 0.408616i
\(474\) 32.8262 1.50776
\(475\) 0.856222 + 2.63518i 0.0392862 + 0.120910i
\(476\) 0.0553034 + 0.0401802i 0.00253483 + 0.00184166i
\(477\) −0.399273 + 0.290089i −0.0182814 + 0.0132822i
\(478\) −3.07528 + 9.46472i −0.140660 + 0.432906i
\(479\) 5.66428 17.4328i 0.258807 0.796527i −0.734248 0.678881i \(-0.762465\pi\)
0.993056 0.117646i \(-0.0375348\pi\)
\(480\) 2.13924 1.55425i 0.0976423 0.0709413i
\(481\) 13.9503 + 10.1355i 0.636081 + 0.462140i
\(482\) −9.32766 28.7076i −0.424863 1.30759i
\(483\) −4.84213 −0.220325
\(484\) 2.88896 10.6139i 0.131317 0.482448i
\(485\) −2.74477 −0.124634
\(486\) 6.54993 + 20.1586i 0.297111 + 0.914414i
\(487\) −0.394025 0.286276i −0.0178550 0.0129724i 0.578822 0.815454i \(-0.303513\pi\)
−0.596677 + 0.802482i \(0.703513\pi\)
\(488\) −2.05210 + 1.49094i −0.0928941 + 0.0674915i
\(489\) 3.03053 9.32701i 0.137045 0.421782i
\(490\) 0.309017 0.951057i 0.0139600 0.0429644i
\(491\) −4.92827 + 3.58060i −0.222410 + 0.161590i −0.693411 0.720543i \(-0.743893\pi\)
0.471001 + 0.882133i \(0.343893\pi\)
\(492\) −10.9798 7.97728i −0.495007 0.359643i
\(493\) −0.0699071 0.215152i −0.00314846 0.00968995i
\(494\) 8.47964 0.381517
\(495\) 4.39494 + 12.4893i 0.197538 + 0.561351i
\(496\) 4.12571 0.185250
\(497\) 4.24118 + 13.0530i 0.190243 + 0.585507i
\(498\) −6.53249 4.74614i −0.292728 0.212679i
\(499\) −34.2328 + 24.8716i −1.53247 + 1.11341i −0.577628 + 0.816300i \(0.696022\pi\)
−0.954844 + 0.297106i \(0.903978\pi\)
\(500\) 0.309017 0.951057i 0.0138197 0.0425325i
\(501\) 7.15327 22.0155i 0.319584 0.983580i
\(502\) 0.946534 0.687697i 0.0422459 0.0306934i
\(503\) −26.1860 19.0253i −1.16758 0.848294i −0.176860 0.984236i \(-0.556594\pi\)
−0.990717 + 0.135942i \(0.956594\pi\)
\(504\) 1.23360 + 3.79662i 0.0549488 + 0.169115i
\(505\) −5.53961 −0.246510
\(506\) −4.82565 + 3.68773i −0.214526 + 0.163939i
\(507\) 9.60960 0.426777
\(508\) 4.25873 + 13.1070i 0.188950 + 0.581530i
\(509\) −19.1995 13.9493i −0.851005 0.618291i 0.0744182 0.997227i \(-0.476290\pi\)
−0.925423 + 0.378936i \(0.876290\pi\)
\(510\) −0.146235 + 0.106246i −0.00647541 + 0.00470466i
\(511\) 2.15974 6.64698i 0.0955411 0.294045i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) 5.88000 4.27207i 0.259608 0.188616i
\(514\) 0.793578 + 0.576568i 0.0350032 + 0.0254313i
\(515\) −1.11770 3.43994i −0.0492519 0.151582i
\(516\) −7.51106 −0.330656
\(517\) 11.3027 37.8824i 0.497093 1.66607i
\(518\) −5.63448 −0.247565
\(519\) 2.48302 + 7.64195i 0.108992 + 0.335444i
\(520\) −2.47589 1.79884i −0.108575 0.0788842i
\(521\) 24.9355 18.1167i 1.09244 0.793706i 0.112633 0.993637i \(-0.464072\pi\)
0.979810 + 0.199930i \(0.0640716\pi\)
\(522\) 4.08243 12.5644i 0.178683 0.549930i
\(523\) 11.6215 35.7673i 0.508172 1.56399i −0.287200 0.957871i \(-0.592724\pi\)
