Properties

Label 770.2.n.g.421.2
Level $770$
Weight $2$
Character 770.421
Analytic conductor $6.148$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \( x^{12} - 2 x^{11} + 10 x^{10} - 9 x^{9} + 27 x^{8} - 26 x^{7} + 47 x^{6} + 46 x^{5} + 137 x^{4} - 57 x^{3} + 113 x^{2} - 17 x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 421.2
Root \(0.248272 + 0.764103i\) of defining polynomial
Character \(\chi\) \(=\) 770.421
Dual form 770.2.n.g.631.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.248272 - 0.764103i) q^{3} +(0.309017 - 0.951057i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(0.649985 + 0.472241i) q^{6} +(-0.309017 + 0.951057i) q^{7} +(0.309017 + 0.951057i) q^{8} +(1.90484 - 1.38395i) q^{9} +O(q^{10})\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.248272 - 0.764103i) q^{3} +(0.309017 - 0.951057i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(0.649985 + 0.472241i) q^{6} +(-0.309017 + 0.951057i) q^{7} +(0.309017 + 0.951057i) q^{8} +(1.90484 - 1.38395i) q^{9} +1.00000 q^{10} +(-3.22166 - 0.787978i) q^{11} -0.803425 q^{12} +(2.13834 - 1.55360i) q^{13} +(-0.309017 - 0.951057i) q^{14} +(-0.248272 + 0.764103i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(-1.29806 - 0.943099i) q^{17} +(-0.727583 + 2.23927i) q^{18} +(0.590037 + 1.81595i) q^{19} +(-0.809017 + 0.587785i) q^{20} +0.803425 q^{21} +(3.06954 - 1.25616i) q^{22} -4.22916 q^{23} +(0.649985 - 0.472241i) q^{24} +(0.309017 + 0.951057i) q^{25} +(-0.816775 + 2.51377i) q^{26} +(-3.48035 - 2.52862i) q^{27} +(0.809017 + 0.587785i) q^{28} +(2.77477 - 8.53988i) q^{29} +(-0.248272 - 0.764103i) q^{30} +(-2.00312 + 1.45536i) q^{31} +1.00000 q^{32} +(0.197752 + 2.65731i) q^{33} +1.60450 q^{34} +(0.809017 - 0.587785i) q^{35} +(-0.727583 - 2.23927i) q^{36} +(-1.73320 + 5.33426i) q^{37} +(-1.54474 - 1.12232i) q^{38} +(-1.71800 - 1.24820i) q^{39} +(0.309017 - 0.951057i) q^{40} +(-2.99616 - 9.22125i) q^{41} +(-0.649985 + 0.472241i) q^{42} -4.00169 q^{43} +(-1.74496 + 2.82048i) q^{44} -2.35451 q^{45} +(3.42146 - 2.48584i) q^{46} +(-2.02252 - 6.22469i) q^{47} +(-0.248272 + 0.764103i) q^{48} +(-0.809017 - 0.587785i) q^{49} +(-0.809017 - 0.587785i) q^{50} +(-0.398351 + 1.22600i) q^{51} +(-0.816775 - 2.51377i) q^{52} +(-8.12885 + 5.90596i) q^{53} +4.30195 q^{54} +(2.14322 + 2.53113i) q^{55} -1.00000 q^{56} +(1.24108 - 0.901698i) q^{57} +(2.77477 + 8.53988i) q^{58} +(1.28756 - 3.96270i) q^{59} +(0.649985 + 0.472241i) q^{60} +(-10.7299 - 7.79571i) q^{61} +(0.765125 - 2.35481i) q^{62} +(0.727583 + 2.23927i) q^{63} +(-0.809017 + 0.587785i) q^{64} -2.64314 q^{65} +(-1.72191 - 2.03357i) q^{66} -10.5029 q^{67} +(-1.29806 + 0.943099i) q^{68} +(1.04998 + 3.23151i) q^{69} +(-0.309017 + 0.951057i) q^{70} +(-3.70925 - 2.69493i) q^{71} +(1.90484 + 1.38395i) q^{72} +(1.14118 - 3.51218i) q^{73} +(-1.73320 - 5.33426i) q^{74} +(0.649985 - 0.472241i) q^{75} +1.90940 q^{76} +(1.74496 - 2.82048i) q^{77} +2.12356 q^{78} +(11.2839 - 8.19826i) q^{79} +(0.309017 + 0.951057i) q^{80} +(1.11470 - 3.43068i) q^{81} +(7.84406 + 5.69904i) q^{82} +(10.9705 + 7.97052i) q^{83} +(0.248272 - 0.764103i) q^{84} +(0.495817 + 1.52597i) q^{85} +(3.23744 - 2.35214i) q^{86} -7.21424 q^{87} +(-0.246136 - 3.30748i) q^{88} -3.41009 q^{89} +(1.90484 - 1.38395i) q^{90} +(0.816775 + 2.51377i) q^{91} +(-1.30688 + 4.02217i) q^{92} +(1.60936 + 1.16927i) q^{93} +(5.29503 + 3.84707i) q^{94} +(0.590037 - 1.81595i) q^{95} +(-0.248272 - 0.764103i) q^{96} +(14.1345 - 10.2693i) q^{97} +1.00000 q^{98} +(-7.22725 + 2.95763i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} - 2 q^{3} - 3 q^{4} - 3 q^{5} + 3 q^{6} + 3 q^{7} - 3 q^{8} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} - 2 q^{3} - 3 q^{4} - 3 q^{5} + 3 q^{6} + 3 q^{7} - 3 q^{8} - 7 q^{9} + 12 q^{10} + 7 q^{11} - 2 q^{12} + 8 q^{13} + 3 q^{14} - 2 q^{15} - 3 q^{16} + 8 q^{17} + 8 q^{18} + 11 q^{19} - 3 q^{20} + 2 q^{21} - 3 q^{22} - 20 q^{23} + 3 q^{24} - 3 q^{25} - 2 q^{26} + 7 q^{27} + 3 q^{28} + 20 q^{29} - 2 q^{30} + 2 q^{31} + 12 q^{32} + 33 q^{33} - 42 q^{34} + 3 q^{35} + 8 q^{36} - 4 q^{37} - 14 q^{38} + 18 q^{39} - 3 q^{40} - 14 q^{41} - 3 q^{42} - 38 q^{43} + 2 q^{44} - 2 q^{45} + 20 q^{46} - 10 q^{47} - 2 q^{48} - 3 q^{49} - 3 q^{50} + 13 q^{51} - 2 q^{52} + 8 q^{53} - 8 q^{54} - 3 q^{55} - 12 q^{56} + 33 q^{57} + 20 q^{58} - 11 q^{59} + 3 q^{60} - 34 q^{61} + 2 q^{62} - 8 q^{63} - 3 q^{64} - 12 q^{65} - 12 q^{66} - 54 q^{67} + 8 q^{68} + 38 q^{69} + 3 q^{70} + 18 q^{71} - 7 q^{72} + 24 q^{73} - 4 q^{74} + 3 q^{75} + 6 q^{76} - 2 q^{77} - 52 q^{78} + 2 q^{79} - 3 q^{80} + 2 q^{81} + 21 q^{82} + 33 q^{83} + 2 q^{84} + 13 q^{85} + 7 q^{86} - 16 q^{87} - 3 q^{88} + 2 q^{89} - 7 q^{90} + 2 q^{91} - 10 q^{92} - 32 q^{93} + 11 q^{95} - 2 q^{96} - q^{97} + 12 q^{98} - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −0.248272 0.764103i −0.143340 0.441155i 0.853454 0.521168i \(-0.174504\pi\)
−0.996794 + 0.0800135i \(0.974504\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0.649985 + 0.472241i 0.265355 + 0.192792i
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 1.90484 1.38395i 0.634946 0.461315i
\(10\) 1.00000 0.316228
\(11\) −3.22166 0.787978i −0.971367 0.237584i
\(12\) −0.803425 −0.231929
\(13\) 2.13834 1.55360i 0.593070 0.430890i −0.250343 0.968157i \(-0.580543\pi\)
0.843412 + 0.537267i \(0.180543\pi\)
\(14\) −0.309017 0.951057i −0.0825883 0.254181i
\(15\) −0.248272 + 0.764103i −0.0641036 + 0.197290i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −1.29806 0.943099i −0.314827 0.228735i 0.419138 0.907923i \(-0.362332\pi\)
−0.733965 + 0.679187i \(0.762332\pi\)
\(18\) −0.727583 + 2.23927i −0.171493 + 0.527801i
\(19\) 0.590037 + 1.81595i 0.135364 + 0.416607i 0.995646 0.0932105i \(-0.0297130\pi\)
−0.860283 + 0.509817i \(0.829713\pi\)
\(20\) −0.809017 + 0.587785i −0.180902 + 0.131433i
\(21\) 0.803425 0.175322
\(22\) 3.06954 1.25616i 0.654428 0.267813i
\(23\) −4.22916 −0.881840 −0.440920 0.897546i \(-0.645348\pi\)
−0.440920 + 0.897546i \(0.645348\pi\)
\(24\) 0.649985 0.472241i 0.132678 0.0963959i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) −0.816775 + 2.51377i −0.160183 + 0.492992i
\(27\) −3.48035 2.52862i −0.669793 0.486633i
\(28\) 0.809017 + 0.587785i 0.152890 + 0.111081i
\(29\) 2.77477 8.53988i 0.515263 1.58582i −0.267541 0.963546i \(-0.586211\pi\)
0.782804 0.622269i \(-0.213789\pi\)
\(30\) −0.248272 0.764103i −0.0453281 0.139505i
\(31\) −2.00312 + 1.45536i −0.359772 + 0.261389i −0.752957 0.658070i \(-0.771373\pi\)
0.393185 + 0.919459i \(0.371373\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.197752 + 2.65731i 0.0344242 + 0.462579i
\(34\) 1.60450 0.275169
\(35\) 0.809017 0.587785i 0.136749 0.0993538i
\(36\) −0.727583 2.23927i −0.121264 0.373212i
\(37\) −1.73320 + 5.33426i −0.284937 + 0.876946i 0.701480 + 0.712689i \(0.252523\pi\)
−0.986418 + 0.164257i \(0.947477\pi\)
\(38\) −1.54474 1.12232i −0.250589 0.182064i
\(39\) −1.71800 1.24820i −0.275100 0.199872i
\(40\) 0.309017 0.951057i 0.0488599 0.150375i
\(41\) −2.99616 9.22125i −0.467922 1.44012i −0.855270 0.518183i \(-0.826609\pi\)
0.387348 0.921934i \(-0.373391\pi\)
\(42\) −0.649985 + 0.472241i −0.100295 + 0.0728684i
\(43\) −4.00169 −0.610252 −0.305126 0.952312i \(-0.598699\pi\)
−0.305126 + 0.952312i \(0.598699\pi\)
\(44\) −1.74496 + 2.82048i −0.263062 + 0.425204i
\(45\) −2.35451 −0.350989
\(46\) 3.42146 2.48584i 0.504467 0.366516i
\(47\) −2.02252 6.22469i −0.295015 0.907964i −0.983216 0.182444i \(-0.941599\pi\)
0.688201 0.725520i \(-0.258401\pi\)
\(48\) −0.248272 + 0.764103i −0.0358350 + 0.110289i
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) −0.809017 0.587785i −0.114412 0.0831254i
\(51\) −0.398351 + 1.22600i −0.0557804 + 0.171674i
\(52\) −0.816775 2.51377i −0.113266 0.348598i
\(53\) −8.12885 + 5.90596i −1.11658 + 0.811246i −0.983688 0.179884i \(-0.942428\pi\)
−0.132896 + 0.991130i \(0.542428\pi\)
\(54\) 4.30195 0.585421
\(55\) 2.14322 + 2.53113i 0.288991 + 0.341298i
\(56\) −1.00000 −0.133631
\(57\) 1.24108 0.901698i 0.164385 0.119433i
\(58\) 2.77477 + 8.53988i 0.364346 + 1.12134i
\(59\) 1.28756 3.96270i 0.167626 0.515900i −0.831594 0.555384i \(-0.812571\pi\)
0.999220 + 0.0394838i \(0.0125714\pi\)
\(60\) 0.649985 + 0.472241i 0.0839126 + 0.0609661i
\(61\) −10.7299 7.79571i −1.37382 0.998139i −0.997428 0.0716784i \(-0.977164\pi\)
−0.376392 0.926460i \(-0.622836\pi\)
\(62\) 0.765125 2.35481i 0.0971710 0.299062i
\(63\) 0.727583 + 2.23927i 0.0916668 + 0.282122i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −2.64314 −0.327841
\(66\) −1.72191 2.03357i −0.211953 0.250316i
\(67\) −10.5029 −1.28314 −0.641570 0.767065i \(-0.721716\pi\)
−0.641570 + 0.767065i \(0.721716\pi\)
\(68\) −1.29806 + 0.943099i −0.157413 + 0.114368i
\(69\) 1.04998 + 3.23151i 0.126403 + 0.389028i
\(70\) −0.309017 + 0.951057i −0.0369346 + 0.113673i
\(71\) −3.70925 2.69493i −0.440207 0.319829i 0.345510 0.938415i \(-0.387706\pi\)
−0.785717 + 0.618586i \(0.787706\pi\)
\(72\) 1.90484 + 1.38395i 0.224487 + 0.163099i
\(73\) 1.14118 3.51218i 0.133565 0.411070i −0.861799 0.507249i \(-0.830662\pi\)
0.995364 + 0.0961797i \(0.0306623\pi\)
\(74\) −1.73320 5.33426i −0.201481 0.620095i
\(75\) 0.649985 0.472241i 0.0750538 0.0545297i
\(76\) 1.90940 0.219023
\(77\) 1.74496 2.82048i 0.198857 0.321424i
\(78\) 2.12356 0.240446
\(79\) 11.2839 8.19826i 1.26954 0.922376i 0.270357 0.962760i \(-0.412858\pi\)
0.999184 + 0.0403841i \(0.0128582\pi\)
\(80\) 0.309017 + 0.951057i 0.0345492 + 0.106331i
\(81\) 1.11470 3.43068i 0.123855 0.381187i
\(82\) 7.84406 + 5.69904i 0.866232 + 0.629354i
\(83\) 10.9705 + 7.97052i 1.20417 + 0.874878i 0.994688 0.102936i \(-0.0328236\pi\)
0.209478 + 0.977813i \(0.432824\pi\)
\(84\) 0.248272 0.764103i 0.0270887 0.0833704i
\(85\) 0.495817 + 1.52597i 0.0537789 + 0.165514i
\(86\) 3.23744 2.35214i 0.349102 0.253637i
\(87\) −7.21424 −0.773448
\(88\) −0.246136 3.30748i −0.0262382 0.352578i
\(89\) −3.41009 −0.361469 −0.180735 0.983532i \(-0.557847\pi\)
−0.180735 + 0.983532i \(0.557847\pi\)
\(90\) 1.90484 1.38395i 0.200787 0.145881i
\(91\) 0.816775 + 2.51377i 0.0856212 + 0.263515i
\(92\) −1.30688 + 4.02217i −0.136252 + 0.419340i
\(93\) 1.60936 + 1.16927i 0.166883 + 0.121248i
\(94\) 5.29503 + 3.84707i 0.546141 + 0.396795i
\(95\) 0.590037 1.81595i 0.0605365 0.186312i
\(96\) −0.248272 0.764103i −0.0253392 0.0779859i
\(97\) 14.1345 10.2693i 1.43515 1.04269i 0.446116 0.894975i \(-0.352807\pi\)
0.989029 0.147719i \(-0.0471930\pi\)
\(98\) 1.00000 0.101015
\(99\) −7.22725 + 2.95763i −0.726366 + 0.297253i
\(100\) 1.00000 0.100000
\(101\) 8.61553 6.25955i 0.857278 0.622849i −0.0698652 0.997556i \(-0.522257\pi\)
0.927143 + 0.374708i \(0.122257\pi\)
\(102\) −0.398351 1.22600i −0.0394427 0.121392i
\(103\) −2.12192 + 6.53058i −0.209079 + 0.643478i 0.790443 + 0.612536i \(0.209851\pi\)
−0.999521 + 0.0309416i \(0.990149\pi\)
\(104\) 2.13834 + 1.55360i 0.209682 + 0.152343i
\(105\) −0.649985 0.472241i −0.0634320 0.0460860i
\(106\) 3.10495 9.55604i 0.301579 0.928165i
\(107\) −0.890804 2.74161i −0.0861172 0.265042i 0.898720 0.438523i \(-0.144498\pi\)
−0.984837 + 0.173482i \(0.944498\pi\)
\(108\) −3.48035 + 2.52862i −0.334897 + 0.243317i
\(109\) −18.4938 −1.77139 −0.885693 0.464271i \(-0.846316\pi\)
−0.885693 + 0.464271i \(0.846316\pi\)
\(110\) −3.22166 0.787978i −0.307173 0.0751307i
\(111\) 4.50623 0.427712
\(112\) 0.809017 0.587785i 0.0764449 0.0555405i
\(113\) 3.69479 + 11.3714i 0.347577 + 1.06973i 0.960190 + 0.279348i \(0.0901184\pi\)
−0.612613 + 0.790383i \(0.709882\pi\)
\(114\) −0.474051 + 1.45898i −0.0443989 + 0.136646i
\(115\) 3.42146 + 2.48584i 0.319053 + 0.231805i
\(116\) −7.26445 5.27793i −0.674487 0.490044i
\(117\) 1.92310 5.91870i 0.177791 0.547184i
\(118\) 1.28756 + 3.96270i 0.118530 + 0.364796i
\(119\) 1.29806 0.943099i 0.118993 0.0864538i
\(120\) −0.803425 −0.0733423
\(121\) 9.75818 + 5.07719i 0.887107 + 0.461563i
\(122\) 13.2629 1.20076
\(123\) −6.30212 + 4.57875i −0.568243 + 0.412852i
\(124\) 0.765125 + 2.35481i 0.0687103 + 0.211469i
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) −1.90484 1.38395i −0.169696 0.123292i