0.795372 0.606122i \(-0.207276\pi\)
\(524\) −3.95739 + 2.87521i −0.172879 + 0.125604i
\(525\) 2.13924 + 1.55425i 0.0933639 + 0.0678328i
\(526\) −4.94188 15.2095i −0.215476 0.663168i
\(527\) −0.282028 −0.0122853
\(528\) 7.21772 + 4.98162i 0.314111 + 0.216797i
\(529\) −19.6467 −0.854205
\(530\) 0.0382035 + 0.117578i 0.00165945 + 0.00510727i
\(531\) 36.1487 + 26.2636i 1.56872 + 1.13974i
\(532\) −2.24162 + 1.62863i −0.0971865 + 0.0706101i
\(533\) −4.85390 + 14.9388i −0.210246 + 0.647070i
\(534\) −11.0888 + 34.1279i −0.479861 + 1.47686i
\(535\) −5.32480 + 3.86870i −0.230211 + 0.167258i
\(536\) 1.78646 + 1.29794i 0.0771633 + 0.0560624i
\(537\) 5.96483 + 18.3579i 0.257401 + 0.792200i
\(538\) 15.1048 0.651212
\(539\) 3.31565 0.0802696i 0.142815 0.00345746i
\(540\) −2.62310 −0.112880
\(541\) −2.22132 6.83651i −0.0955018 0.293924i 0.891882 0.452268i \(-0.149385\pi\)
−0.987384 + 0.158343i \(0.949385\pi\)
\(542\) 0.404143 + 0.293627i 0.0173594 + 0.0126124i
\(543\) 23.3928 16.9958i 1.00388 0.729361i
\(544\) −0.0211240 + 0.0650130i −0.000905684 + 0.00278741i
\(545\) 0.355326 1.09358i 0.0152205 0.0468439i
\(546\) 6.54684 4.75656i 0.280179 0.203562i
\(547\) −13.8145 10.0368i −0.590666 0.429144i 0.251888 0.967757i \(-0.418949\pi\)
−0.842554 + 0.538612i \(0.818949\pi\)
\(548\) −5.88858 18.1232i −0.251548 0.774184i
\(549\) 10.1259 0.432161
\(550\) 3.31565 0.0802696i 0.141380 0.00342271i
\(551\) 9.16957 0.390637
\(552\) −1.49630 4.60514i −0.0636868 0.196008i
\(553\) 10.0433 + 7.29689i 0.427085 + 0.310295i
\(554\) 8.98504 6.52801i 0.381738 0.277349i
\(555\) 4.60402 14.1697i 0.195430 0.601471i
\(556\) 2.36496 7.27861i 0.100297 0.308682i
\(557\) −28.9135 + 21.0069i −1.22510 + 0.890090i −0.996513 0.0834323i \(-0.973412\pi\)
−0.228591 + 0.973523i \(0.573412\pi\)
\(558\) −13.3244 9.68075i −0.564067 0.409819i
\(559\) 2.68631 + 8.26760i 0.113619 + 0.349682i
\(560\) 1.00000 0.0422577
\(561\) −0.493394 0.340537i −0.0208311 0.0143775i
\(562\) 15.4512 0.651770
\(563\) −5.76610 17.7462i −0.243012 0.747915i −0.995957 0.0898311i \(-0.971367\pi\)
0.752945 0.658084i \(-0.228633\pi\)
\(564\) 25.4987 + 18.5259i 1.07369 + 0.780081i
\(565\) 9.83248 7.14372i 0.413656 0.300538i
\(566\) 4.42325 13.6134i 0.185923 0.572213i
\(567\) −1.55742 + 4.79323i −0.0654053 + 0.201297i
\(568\) −11.1035 + 8.06720i −0.465894 + 0.338492i
\(569\) −32.1499 23.3582i −1.34779 0.979228i −0.999118 0.0419841i \(-0.986632\pi\)
−0.348674 0.937244i \(-0.613368\pi\)
\(570\) −2.26406 6.96805i −0.0948309 0.291860i
\(571\) 13.3763 0.559779 0.279890 0.960032i \(-0.409702\pi\)
0.279890 + 0.960032i \(0.409702\pi\)
\(572\) 2.90200 9.72639i 0.121339 0.406681i
\(573\) −59.8972 −2.50224
\(574\) −1.58605 4.88137i −0.0662005 0.203744i
\(575\) −1.48147 1.07635i −0.0617816 0.0448870i