\(127\) 10.8477 + 7.88134i 0.962581 + 0.699356i 0.953749 0.300605i \(-0.0971886\pi\)
0.00883223 + 0.999961i \(0.497189\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 0.993508 + 3.05770i 0.0874735 + 0.269216i
\(130\) 2.13834 1.55360i 0.187545 0.136260i
\(131\) −8.49928 −0.742585 −0.371293 0.928516i \(-0.621085\pi\)
−0.371293 + 0.928516i \(0.621085\pi\)
\(132\) 2.58836 + 0.633081i 0.225288 + 0.0551026i
\(133\) −1.90940 −0.165566
\(134\) 8.49706 6.17348i 0.734035 0.533307i
\(135\) 1.32937 + 4.09139i 0.114414 + 0.352131i
\(136\) 0.495817 1.52597i 0.0425159 0.130851i
\(137\) −8.15058 5.92174i −0.696351 0.505929i 0.182391 0.983226i \(-0.441616\pi\)
−0.878742 + 0.477298i \(0.841616\pi\)
\(138\) −2.74889 1.99718i −0.234001 0.170011i
\(139\) 4.27063 13.1436i 0.362230 1.11483i −0.589467 0.807792i \(-0.700662\pi\)
0.951697 0.307037i \(-0.0993376\pi\)
\(140\) −0.309017 0.951057i −0.0261167 0.0803789i
\(141\) −4.25416 + 3.09083i −0.358265 + 0.260295i
\(142\) 4.58489 0.384755
\(143\) −8.11322 + 3.32019i −0.678461 + 0.277649i
\(144\) −2.35451 −0.196209
\(145\) −7.26445 + 5.27793i −0.603280 + 0.438309i
\(146\) 1.14118 + 3.51218i 0.0944444 + 0.290670i
\(147\) −0.248272 + 0.764103i −0.0204771 + 0.0630221i
\(148\) 4.53759 + 3.29675i 0.372987 + 0.270991i
\(149\) 14.8566 + 10.7940i 1.21710 + 0.884278i 0.995856 0.0909401i \(-0.0289872\pi\)
0.221247 + 0.975218i \(0.428987\pi\)
\(150\) −0.248272 + 0.764103i −0.0202713 + 0.0623887i
\(151\) 6.35704 + 19.5650i 0.517329 + 1.59217i 0.779005 + 0.627018i \(0.215725\pi\)
−0.261676 + 0.965156i \(0.584275\pi\)
\(152\) −1.54474 + 1.12232i −0.125295 + 0.0910319i
\(153\) −3.77780 −0.305417
\(154\) 0.246136 + 3.30748i 0.0198342 + 0.266524i
\(155\) 2.47600 0.198877
\(156\) −1.71800 + 1.24820i −0.137550 + 0.0999359i
\(157\) −1.43658 4.42133i −0.114651 0.352860i 0.877223 0.480083i \(-0.159394\pi\)
−0.991874 + 0.127223i \(0.959394\pi\)
\(158\) −4.31008 + 13.2651i −0.342891 + 1.05531i
\(159\) 6.53093 + 4.74499i 0.517936 + 0.376303i
\(160\) −0.809017 0.587785i −0.0639584 0.0464685i
\(161\) 1.30688 4.02217i 0.102997 0.316991i
\(162\) 1.11470 + 3.43068i 0.0875788 + 0.269540i
\(163\) −4.04023 + 2.93540i −0.316455 + 0.229918i −0.734661 0.678434i \(-0.762659\pi\)
0.418206 + 0.908352i \(0.362659\pi\)
\(164\) −9.69579 −0.757114
\(165\) 1.40194 2.26605i 0.109141 0.176411i
\(166\) −13.5603 −1.05248
\(167\) 1.51162 1.09826i 0.116973 0.0849857i −0.527761 0.849393i \(-0.676968\pi\)
0.644734 + 0.764407i \(0.276968\pi\)
\(168\) 0.248272 + 0.764103i 0.0191546 + 0.0589518i
\(169\) −1.85837 + 5.71949i −0.142952 + 0.439960i
\(170\) −1.29806 0.943099i −0.0995570 0.0723324i
\(171\) 3.63710 + 2.64250i 0.278136 + 0.202077i
\(172\) −1.23659 + 3.80583i −0.0942891 + 0.290192i
\(173\) −3.64020 11.2034i −0.276760 0.851779i −0.988748 0.149588i \(-0.952205\pi\)
0.711989 0.702191i \(-0.247795\pi\)
\(174\) 5.83644 4.24042i 0.442460 0.321466i
\(175\) −1.00000 −0.0755929
\(176\) 2.14322 + 2.53113i 0.161551 + 0.190791i
\(177\) −3.34758 −0.251619
\(178\) 2.75882 2.00440i 0.206782 0.150236i
\(179\) −3.20466 9.86294i −0.239528 0.737191i −0.996488 0.0837303i \(-0.973317\pi\)
0.756961 0.653460i \(-0.226683\pi\)
\(180\) −0.727583 + 2.23927i −0.0542308 + 0.166905i
\(181\) 18.3435 + 13.3273i 1.36346 + 0.990611i 0.998216 + 0.0596985i \(0.0190139\pi\)
0.365242 + 0.930912i \(0.380986\pi\)
\(182\) −2.13834 1.55360i −0.158505 0.115160i
\(183\) −3.29280 + 10.1342i −0.243411 + 0.749141i
\(184\) −1.30688 4.02217i −0.0963446 0.296518i
\(185\) 4.53759 3.29675i 0.333610 0.242382i
\(186\) −1.98928 −0.145861
\(187\) 3.43878 + 4.06119i 0.251469 + 0.296984i
\(188\) −6.54502 −0.477345
\(189\) 3.48035 2.52862i 0.253158 0.183930i
\(190\) 0.590037 + 1.81595i 0.0428058 + 0.131743i
\(191\) −2.62245 + 8.07107i −0.189754 + 0.584002i −0.999998 0.00209040i \(-0.999335\pi\)
0.810244 + 0.586093i \(0.199335\pi\)
\(192\) 0.649985 + 0.472241i 0.0469086 + 0.0340811i
\(193\) 20.3531 + 14.7874i 1.46505 + 1.06442i 0.982011 + 0.188822i \(0.0604668\pi\)
0.483038 + 0.875599i \(0.339533\pi\)
\(194\) −5.39891 + 16.6161i −0.387619 + 1.19297i
\(195\) 0.656217 + 2.01963i 0.0469927 + 0.144629i
\(196\) −0.809017 + 0.587785i −0.0577869 + 0.0419847i
\(197\) −13.2603 −0.944757 −0.472379 0.881396i \(-0.656604\pi\)
−0.472379 + 0.881396i \(0.656604\pi\)
\(198\) 4.10852 6.64085i 0.291980 0.471944i
\(199\) 3.59813 0.255065 0.127532 0.991834i \(-0.459294\pi\)
0.127532 + 0.991834i \(0.459294\pi\)
\(200\) −0.809017 + 0.587785i −0.0572061 + 0.0415627i
\(201\) 2.60759 + 8.02533i 0.183925 + 0.566063i
\(202\) −3.29084 + 10.1282i −0.231543 + 0.712615i
\(203\) 7.26445 + 5.27793i 0.509865 + 0.370438i
\(204\) 1.04290 + 0.757710i 0.0730174 + 0.0530503i
\(205\) −2.99616 + 9.22125i −0.209261 + 0.644040i
\(206\) −2.12192 6.53058i −0.147841 0.455007i
\(207\) −8.05585 + 5.85292i −0.559920 + 0.406806i
\(208\) −2.64314 −0.183269
\(209\) −0.469972 6.31530i −0.0325087 0.436838i
\(210\) 0.803425 0.0554416
\(211\) 8.09486 5.88126i 0.557273 0.404883i −0.273187 0.961961i \(-0.588078\pi\)
0.830460 + 0.557078i \(0.188078\pi\)
\(212\) 3.10495 + 9.55604i 0.213249 + 0.656312i
\(213\) −1.13830 + 3.50332i −0.0779950 + 0.240044i
\(214\) 2.33215 + 1.69441i 0.159423 + 0.115827i
\(215\) 3.23744 + 2.35214i 0.220791 + 0.160414i
\(216\) 1.32937 4.09139i 0.0904525 0.278384i
\(217\) −0.765125 2.35481i −0.0519401 0.159855i
\(218\) 14.9618 10.8704i 1.01334 0.736236i
\(219\) −2.96699 −0.200491
\(220\) 3.06954 1.25616i 0.206948 0.0846901i
\(221\) −4.24090 −0.285274
\(222\) −3.64561 + 2.64869i −0.244678 + 0.177769i
\(223\) 7.73769 + 23.8142i 0.518154 + 1.59471i 0.777469 + 0.628922i \(0.216503\pi\)
−0.259315 + 0.965793i \(0.583497\pi\)
\(224\) −0.309017 + 0.951057i −0.0206471 + 0.0635451i
\(225\) 1.90484 + 1.38395i 0.126989 + 0.0922630i
\(226\) −9.67309 7.02791i −0.643444 0.467490i
\(227\) −0.0565265 + 0.173971i −0.00375180 + 0.0115468i −0.952915 0.303238i \(-0.901932\pi\)
0.949163 + 0.314785i \(0.101932\pi\)
\(228\) −0.474051 1.45898i −0.0313948 0.0966232i