\(576\) −3.22960 + 2.34644i −0.134567 + 0.0977684i
\(577\) 6.14182 18.9026i 0.255688 0.786925i −0.738006 0.674794i \(-0.764232\pi\)
0.993693 0.112131i \(-0.0357676\pi\)
\(578\) −5.25184 + 16.1635i −0.218448 + 0.672314i
\(579\) −36.3165 + 26.3855i −1.50926 + 1.09654i
\(580\) −2.67733 1.94520i −0.111170 0.0807699i
\(581\) −0.943632 2.90420i −0.0391485 0.120487i
\(582\) 7.25783 0.300847
\(583\) −0.325792 + 0.248968i −0.0134929 + 0.0103112i
\(584\) 6.98905 0.289209
\(585\) 3.77526 + 11.6191i 0.156088 + 0.480389i
\(586\) 14.2184 + 10.3302i 0.587355 + 0.426738i
\(587\) −4.60014 + 3.34220i −0.189868 + 0.137947i −0.678658 0.734454i \(-0.737438\pi\)
0.488790 + 0.872401i \(0.337438\pi\)
\(588\) −0.817115 + 2.51482i −0.0336973 + 0.103710i
\(589\) 3.53253 10.8720i 0.145555 0.447973i
\(590\) 9.05528 6.57904i 0.372800 0.270855i
\(591\) 56.3134 + 40.9141i 2.31642 + 1.68298i
\(592\) −1.74115 5.35871i −0.0715608 0.220242i
\(593\) 28.1824 1.15731 0.578656 0.815571i \(-0.303577\pi\)
0.578656 + 0.815571i \(0.303577\pi\)
\(594\) −2.88786 8.20656i −0.118491 0.336719i
\(595\) −0.0683587 −0.00280243
\(596\) −4.53555 13.9590i −0.185784 0.571783i
\(597\) 36.1803 + 26.2866i 1.48076 + 1.07584i
\(598\) −4.53384 + 3.29403i −0.185403 + 0.134703i
\(599\) 11.1923 34.4463i 0.457304 1.40744i −0.411105 0.911588i \(-0.634857\pi\)
0.868409 0.495848i \(-0.165143\pi\)
\(600\) −0.817115 + 2.51482i −0.0333586 + 0.102667i
\(601\) 11.6031 8.43018i 0.473302 0.343874i −0.325425 0.945568i \(-0.605507\pi\)
0.798727 + 0.601694i \(0.205507\pi\)
\(602\) −2.29804 1.66962i −0.0936611 0.0680488i
\(603\) −2.72401 8.38364i −0.110930 0.341408i
\(604\) −11.0935 −0.451387
\(605\) 3.90144 + 10.2849i 0.158616 + 0.418140i
\(606\) 14.6481 0.595037
\(607\) −1.09589 3.37280i −0.0444808 0.136898i 0.926350 0.376664i \(-0.122929\pi\)
−0.970831 + 0.239767i \(0.922929\pi\)
\(608\) −2.24162 1.62863i −0.0909096 0.0660497i
\(609\) 7.07951 5.14357i 0.286876 0.208428i
\(610\) 0.783832 2.41239i 0.0317364 0.0976746i
\(611\) 11.2724 34.6928i 0.456031 1.40352i
\(612\) 0.220771 0.160400i 0.00892415 0.00648378i
\(613\) 16.5302 + 12.0099i 0.667648 + 0.485075i 0.869237 0.494395i \(-0.164610\pi\)
−0.201589 + 0.979470i \(0.564610\pi\)
\(614\) 1.66261 + 5.11699i 0.0670976 + 0.206505i
\(615\) 13.5718 0.547266
\(616\) 1.10093 + 3.12857i 0.0443579 + 0.126054i
\(617\) 19.3755 0.780028 0.390014 0.920809i \(-0.372470\pi\)
0.390014 + 0.920809i \(0.372470\pi\)
\(618\) 2.95548 + 9.09603i 0.118887 + 0.365896i
\(619\) 4.85833 + 3.52978i 0.195273 + 0.141874i 0.681125 0.732167i \(-0.261491\pi\)
−0.485853 + 0.874041i \(0.661491\pi\)
\(620\) −3.33777 + 2.42503i −0.134048 + 0.0973916i
\(621\) −1.48434 + 4.56833i −0.0595645 + 0.183321i
\(622\) 5.22326 16.0755i 0.209433 0.644570i
\(623\) −10.9789 + 7.97666i −0.439862 + 0.319578i