\(229\) 0.108709 0.0789815i 0.00718367 0.00521924i −0.584188 0.811619i \(-0.698587\pi\)
0.591371 + 0.806399i \(0.298587\pi\)
\(230\) −4.22916 −0.278862
\(231\) −2.58836 0.633081i −0.170302 0.0416537i
\(232\) 8.97936 0.589524
\(233\) 2.37050 1.72227i 0.155296 0.112830i −0.507423 0.861697i \(-0.669402\pi\)
0.662720 + 0.748867i \(0.269402\pi\)
\(234\) 1.92310 + 5.91870i 0.125717 + 0.386918i
\(235\) −2.02252 + 6.22469i −0.131935 + 0.406054i
\(236\) −3.37088 2.44909i −0.219425 0.159422i
\(237\) −9.06579 6.58669i −0.588887 0.427851i
\(238\) −0.495817 + 1.52597i −0.0321390 + 0.0989137i
\(239\) 2.55684 + 7.86914i 0.165388 + 0.509012i 0.999065 0.0432406i \(-0.0137682\pi\)
−0.833677 + 0.552253i \(0.813768\pi\)
\(240\) 0.649985 0.472241i 0.0419563 0.0304831i
\(241\) 16.5842 1.06828 0.534142 0.845395i \(-0.320635\pi\)
0.534142 + 0.845395i \(0.320635\pi\)
\(242\) −10.8788 + 1.62818i −0.699318 + 0.104663i
\(243\) −15.8040 −1.01383
\(244\) −10.7299 + 7.79571i −0.686910 + 0.499069i
\(245\) 0.309017 + 0.951057i 0.0197424 + 0.0607608i
\(246\) 2.40719 7.40858i 0.153477 0.472354i
\(247\) 4.08295 + 2.96644i 0.259792 + 0.188750i
\(248\) −2.00312 1.45536i −0.127199 0.0924151i
\(249\) 3.36663 10.3614i 0.213352 0.656629i
\(250\) 0.309017 + 0.951057i 0.0195440 + 0.0601501i
\(251\) 10.9610 7.96366i 0.691855 0.502662i −0.185415 0.982660i \(-0.559363\pi\)
0.877269 + 0.479998i \(0.159363\pi\)
\(252\) 2.35451 0.148320
\(253\) 13.6249 + 3.33248i 0.856590 + 0.209511i
\(254\) −13.4085 −0.841327
\(255\) 1.04290 0.757710i 0.0653088 0.0474496i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 5.69288 17.5209i 0.355112 1.09292i −0.600832 0.799375i \(-0.705164\pi\)
0.955944 0.293548i \(-0.0948360\pi\)
\(258\) −2.60104 1.88976i −0.161934 0.117652i
\(259\) −4.53759 3.29675i −0.281952 0.204850i
\(260\) −0.816775 + 2.51377i −0.0506542 + 0.155898i
\(261\) −6.53323 20.1072i −0.404397 1.24460i
\(262\) 6.87606 4.99575i 0.424804 0.308638i
\(263\) −19.1658 −1.18181 −0.590907 0.806740i \(-0.701230\pi\)
−0.590907 + 0.806740i \(0.701230\pi\)
\(264\) −2.46614 + 1.00923i −0.151781 + 0.0621137i
\(265\) 10.0478 0.617232
\(266\) 1.54474 1.12232i 0.0947139 0.0688137i
\(267\) 0.846630 + 2.60566i 0.0518129 + 0.159464i
\(268\) −3.24559 + 9.98890i −0.198256 + 0.610169i
\(269\) −7.35126 5.34100i −0.448214 0.325647i 0.340676 0.940181i \(-0.389344\pi\)
−0.788890 + 0.614534i \(0.789344\pi\)
\(270\) −3.48035 2.52862i −0.211807 0.153887i
\(271\) 5.92506 18.2355i 0.359922 1.10773i −0.593178 0.805071i \(-0.702127\pi\)
0.953100 0.302655i \(-0.0978729\pi\)
\(272\) 0.495817 + 1.52597i 0.0300633 + 0.0925253i
\(273\) 1.71800 1.24820i 0.103978 0.0755445i
\(274\) 10.0747 0.608633
\(275\) −0.246136 3.30748i −0.0148426 0.199448i
\(276\) 3.39781 0.204524
\(277\) 16.7217 12.1490i 1.00471 0.729964i 0.0416161 0.999134i \(-0.486749\pi\)
0.963093 + 0.269170i \(0.0867493\pi\)
\(278\) 4.27063 + 13.1436i 0.256135 + 0.788303i
\(279\) −1.80149 + 5.54443i −0.107853 + 0.331936i
\(280\) 0.809017 + 0.587785i 0.0483480 + 0.0351269i
\(281\) 1.10959 + 0.806163i 0.0661925 + 0.0480916i 0.620389 0.784294i \(-0.286975\pi\)
−0.554197 + 0.832386i \(0.686975\pi\)
\(282\) 1.62495 5.00107i 0.0967641 0.297809i
\(283\) −1.98856 6.12017i −0.118208 0.363806i 0.874395 0.485215i \(-0.161259\pi\)
−0.992603 + 0.121409i \(0.961259\pi\)
\(284\) −3.70925 + 2.69493i −0.220104 + 0.159915i
\(285\) −1.53406 −0.0908699
\(286\) 4.61217 7.45492i 0.272723 0.440819i
\(287\) 9.69579 0.572324
\(288\) 1.90484 1.38395i 0.112244 0.0815497i
\(289\) −4.45775 13.7196i −0.262221 0.807033i
\(290\) 2.77477 8.53988i 0.162940 0.501479i
\(291\) −11.3560 8.25065i −0.665703 0.483662i
\(292\) −2.98764 2.17065i −0.174838 0.127028i
\(293\) 1.42065 4.37230i 0.0829951 0.255433i −0.900945 0.433934i \(-0.857125\pi\)
0.983940 + 0.178502i \(0.0571250\pi\)
\(294\) −0.248272 0.764103i −0.0144795 0.0445634i
\(295\) −3.37088 + 2.44909i −0.196260 + 0.142591i
\(296\) −5.60877 −0.326003
\(297\) 9.22000 + 10.8888i 0.534999 + 0.631832i
\(298\) −18.3638 −1.06379
\(299\) −9.04339 + 6.57041i −0.522993 + 0.379976i
\(300\) −0.248272 0.764103i −0.0143340 0.0441155i
\(301\) 1.23659 3.80583i 0.0712759 0.219365i
\(302\) −16.6429 12.0918i −0.957694 0.695805i
\(303\) −6.92194 5.02908i −0.397655 0.288913i
\(304\) 0.590037 1.81595i 0.0338409 0.104152i
\(305\) 4.09845 + 12.6137i 0.234676 + 0.722260i
\(306\) 3.05630 2.22053i 0.174717 0.126940i
\(307\) −24.8042 −1.41565 −0.707825 0.706388i \(-0.750323\pi\)
−0.707825 + 0.706388i \(0.750323\pi\)
\(308\) −2.14322 2.53113i −0.122121 0.144225i
\(309\) 5.51685 0.313843
\(310\) −2.00312 + 1.45536i −0.113770 + 0.0826586i
\(311\) 7.97333 + 24.5394i 0.452126 + 1.39150i 0.874476 + 0.485069i \(0.161205\pi\)
−0.422350 + 0.906433i \(0.638795\pi\)
\(312\) 0.656217 2.01963i 0.0371510 0.114339i
\(313\) −13.3553 9.70322i −0.754888 0.548458i 0.142450 0.989802i \(-0.454502\pi\)
−0.897338 + 0.441344i \(0.854502\pi\)
\(314\) 3.76101 + 2.73253i 0.212246 + 0.154206i
\(315\) 0.727583 2.23927i 0.0409947 0.126169i
\(316\) −4.31008 13.2651i −0.242461 0.746218i
\(317\) −1.88569 + 1.37004i −0.105911 + 0.0769489i −0.639480 0.768808i \(-0.720850\pi\)
0.533569 + 0.845756i \(0.320850\pi\)
\(318\) −8.07267 −0.452693
\(319\) −15.6686 + 25.3261i −0.877274 + 1.41799i
\(320\) 1.00000 0.0559017
\(321\) −1.87371 + 1.36133i −0.104580 + 0.0759821i
\(322\) 1.30688 + 4.02217i 0.0728296 + 0.224147i
\(323\) 0.946712 2.91368i 0.0526765 0.162122i
\(324\) −2.91831 2.12028i −0.162128 0.117793i
\(325\) 2.13834 + 1.55360i 0.118614 + 0.0861781i
\(326\) 1.54323 4.74958i 0.0854716 0.263055i
\(327\) 4.59150 + 14.1312i 0.253910 + 0.781456i
\(328\) 7.84406 5.69904i 0.433116 0.314677i
\(329\) 6.54502 0.360839
\(330\) 0.197752 + 2.65731i 0.0108859 + 0.146280i
\(331\) 6.54411 0.359697 0.179848 0.983694i \(-0.442439\pi\)
0.179848 + 0.983694i \(0.442439\pi\)
\(332\) 10.9705 7.97052i 0.602083 0.437439i
\(333\) 4.08084 + 12.5595i 0.223629 + 0.688259i
\(334\) −0.577388 + 1.77702i −0.0315933 + 0.0972341i
\(335\) 8.49706 + 6.17348i 0.464244 + 0.337293i
\(336\) −0.649985 0.472241i −0.0354596 0.0257629i
\(337\) 5.15321 15.8600i 0.280713 0.863947i −0.706938 0.707276i \(-0.749924\pi\)
0.987651 0.156671i \(-0.0500761\pi\)
\(338\) −1.85837 5.71949i −0.101082 0.311099i
\(339\) 7.77160 5.64640i 0.422096 0.306670i
\(340\) 1.60450 0.0870160
\(341\) 7.60017 3.11024i 0.411572 0.168429i
\(342\) −4.49570 −0.243099
\(343\) 0.809017 0.587785i 0.0436828 0.0317374i
\(344\) −1.23659 3.80583i −0.0666725 0.205197i
\(345\) 1.04998 3.23151i 0.0565291 0.173979i
\(346\) 9.53018 + 6.92408i 0.512346 + 0.372241i
\(347\) −23.6893 17.2113i −1.27171 0.923950i −0.272439 0.962173i \(-0.587830\pi\)
−0.999269 + 0.0382231i \(0.987830\pi\)
\(348\) −2.22932 + 6.86115i −0.119504 + 0.367796i
\(349\) −5.18642 15.9622i −0.277623 0.854435i −0.988514 0.151132i \(-0.951708\pi\)
0.710891 0.703302i \(-0.248292\pi\)
\(350\) 0.809017 0.587785i 0.0432438 0.0314184i
\(351\) −11.3706 −0.606920
\(352\) −3.22166 0.787978i −0.171715 0.0419994i
\(353\) 22.9110 1.21943 0.609715 0.792621i \(-0.291284\pi\)
0.609715 + 0.792621i \(0.291284\pi\)
\(354\) 2.70825 1.96766i 0.143942 0.104580i
\(355\) 1.41681 + 4.36049i 0.0751963 + 0.231431i
\(356\) −1.05378 + 3.24319i −0.0558500 + 0.171889i
\(357\) −1.04290 0.757710i −0.0551960 0.0401022i
\(358\) 8.38992 + 6.09563i 0.443421 + 0.322164i
\(359\) 2.58498 7.95576i 0.136430 0.419889i −0.859380 0.511338i \(-0.829150\pi\)
0.995810 + 0.0914492i \(0.0291499\pi\)
\(360\) −0.727583 2.23927i −0.0383470 0.118020i
\(361\) 12.4218 9.02497i 0.653779 0.474998i
\(362\) −22.6738 −1.19171
\(363\) 1.45681 8.71678i 0.0764629 0.457512i
\(364\) 2.64314 0.138538
\(365\) −2.98764 + 2.17065i −0.156380 + 0.113617i
\(366\) −3.29280 10.1342i −0.172117 0.529722i
\(367\) −0.557226 + 1.71496i −0.0290869 + 0.0895204i −0.964546 0.263914i \(-0.914986\pi\)
0.935459 + 0.353435i \(0.114986\pi\)
\(368\) 3.42146 + 2.48584i 0.178356 + 0.129583i
\(369\) −18.4689 13.4184i −0.961453 0.698536i
\(370\) −1.73320 + 5.33426i −0.0901050 + 0.277315i
\(371\) −3.10495 9.55604i −0.161201 0.496125i
\(372\) 1.60936 1.16927i 0.0834415 0.0606238i
\(373\) 9.60451 0.497303 0.248651 0.968593i \(-0.420013\pi\)
0.248651 + 0.968593i \(0.420013\pi\)
\(374\) −5.16914 1.26431i −0.267290 0.0653758i
\(375\) −0.803425 −0.0414887
\(376\) 5.29503 3.84707i 0.273071 0.198397i
\(377\) −7.33411 22.5721i −0.377726 1.16252i
\(378\) −1.32937 + 4.09139i −0.0683756 + 0.210439i
\(379\) 4.80593 + 3.49171i 0.246864 + 0.179357i 0.704336 0.709867i \(-0.251245\pi\)
−0.457472 + 0.889224i \(0.651245\pi\)
\(380\) −1.54474 1.12232i −0.0792433 0.0575737i
\(381\) 3.32897 10.2455i 0.170548 0.524893i
\(382\) −2.62245 8.07107i −0.134176 0.412952i
\(383\) 23.8060 17.2960i 1.21643 0.883786i 0.220629 0.975358i \(-0.429189\pi\)
0.995799 + 0.0915714i \(0.0291890\pi\)
\(384\) −0.803425 −0.0409996
\(385\) −3.06954 + 1.25616i −0.156438 + 0.0640197i
\(386\) −25.1578 −1.28050
\(387\) −7.62257 + 5.53812i −0.387477 + 0.281519i
\(388\) −5.39891 16.6161i −0.274088 0.843557i
\(389\) −5.82858 + 17.9385i −0.295520 + 0.909519i 0.687526 + 0.726160i \(0.258697\pi\)
−0.983046 + 0.183358i \(0.941303\pi\)
\(390\) −1.71800 1.24820i −0.0869943 0.0632050i
\(391\) 5.48972 + 3.98851i 0.277627 + 0.201708i
\(392\) 0.309017 0.951057i 0.0156077 0.0480356i
\(393\) 2.11013 + 6.49432i 0.106442 + 0.327595i
\(394\) 10.7278 7.79421i 0.540459 0.392667i
\(395\) −13.9477 −0.701785
\(396\) 0.579529 + 7.78749i 0.0291225 + 0.391336i
\(397\) 25.4542 1.27751 0.638756 0.769409i \(-0.279449\pi\)
0.638756 + 0.769409i \(0.279449\pi\)
\(398\) −2.91095 + 2.11493i −0.145913 + 0.106012i
\(399\) 0.474051 + 1.45898i 0.0237322 + 0.0730402i
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) −12.1245 8.80895i −0.605467 0.439898i 0.242348 0.970189i \(-0.422082\pi\)
−0.847815 + 0.530292i \(0.822082\pi\)
\(402\) −6.82675 4.95993i −0.340488 0.247379i
\(403\) −2.02233 + 6.22410i −0.100740 + 0.310044i
\(404\) −3.29084 10.1282i −0.163725 0.503895i
\(405\) −2.91831 + 2.12028i −0.145012 + 0.105357i
\(406\) −8.97936 −0.445638
\(407\) 9.78707 15.8194i 0.485127 0.784140i
\(408\) −1.28909 −0.0638196
\(409\) −3.93000 + 2.85531i −0.194326 + 0.141186i −0.680694 0.732568i \(-0.738322\pi\)
0.486368 + 0.873754i \(0.338322\pi\)
\(410\) −2.99616 9.22125i −0.147970 0.455405i
\(411\) −2.50126 + 7.69808i −0.123378 + 0.379718i
\(412\) 5.55525 + 4.03612i 0.273687 + 0.198846i
\(413\) 3.37088 + 2.44909i 0.165870 + 0.120512i
\(414\) 3.07706 9.47022i 0.151229 0.465436i
\(415\) −4.19035 12.8966i −0.205696 0.633068i
\(416\) 2.13834 1.55360i 0.104841 0.0761714i
\(417\) −11.1034 −0.543734
\(418\) 4.09226 + 4.83294i 0.200159 + 0.236387i
\(419\) −1.77493 −0.0867109 −0.0433554 0.999060i \(-0.513805\pi\)
−0.0433554 + 0.999060i \(0.513805\pi\)
\(420\) −0.649985 + 0.472241i −0.0317160 + 0.0230430i
\(421\) −5.22997 16.0962i −0.254893 0.784480i −0.993851 0.110728i \(-0.964682\pi\)
0.738958 0.673752i \(-0.235318\pi\)
\(422\) −3.09196 + 9.51608i −0.150514 + 0.463236i
\(423\) −12.4672 9.05795i −0.606176 0.440413i
\(424\) −8.12885 5.90596i −0.394772 0.286819i
\(425\) 0.495817 1.52597i 0.0240506 0.0740202i
\(426\) −1.13830 3.50332i −0.0551508 0.169737i
\(427\) 10.7299 7.79571i 0.519255 0.377261i
\(428\) −2.88270 −0.139341
\(429\) 4.55125 + 5.37502i 0.219737 + 0.259508i
\(430\) −4.00169 −0.192979
\(431\) −3.36245 + 2.44296i −0.161963 + 0.117673i −0.665815 0.746117i \(-0.731916\pi\)
0.503851 + 0.863790i \(0.331916\pi\)
\(432\) 1.32937 + 4.09139i 0.0639596 + 0.196847i
\(433\) 6.87285 21.1525i 0.330288 1.01652i −0.638709 0.769449i \(-0.720531\pi\)
0.968997 0.247073i \(-0.0794689\pi\)
\(434\) 2.00312 + 1.45536i 0.0961531 + 0.0698593i
\(435\) 5.83644 + 4.24042i 0.279836 + 0.203313i
\(436\) −5.71490 + 17.5887i −0.273694 + 0.842344i
\(437\) −2.49536 7.67992i −0.119369 0.367381i
\(438\) 2.40034 1.74395i 0.114693 0.0833293i
\(439\) −21.6172 −1.03173 −0.515866 0.856669i \(-0.672530\pi\)
−0.515866 + 0.856669i \(0.672530\pi\)
\(440\) −1.74496 + 2.82048i −0.0831877 + 0.134461i
\(441\) −2.35451 −0.112119
\(442\) 3.43096 2.49274i 0.163194 0.118568i
\(443\) −4.00059 12.3126i −0.190074 0.584987i 0.809925 0.586534i \(-0.199508\pi\)