\(624\) 6.54684 + 4.75656i 0.262083 + 0.190415i
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) −1.35523 −0.0541658
\(627\) 19.3075 14.7546i 0.771065 0.589243i
\(628\) 13.1941 0.526502
\(629\) 0.119023 + 0.366314i 0.00474575 + 0.0146059i
\(630\) −3.22960 2.34644i −0.128670 0.0934845i
\(631\) −17.6308 + 12.8095i −0.701872 + 0.509940i −0.880541 0.473969i \(-0.842821\pi\)
0.178669 + 0.983909i \(0.442821\pi\)
\(632\) −3.83620 + 11.8066i −0.152596 + 0.469642i
\(633\) 13.4401 41.3645i 0.534198 1.64409i
\(634\) −23.7217 + 17.2348i −0.942110 + 0.684483i
\(635\) −11.1495 8.10058i −0.442454 0.321462i
\(636\) −0.101019 0.310905i −0.00400567 0.0123282i
\(637\) 3.06037 0.121256
\(638\) 3.13811 10.5178i 0.124239 0.416402i
\(639\) 54.7892 2.16743
\(640\) 0.309017 + 0.951057i 0.0122150 + 0.0375938i
\(641\) 33.1975 + 24.1194i 1.31122 + 0.952659i 0.999997 + 0.00232283i \(0.000739380\pi\)
0.311225 + 0.950336i \(0.399261\pi\)
\(642\) 14.0801 10.2298i 0.555696 0.403736i
\(643\) −7.65201 + 23.5505i −0.301766 + 0.928739i 0.679099 + 0.734047i \(0.262371\pi\)
−0.980864 + 0.194692i \(0.937629\pi\)
\(644\) 0.565872 1.74157i 0.0222985 0.0686276i
\(645\) 6.07657 4.41489i 0.239265 0.173836i
\(646\) 0.153234 + 0.111331i 0.00602892 + 0.00438026i
\(647\) 13.6308 + 41.9513i 0.535883 + 1.64928i 0.741734 + 0.670694i \(0.234004\pi\)
−0.205852 + 0.978583i \(0.565996\pi\)
\(648\) −5.03990 −0.197986
\(649\) 30.5523 + 21.0870i 1.19928 + 0.827736i
\(650\) 3.06037 0.120037
\(651\) −3.37118 10.3754i −0.132127 0.406645i
\(652\) 3.00050 + 2.17999i 0.117508 + 0.0853749i
\(653\) 17.8215 12.9481i 0.697410 0.506698i −0.181678 0.983358i \(-0.558153\pi\)
0.879088 + 0.476660i \(0.158153\pi\)
\(654\) −0.939569 + 2.89169i −0.0367400 + 0.113074i
\(655\) 1.51159 4.65219i 0.0590627 0.181776i
\(656\) 4.15234 3.01685i 0.162122 0.117788i
\(657\) −22.5719 16.3994i −0.880612 0.639802i
\(658\) 3.68334 + 11.3362i 0.143592 + 0.441929i
\(659\) 19.5066 0.759868 0.379934 0.925014i \(-0.375947\pi\)
0.379934 + 0.925014i \(0.375947\pi\)
\(660\) −8.76738 + 0.212252i −0.341270 + 0.00826190i
\(661\) 8.75637 0.340583 0.170292 0.985394i \(-0.445529\pi\)
0.170292 + 0.985394i \(0.445529\pi\)
\(662\) 2.19571 + 6.75769i 0.0853386 + 0.262645i
\(663\) −0.447534 0.325152i −0.0173808 0.0126279i
\(664\) 2.47046 1.79490i 0.0958725 0.0696555i
\(665\) 0.856222 2.63518i 0.0332029 0.102188i
\(666\) −6.95068 + 21.3920i −0.269334 + 0.828923i
\(667\) −4.90273 + 3.56204i −0.189835 + 0.137923i
\(668\) 7.08237 + 5.14564i 0.274025 + 0.199091i
\(669\) −16.7243 51.4721i −0.646598 1.99002i
\(670\) −2.20818 −0.0853096
\(671\) 8.41026 0.203606i 0.324675 0.00786014i
\(672\) −2.64424 −0.102004
\(673\) −0.744987 2.29283i −0.0287171 0.0883822i 0.935671 0.352874i \(-0.114796\pi\)
−0.964388 + 0.264492i \(0.914796\pi\)