−0.999999 + 0.00154626i \(0.999508\pi\)
\(444\) 1.39250 4.28567i 0.0660851 0.203389i
\(445\) 2.75882 + 2.00440i 0.130781 + 0.0950178i
\(446\) −20.2575 14.7180i −0.959222 0.696916i
\(447\) 4.55922 14.0318i 0.215644 0.663684i
\(448\) −0.309017 0.951057i −0.0145997 0.0449332i
\(449\) −11.2098 + 8.14441i −0.529024 + 0.384359i −0.819993 0.572374i \(-0.806023\pi\)
0.290968 + 0.956733i \(0.406023\pi\)
\(450\) −2.35451 −0.110993
\(451\) 2.38648 + 32.0686i 0.112375 + 1.51005i
\(452\) 11.9566 0.562391
\(453\) 13.3714 9.71486i 0.628241 0.456444i
\(454\) −0.0565265 0.173971i −0.00265292 0.00816485i
\(455\) 0.816775 2.51377i 0.0382910 0.117848i
\(456\) 1.24108 + 0.901698i 0.0581189 + 0.0422259i
\(457\) 8.08043 + 5.87077i 0.377986 + 0.274623i 0.760515 0.649321i \(-0.224947\pi\)
−0.382528 + 0.923944i \(0.624947\pi\)
\(458\) −0.0415230 + 0.127795i −0.00194024 + 0.00597145i
\(459\) 2.13298 + 6.56463i 0.0995588 + 0.306410i
\(460\) 3.42146 2.48584i 0.159526 0.115903i
\(461\) 27.8198 1.29570 0.647850 0.761768i \(-0.275668\pi\)
0.647850 + 0.761768i \(0.275668\pi\)
\(462\) 2.46614 1.00923i 0.114735 0.0469535i
\(463\) −10.2727 −0.477413 −0.238707 0.971092i \(-0.576723\pi\)
−0.238707 + 0.971092i \(0.576723\pi\)
\(464\) −7.26445 + 5.27793i −0.337244 + 0.245022i
\(465\) −0.614721 1.89192i −0.0285070 0.0877355i
\(466\) −0.905450 + 2.78669i −0.0419441 + 0.129091i
\(467\) −7.31181 5.31234i −0.338350 0.245826i 0.405615 0.914044i \(-0.367057\pi\)
−0.743965 + 0.668218i \(0.767057\pi\)
\(468\) −5.03475 3.65796i −0.232731 0.169089i
\(469\) 3.24559 9.98890i 0.149867 0.461244i
\(470\) −2.02252 6.22469i −0.0932920 0.287123i
\(471\) −3.02169 + 2.19538i −0.139232 + 0.101158i
\(472\) 4.16663 0.191785
\(473\) 12.8921 + 3.15324i 0.592779 + 0.144986i
\(474\) 11.2059 0.514706
\(475\) −1.54474 + 1.12232i −0.0708774 + 0.0514954i
\(476\) −0.495817 1.52597i −0.0227257 0.0699426i
\(477\) −7.31062 + 22.4998i −0.334730 + 1.03019i
\(478\) −6.69389 4.86340i −0.306171 0.222447i
\(479\) 31.8995 + 23.1764i 1.45753 + 1.05895i 0.983999 + 0.178176i \(0.0570196\pi\)
0.473528 + 0.880779i \(0.342980\pi\)
\(480\) −0.248272 + 0.764103i −0.0113320 + 0.0348764i
\(481\) 4.58110 + 14.0992i 0.208880 + 0.642867i
\(482\) −13.4169 + 9.74797i −0.611124 + 0.444008i
\(483\) −3.39781 −0.154606
\(484\) 7.84414 7.71164i 0.356552 0.350529i
\(485\) −17.4713 −0.793329
\(486\) 12.7857 9.28935i 0.579971 0.421373i
\(487\) −5.84616 17.9926i −0.264915 0.815323i −0.991713 0.128473i \(-0.958993\pi\)
0.726798 0.686851i \(-0.241007\pi\)
\(488\) 4.09845 12.6137i 0.185528 0.570997i
\(489\) 3.24602 + 2.35837i 0.146790 + 0.106649i
\(490\) −0.809017 0.587785i −0.0365477 0.0265534i
\(491\) −0.469465 + 1.44487i −0.0211867 + 0.0652059i −0.961091 0.276232i \(-0.910914\pi\)
0.939904 + 0.341438i \(0.110914\pi\)
\(492\) 2.40719 + 7.40858i 0.108525 + 0.334005i
\(493\) −11.6558 + 8.46842i −0.524950 + 0.381399i
\(494\) −5.04681 −0.227067
\(495\) 7.58542 + 1.85530i 0.340939 + 0.0833895i
\(496\) 2.47600 0.111176
\(497\) 3.70925 2.69493i 0.166383 0.120884i
\(498\) 3.36663 + 10.3614i 0.150862 + 0.464307i
\(499\) 3.65173 11.2389i 0.163474 0.503120i −0.835447 0.549571i \(-0.814791\pi\)
0.998921 + 0.0464508i \(0.0147911\pi\)
\(500\) −0.809017 0.587785i −0.0361803 0.0262866i
\(501\) −1.21448 0.882368i −0.0542588 0.0394213i
\(502\) −4.18675 + 12.8855i −0.186864 + 0.575107i
\(503\) −4.95943 15.2636i −0.221130 0.680568i −0.998661 0.0517242i \(-0.983528\pi\)
0.777531 0.628844i \(-0.216472\pi\)
\(504\) −1.90484 + 1.38395i −0.0848482 + 0.0616458i
\(505\) −10.6494 −0.473891
\(506\) −12.9816 + 5.31248i −0.577101 + 0.236169i
\(507\) 4.83166 0.214581
\(508\) 10.8477 7.88134i 0.481290 0.349678i
\(509\) 12.4461 + 38.3052i 0.551665 + 1.69785i 0.704593 + 0.709612i \(0.251130\pi\)
−0.152929 + 0.988237i \(0.548870\pi\)
\(510\) −0.398351 + 1.22600i −0.0176393 + 0.0542882i
\(511\) 2.98764 + 2.17065i 0.132165 + 0.0960238i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 2.53831 7.81211i 0.112069 0.344913i
\(514\) 5.69288 + 17.5209i 0.251102 + 0.772813i
\(515\) 5.55525 4.03612i 0.244793 0.177853i
\(516\) 3.21506 0.141535
\(517\) 1.61097 + 21.6475i 0.0708502 + 0.952057i
\(518\) 5.60877 0.246435
\(519\) −7.65679 + 5.56298i −0.336096 + 0.244188i
\(520\) −0.816775 2.51377i −0.0358179 0.110236i
\(521\) −8.49492 + 26.1447i −0.372169 + 1.14542i 0.573200 + 0.819416i \(0.305702\pi\)
−0.945369 + 0.326003i \(0.894298\pi\)
\(522\) 17.1042 + 12.4269i 0.748631 + 0.543912i
\(523\) −16.3716 11.8946i −0.715879 0.520117i 0.169186 0.985584i \(-0.445886\pi\)
−0.885065 + 0.465468i \(0.845886\pi\)
\(524\) −2.62642 + 8.08329i −0.114736 + 0.353120i
\(525\) 0.248272 + 0.764103i 0.0108355 + 0.0333482i
\(526\) 15.5055 11.2654i 0.676070 0.491193i
\(527\) 3.97273 0.173055
\(528\) 1.40194 2.26605i 0.0610118 0.0986170i
\(529\) −5.11424 −0.222358
\(530\) −8.12885 + 5.90596i −0.353095 + 0.256538i
\(531\) −3.03157 9.33022i −0.131559 0.404897i
\(532\) −0.590037 + 1.81595i −0.0255814 + 0.0787313i
\(533\) −20.7329 15.0634i −0.898043 0.652466i
\(534\) −2.21651 1.61039i −0.0959177 0.0696883i
\(535\) −0.890804 + 2.74161i −0.0385128 + 0.118530i
\(536\) −3.24559 9.98890i −0.140188 0.431455i
\(537\) −6.74067 + 4.89738i −0.290881 + 0.211338i
\(538\) 9.08666 0.391754
\(539\) 2.14322 + 2.53113i 0.0923148 + 0.109024i
\(540\) 4.30195 0.185126
\(541\) −21.4595 + 15.5913i −0.922617 + 0.670320i −0.944174 0.329447i \(-0.893138\pi\)
0.0215570 + 0.999768i \(0.493138\pi\)
\(542\) 5.92506 + 18.2355i 0.254503 + 0.783281i
\(543\) 5.62926 17.3251i 0.241575 0.743491i
\(544\) −1.29806 0.943099i −0.0556541 0.0404350i
\(545\) 14.9618 + 10.8704i 0.640894 + 0.465637i
\(546\) −0.656217 + 2.01963i −0.0280835 + 0.0864321i
\(547\) 0.981371 + 3.02035i 0.0419604 + 0.129141i 0.969842 0.243734i \(-0.0783722\pi\)
−0.927882 + 0.372874i \(0.878372\pi\)
\(548\) −8.15058 + 5.92174i −0.348175 + 0.252964i
\(549\) −31.2275 −1.33276
\(550\) 2.14322 + 2.53113i 0.0913870 + 0.107928i
\(551\) 17.1452 0.730409
\(552\) −2.74889 + 1.99718i −0.117000 + 0.0850057i
\(553\) 4.31008 + 13.2651i 0.183283 + 0.564088i
\(554\) −6.38712 + 19.6575i −0.271363 + 0.835168i
\(555\) −3.64561 2.64869i −0.154748 0.112431i
\(556\) −11.1807 8.12322i −0.474165 0.344501i
\(557\) −9.03031 + 27.7924i −0.382626 + 1.17760i 0.555561 + 0.831476i \(0.312503\pi\)
−0.938188 + 0.346127i \(0.887497\pi\)
\(558\) −1.80149 5.54443i −0.0762633 0.234714i
\(559\) −8.55699 + 6.21702i −0.361922 + 0.262952i
\(560\) −1.00000 −0.0422577
\(561\) 2.24941 3.63586i 0.0949703 0.153506i
\(562\) −1.37153 −0.0578543
\(563\) 4.97934 3.61770i 0.209854 0.152468i −0.477894 0.878418i \(-0.658600\pi\)
0.687748 + 0.725950i \(0.258600\pi\)
\(564\) 1.62495 + 5.00107i 0.0684226 + 0.210583i
\(565\) 3.69479 11.3714i 0.155441 0.478398i
\(566\) 5.20613 + 3.78247i 0.218830 + 0.158989i
\(567\) 2.91831 + 2.12028i 0.122558 + 0.0890433i
\(568\) 1.41681 4.36049i 0.0594479 0.182962i
\(569\) −1.10952 3.41474i −0.0465133 0.143153i 0.925103 0.379717i \(-0.123979\pi\)
−0.971616 + 0.236564i \(0.923979\pi\)
\(570\) 1.24108 0.901698i 0.0519831 0.0377680i
\(571\) −28.1128 −1.17649 −0.588243 0.808684i \(-0.700180\pi\)
−0.588243 + 0.808684i \(0.700180\pi\)
\(572\) 0.650572 + 8.74212i 0.0272018 + 0.365527i
\(573\) 6.81821 0.284835
\(574\) −7.84406 + 5.69904i −0.327405 + 0.237873i
\(575\) −1.30688 4.02217i −0.0545007 0.167736i
\(576\) −0.727583 + 2.23927i −0.0303160 + 0.0933029i
\(577\) −23.0876 16.7741i −0.961149 0.698315i −0.00773133 0.999970i \(-0.502461\pi\)
−0.953417 + 0.301655i \(0.902461\pi\)
\(578\) 11.6705 + 8.47915i 0.485431 + 0.352686i
\(579\) 6.24599 19.2232i 0.259574 0.798888i
\(580\) 2.77477 + 8.53988i 0.115216 + 0.354599i
\(581\) −10.9705 + 7.97052i −0.455132 + 0.330673i
\(582\) 14.0368 0.581846
\(583\) 30.8422 12.6216i 1.27735 0.522734i
\(584\) 3.69293 0.152814
\(585\) −5.03475 + 3.65796i −0.208161 + 0.151238i
\(586\) 1.42065 + 4.37230i 0.0586864 + 0.180618i
\(587\) −6.02913 + 18.5557i −0.248849 + 0.765878i 0.746131 + 0.665799i \(0.231909\pi\)
−0.994980 + 0.100078i \(0.968091\pi\)
\(588\) 0.649985 + 0.472241i 0.0268049 + 0.0194749i
\(589\) −3.82477 2.77886i −0.157597 0.114501i
\(590\) 1.28756 3.96270i 0.0530080 0.163142i
\(591\) 3.29216 + 10.1322i 0.135421 + 0.416784i
\(592\) 4.53759 3.29675i 0.186494 0.135496i
\(593\) 4.84298 0.198877 0.0994386 0.995044i \(-0.468295\pi\)
0.0994386 + 0.995044i \(0.468295\pi\)
\(594\) −13.8594 3.38984i −0.568658 0.139087i
\(595\) −1.60450 −0.0657779
\(596\) 14.8566 10.7940i 0.608552 0.442139i
\(597\) −0.893315 2.74934i −0.0365610 0.112523i
\(598\) 3.45427 10.6311i 0.141255 0.434740i
\(599\) 2.97029 + 2.15805i 0.121363 + 0.0881753i 0.646811 0.762650i \(-0.276102\pi\)
−0.525448 + 0.850826i \(0.676102\pi\)
\(600\) 0.649985 + 0.472241i 0.0265355 + 0.0192792i
\(601\) −0.535752 + 1.64887i −0.0218538 + 0.0672590i −0.961389 0.275194i \(-0.911258\pi\)
0.939535 + 0.342453i \(0.111258\pi\)
\(602\) 1.23659 + 3.80583i 0.0503997 + 0.155114i
\(603\) −20.0064 + 14.5355i −0.814724 + 0.591932i
\(604\) 20.5718 0.837055
\(605\) −4.91024 9.84325i −0.199629 0.400185i
\(606\) 8.55598 0.347563
\(607\) 23.0237 16.7277i 0.934504 0.678957i −0.0125871 0.999921i \(-0.504007\pi\)
0.947092 + 0.320964i \(0.104007\pi\)
\(608\) 0.590037 + 1.81595i 0.0239292 + 0.0736464i
\(609\) 2.22932 6.86115i 0.0903367 0.278028i
\(610\) −10.7299 7.79571i −0.434440 0.315639i
\(611\) −13.9955 10.1683i −0.566198 0.411367i
\(612\) −1.16740 + 3.59290i −0.0471895 + 0.145234i
\(613\) −2.49656 7.68362i −0.100835 0.310339i 0.887895 0.460046i \(-0.152167\pi\)
−0.988730 + 0.149707i \(0.952167\pi\)
\(614\) 20.0670 14.5795i 0.809839 0.588382i
\(615\) 7.78984 0.314117
\(616\) 3.22166 + 0.787978i 0.129804 + 0.0317485i
\(617\) 2.53152 0.101915 0.0509577 0.998701i \(-0.483773\pi\)
0.0509577 + 0.998701i \(0.483773\pi\)
\(618\) −4.46323 + 3.24272i −0.179537 + 0.130441i
\(619\) −8.53828 26.2781i −0.343183 1.05621i −0.962550 0.271106i \(-0.912611\pi\)
0.619367 0.785102i \(-0.287389\pi\)
\(620\) 0.765125 2.35481i 0.0307282 0.0945716i
\(621\) 14.7189 + 10.6939i 0.590650 + 0.429133i
\(622\) −20.8745 15.1662i −0.836990 0.608109i
\(623\) 1.05378 3.24319i 0.0422187 0.129936i
\(624\) 0.656217 + 2.01963i 0.0262697 + 0.0808499i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 16.5081 0.659797
\(627\) −4.70886 + 1.92702i −0.188054 + 0.0769577i
\(628\) −4.64886 −0.185510
\(629\) 7.28054 5.28962i 0.290294 0.210911i
\(630\) 0.727583 + 2.23927i 0.0289876 + 0.0892147i
\(631\) −9.98071 + 30.7175i −0.397326 + 1.22284i 0.529809 + 0.848117i \(0.322263\pi\)
−0.927135 + 0.374727i \(0.877737\pi\)
\(632\) 11.2839 + 8.19826i 0.448851 + 0.326109i
\(633\) −6.50362 4.72515i −0.258496 0.187808i
\(634\) 0.720270 2.21676i 0.0286056 0.0880389i
\(635\) −4.14347 12.7523i −0.164428 0.506059i
\(636\) 6.53093 4.74499i 0.258968 0.188151i
\(637\) −2.64314 −0.104725
\(638\) −2.21014 29.6990i −0.0875004 1.17580i
\(639\) −10.7952 −0.427050
\(640\) −0.809017 + 0.587785i −0.0319792 + 0.0232343i
\(641\) 9.70231 + 29.8606i 0.383218 + 1.17942i 0.937765 + 0.347272i \(0.112892\pi\)
−0.554546 + 0.832153i \(0.687108\pi\)
\(642\) 0.715694 2.20268i 0.0282462 0.0869328i
\(643\) −3.33755 2.42487i −0.131620 0.0956275i 0.520027 0.854150i \(-0.325922\pi\)
−0.651647 + 0.758522i \(0.725922\pi\)
\(644\) −3.42146 2.48584i −0.134824 0.0979556i
\(645\) 0.993508 3.05770i 0.0391193 0.120397i
\(646\) 0.946712 + 2.91368i 0.0372479 + 0.114637i
\(647\) −16.9317 + 12.3016i −0.665655 + 0.483626i −0.868568 0.495570i \(-0.834959\pi\)
0.202913 + 0.979197i \(0.434959\pi\)
\(648\) 3.60723 0.141705
\(649\) −7.27060 + 11.7519i −0.285396 + 0.461303i
\(650\) −2.64314 −0.103672
\(651\) −1.60936 + 1.16927i −0.0630758 + 0.0458273i
\(652\) 1.54323 + 4.74958i 0.0604376 + 0.186008i
\(653\) −0.620662 + 1.91020i −0.0242884 + 0.0747519i −0.962466 0.271402i \(-0.912513\pi\)
0.938178 + 0.346154i \(0.112513\pi\)
\(654\) −12.0207 8.73355i −0.470046 0.341509i
\(655\) 6.87606 + 4.99575i 0.268670 + 0.195200i
\(656\) −2.99616 + 9.22125i −0.116981 + 0.360029i
\(657\) −2.68691 8.26946i −0.104826 0.322622i