\(674\) −23.2713 16.9076i −0.896378 0.651257i
\(675\) 2.12214 1.54182i 0.0816810 0.0593447i
\(676\) −1.12302 + 3.45630i −0.0431930 + 0.132934i
\(677\) 0.717826 2.20924i 0.0275883 0.0849080i −0.936314 0.351163i \(-0.885786\pi\)
0.963903 + 0.266255i \(0.0857863\pi\)
\(678\) −25.9994 + 18.8897i −0.998503 + 0.725455i
\(679\) 2.22057 + 1.61334i 0.0852175 + 0.0619142i
\(680\) −0.0211240 0.0650130i −0.000810069 0.00249313i
\(681\) −62.6792 −2.40187
\(682\) −11.2615 7.77265i −0.431227 0.297630i
\(683\) −4.35856 −0.166776 −0.0833879 0.996517i \(-0.526574\pi\)
−0.0833879 + 0.996517i \(0.526574\pi\)
\(684\) 3.41804 + 10.5197i 0.130692 + 0.402229i
\(685\) 15.4165 + 11.2007i 0.589034 + 0.427959i
\(686\) −0.809017 + 0.587785i −0.0308884 + 0.0224417i
\(687\) 21.7654 66.9869i 0.830400 2.55571i
\(688\) 0.877773 2.70151i 0.0334648 0.102994i
\(689\) −0.306092 + 0.222389i −0.0116612 + 0.00847233i
\(690\) 3.91737 + 2.84613i 0.149132 + 0.108350i
\(691\) −6.32981 19.4811i −0.240797 0.741098i −0.996299 0.0859513i \(-0.972607\pi\)
0.755502 0.655146i \(-0.227393\pi\)
\(692\) −3.03876 −0.115516
\(693\) 3.78543 12.6873i 0.143797 0.481951i
\(694\) −25.7893 −0.978950
\(695\) 2.36496 + 7.27861i 0.0897082 + 0.276093i
\(696\) 7.07951 + 5.14357i 0.268348 + 0.194966i
\(697\) −0.283848 + 0.206228i −0.0107515 + 0.00781144i
\(698\) 11.3401 34.9012i 0.429228 1.32103i
\(699\) −24.7886 + 76.2916i −0.937592 + 2.88561i
\(700\) −0.809017 + 0.587785i −0.0305780 + 0.0222162i
\(701\) 20.6987 + 15.0385i 0.781780 + 0.567996i 0.905513 0.424319i \(-0.139487\pi\)
−0.123733 + 0.992316i \(0.539487\pi\)
\(702\) −2.48068 7.63475i −0.0936273 0.288155i
\(703\) −15.6120 −0.588817
\(704\) −2.63524 + 2.01383i −0.0993193 + 0.0758991i
\(705\) −31.5181 −1.18704
\(706\) 5.24413 + 16.1398i 0.197365 + 0.607428i
\(707\) 4.48164 + 3.25610i 0.168549 + 0.122458i
\(708\) −23.9443 + 17.3966i −0.899883 + 0.653803i
\(709\) −6.22550 + 19.1601i −0.233803 + 0.719573i 0.763474 + 0.645838i \(0.223492\pi\)
−0.997278 + 0.0737348i \(0.976508\pi\)
\(710\) 4.24118 13.0530i 0.159169 0.489870i
\(711\) 40.0930 29.1292i 1.50360 1.09243i
\(712\) −10.9789 7.97666i −0.411453 0.298938i
\(713\) 2.33462 + 7.18523i 0.0874323 + 0.269089i
\(714\) 0.180757 0.00676465
\(715\) 3.36926 + 9.57456i 0.126003 + 0.358068i
\(716\) −7.29987 −0.272809
\(717\) 8.13177 + 25.0270i 0.303686 + 0.934651i
\(718\) −17.1365 12.4504i −0.639529 0.464645i
\(719\) 33.4860 24.3290i 1.24882 0.907318i 0.250663 0.968074i \(-0.419351\pi\)
0.998153 + 0.0607563i \(0.0193512\pi\)
\(720\) 1.23360 3.79662i 0.0459735 0.141492i
\(721\) −1.11770 + 3.43994i −0.0416255 + 0.128110i
\(722\) 9.16026 6.65532i 0.340910 0.247685i
\(723\) −64.5727 46.9148i −2.40148 1.74478i
\(724\) 3.37913 + 10.3999i 0.125584 + 0.386509i
\(725\) 3.30937 0.122907
\(726\) −10.3164 27.1957i −0.382876 1.00933i
\(727\) −18.3813 −0.681723 −0.340862 0.940113i \(-0.610719\pi\)
−0.340862 + 0.940113i \(0.610719\pi\)
\(728\) 0.945705 + 2.91058i 0.0350502 + 0.107873i
\(729\) 33.1112 + 24.0567i 1.22634 + 0.890988i
\(730\) −5.65426 + 4.10806i −0.209274 + 0.152046i
\(731\) −0.0600035 + 0.184672i −0.00221931 + 0.00683033i
\(732\) −2.07264 + 6.37893i −0.0766069 + 0.235772i
\(733\) −38.3326 + 27.8503i −1.41585 + 1.02867i −0.423408 + 0.905939i \(0.639166\pi\)
−0.992440 + 0.122734i \(0.960834\pi\)
\(734\) −29.5264 21.4522i −1.08984 0.791814i
\(735\) −0.817115 2.51482i −0.0301397 0.0927606i
\(736\) 1.83120 0.0674989
\(737\) −2.43107 6.90846i −0.0895494 0.254476i
\(738\) −20.4893 −0.754220
\(739\) −11.2774 34.7082i −0.414845 1.27676i −0.912389 0.409324i \(-0.865765\pi\)
0.497544 0.867439i \(-0.334235\pi\)
\(740\) 4.55839 + 3.31186i 0.167570 + 0.121747i
\(741\) 18.1399 13.1794i 0.666387 0.484159i
\(742\) 0.0382035 0.117578i 0.00140249 0.00431643i
\(743\) 6.01175 18.5023i 0.220550 0.678782i −0.778163 0.628062i \(-0.783848\pi\)
0.998713 0.0507200i \(-0.0161516\pi\)
\(744\) 8.82587 6.41237i 0.323572 0.235089i
\(745\) 11.8742 + 8.62714i 0.435038 + 0.316074i
\(746\) −1.92535 5.92561i −0.0704920 0.216952i
\(747\) −12.1902 −0.446017
\(748\) 0.180142 0.137663i 0.00658663 0.00503345i
\(749\) 6.58182 0.240494
\(750\) −0.817115 2.51482i −0.0298368 0.0918283i
\(751\) 27.5796 + 20.0378i 1.00639 + 0.731188i 0.963450 0.267890i \(-0.0863262\pi\)
0.0429442 + 0.999077i \(0.486326\pi\)
\(752\) −9.64311 + 7.00613i −0.351648 + 0.255487i
\(753\) 0.956009 2.94229i 0.0348389 0.107223i
\(754\) 3.12968 9.63218i 0.113976 0.350783i
\(755\) 8.97481 6.52058i 0.326627 0.237308i
\(756\) 2.12214 + 1.54182i 0.0771813 + 0.0560755i
\(757\) −2.61742 8.05559i −0.0951318 0.292786i 0.892156 0.451727i \(-0.149192\pi\)
−0.987288 + 0.158941i \(0.949192\pi\)
\(758\) 0.463665 0.0168411
\(759\) −4.59156 + 15.3892i −0.166663 + 0.558591i
\(760\) 2.77079 0.100507
\(761\) 4.60323 + 14.1673i 0.166867 + 0.513564i 0.999169 0.0407586i \(-0.0129774\pi\)
−0.832302 + 0.554322i \(0.812977\pi\)
\(762\) 29.4819 + 21.4199i 1.06802 + 0.775961i
\(763\) −0.930257 + 0.675871i −0.0336776 + 0.0244682i
\(764\) 6.99984 21.5433i 0.253245 0.779409i
\(765\) −0.0843272 + 0.259532i −0.00304885 + 0.00938341i
\(766\) −24.6707 + 17.9243i −0.891389 + 0.647632i
\(767\) 27.7125 + 20.1343i 1.00064 + 0.727007i
\(768\) −0.817115 2.51482i −0.0294851 0.0907458i
\(769\) 26.5771 0.958396 0.479198 0.877707i \(-0.340928\pi\)
0.479198 + 0.877707i \(0.340928\pi\)
\(770\) −2.72960 1.88395i −0.0983680 0.0678929i
\(771\) 2.59378 0.0934126
\(772\) −5.24600 16.1455i −0.188807 0.581090i
\(773\) −19.0316 13.8273i −0.684519 0.497332i 0.190335 0.981719i \(-0.439043\pi\)
−0.874854 + 0.484387i \(0.839043\pi\)