\(658\) −5.29503 + 3.84707i −0.206422 + 0.149974i
\(659\) 11.7132 0.456282 0.228141 0.973628i \(-0.426735\pi\)
0.228141 + 0.973628i \(0.426735\pi\)
\(660\) −1.72191 2.03357i −0.0670254 0.0791568i
\(661\) 35.8654 1.39500 0.697502 0.716583i \(-0.254295\pi\)
0.697502 + 0.716583i \(0.254295\pi\)
\(662\) −5.29429 + 3.84653i −0.205769 + 0.149500i
\(663\) 1.05290 + 3.24049i 0.0408912 + 0.125850i
\(664\) −4.19035 + 12.8966i −0.162617 + 0.500484i
\(665\) 1.54474 + 1.12232i 0.0599023 + 0.0435216i
\(666\) −10.6838 7.76223i −0.413988 0.300780i
\(667\) −11.7350 + 36.1165i −0.454379 + 1.39844i
\(668\) −0.577388 1.77702i −0.0223398 0.0687549i
\(669\) 16.2754 11.8248i 0.629244 0.457172i
\(670\) −10.5029 −0.405764
\(671\) 28.4252 + 33.5700i 1.09734 + 1.29596i
\(672\) 0.803425 0.0309928
\(673\) 26.9902 19.6095i 1.04039 0.755891i 0.0700317 0.997545i \(-0.477690\pi\)
0.970362 + 0.241654i \(0.0776900\pi\)
\(674\) 5.15321 + 15.8600i 0.198494 + 0.610902i
\(675\) 1.32937 4.09139i 0.0511676 0.157478i
\(676\) 4.86528 + 3.53484i 0.187126 + 0.135955i
\(677\) 10.7383 + 7.80184i 0.412707 + 0.299849i 0.774697 0.632333i \(-0.217903\pi\)
−0.361990 + 0.932182i \(0.617903\pi\)
\(678\) −2.96849 + 9.13607i −0.114004 + 0.350869i
\(679\) 5.39891 + 16.6161i 0.207191 + 0.637669i
\(680\) −1.29806 + 0.943099i −0.0497785 + 0.0361662i
\(681\) 0.146965 0.00563173
\(682\) −4.32052 + 6.98351i −0.165441 + 0.267412i
\(683\) −15.3702 −0.588123 −0.294061 0.955787i \(-0.595007\pi\)
−0.294061 + 0.955787i \(0.595007\pi\)
\(684\) 3.63710 2.64250i 0.139068 0.101039i
\(685\) 3.11324 + 9.58158i 0.118951 + 0.366093i
\(686\) −0.309017 + 0.951057i −0.0117983 + 0.0363115i
\(687\) −0.0873393 0.0634557i −0.00333220 0.00242099i
\(688\) 3.23744 + 2.35214i 0.123426 + 0.0896743i
\(689\) −8.20680 + 25.2579i −0.312654 + 0.962251i
\(690\) 1.04998 + 3.23151i 0.0399721 + 0.123021i
\(691\) −16.8112 + 12.2141i −0.639529 + 0.464645i −0.859688 0.510819i \(-0.829342\pi\)
0.220159 + 0.975464i \(0.429342\pi\)
\(692\) −11.7799 −0.447806
\(693\) −0.579529 7.78749i −0.0220145 0.295822i
\(694\) 29.2816 1.11151
\(695\) −11.1807 + 8.12322i −0.424106 + 0.308131i
\(696\) −2.22932 6.86115i −0.0845023 0.260071i
\(697\) −4.80733 + 14.7955i −0.182091 + 0.560418i
\(698\) 13.5782 + 9.86516i 0.513943 + 0.373402i
\(699\) −1.90452 1.38371i −0.0720355 0.0523368i
\(700\) −0.309017 + 0.951057i −0.0116797 + 0.0359466i
\(701\) −1.29353 3.98108i −0.0488560 0.150363i 0.923652 0.383232i \(-0.125189\pi\)
−0.972508 + 0.232868i \(0.925189\pi\)
\(702\) 9.19904 6.68349i 0.347195 0.252252i
\(703\) −10.7094 −0.403912
\(704\) 3.06954 1.25616i 0.115688 0.0473432i
\(705\) 5.25844 0.198044
\(706\) −18.5354 + 13.4667i −0.697588 + 0.506828i
\(707\) 3.29084 + 10.1282i 0.123765 + 0.380909i
\(708\) −1.03446 + 3.18374i −0.0388773 + 0.119652i
\(709\) −4.43769 3.22417i −0.166661 0.121086i 0.501328 0.865257i \(-0.332845\pi\)
−0.667989 + 0.744171i \(0.732845\pi\)
\(710\) −3.70925 2.69493i −0.139206 0.101139i
\(711\) 10.1481 31.2327i 0.380584 1.17132i
\(712\) −1.05378 3.24319i −0.0394919 0.121544i
\(713\) 8.47153 6.15492i 0.317261 0.230504i
\(714\) 1.28909 0.0482431
\(715\) 8.51529 + 2.08273i 0.318454 + 0.0778898i
\(716\) −10.3705 −0.387564
\(717\) 5.37804 3.90738i 0.200847 0.145924i
\(718\) 2.58498 + 7.95576i 0.0964707 + 0.296906i
\(719\) −5.13007 + 15.7887i −0.191319 + 0.588820i 0.808681 + 0.588248i \(0.200182\pi\)
−1.00000 0.000572186i \(0.999818\pi\)
\(720\) 1.90484 + 1.38395i 0.0709891 + 0.0515766i
\(721\) −5.55525 4.03612i −0.206888 0.150313i
\(722\) −4.74471 + 14.6027i −0.176580 + 0.543456i
\(723\) −4.11740 12.6721i −0.153128 0.471279i
\(724\) 18.3435 13.3273i 0.681729 0.495305i
\(725\) 8.97936 0.333485
\(726\) 3.94501 + 7.90831i 0.146413 + 0.293505i
\(727\) −22.9499 −0.851164 −0.425582 0.904920i \(-0.639931\pi\)
−0.425582 + 0.904920i \(0.639931\pi\)
\(728\) −2.13834 + 1.55360i −0.0792523 + 0.0575802i
\(729\) 0.579598 + 1.78382i 0.0214666 + 0.0660673i
\(730\) 1.14118 3.51218i 0.0422368 0.129992i
\(731\) 5.19445 + 3.77399i 0.192124 + 0.139586i
\(732\) 8.62065 + 6.26327i 0.318629 + 0.231497i
\(733\) −4.92826 + 15.1676i −0.182029 + 0.560229i −0.999885 0.0151952i \(-0.995163\pi\)
0.817855 + 0.575424i \(0.195163\pi\)
\(734\) −0.557226 1.71496i −0.0205676 0.0633005i
\(735\) 0.649985 0.472241i 0.0239750 0.0174189i
\(736\) −4.22916 −0.155889
\(737\) 33.8369 + 8.27609i 1.24640 + 0.304854i
\(738\) 22.8288 0.840340
\(739\) 33.7005 24.4848i 1.23969 0.900688i 0.242114 0.970248i \(-0.422159\pi\)
0.997578 + 0.0695594i \(0.0221594\pi\)
\(740\) −1.73320 5.33426i −0.0637139 0.196091i
\(741\) 1.25298 3.85628i 0.0460294 0.141664i
\(742\) 8.12885 + 5.90596i 0.298420 + 0.216815i
\(743\) 33.9657 + 24.6775i 1.24608 + 0.905330i 0.997988 0.0634061i \(-0.0201963\pi\)
0.248092 + 0.968736i \(0.420196\pi\)
\(744\) −0.614721 + 1.89192i −0.0225368 + 0.0693610i
\(745\) −5.67473 17.4650i −0.207906 0.639869i
\(746\) −7.77021 + 5.64539i −0.284488 + 0.206692i
\(747\) 31.9277 1.16817
\(748\) 4.92506 2.01550i 0.180078 0.0736939i
\(749\) 2.88270 0.105332
\(750\) 0.649985 0.472241i 0.0237341 0.0172438i
\(751\) 9.56603 + 29.4412i 0.349070 + 1.07433i 0.959369 + 0.282155i \(0.0910492\pi\)
−0.610299 + 0.792171i \(0.708951\pi\)
\(752\) −2.02252 + 6.22469i −0.0737538 + 0.226991i
\(753\) −8.80638 6.39821i −0.320922 0.233164i
\(754\) 19.2009 + 13.9503i 0.699257 + 0.508040i
\(755\) 6.35704 19.5650i 0.231356 0.712042i
\(756\) −1.32937 4.09139i −0.0483489 0.148803i
\(757\) −16.1658 + 11.7452i −0.587557 + 0.426885i −0.841441 0.540349i \(-0.818292\pi\)
0.253883 + 0.967235i \(0.418292\pi\)
\(758\) −5.94046 −0.215767
\(759\) −0.836324 11.2382i −0.0303566 0.407920i
\(760\) 1.90940 0.0692612
\(761\) −6.73485 + 4.89316i −0.244138 + 0.177377i −0.703125 0.711066i \(-0.748213\pi\)
0.458987 + 0.888443i \(0.348213\pi\)
\(762\) 3.32897 + 10.2455i 0.120596 + 0.371155i
\(763\) 5.71490 17.5887i 0.206893 0.636753i
\(764\) 6.86567 + 4.98820i 0.248391 + 0.180467i
\(765\) 3.05630 + 2.22053i 0.110501 + 0.0802836i
\(766\) −9.09307 + 27.9856i −0.328546 + 1.01116i
\(767\) −3.40320 10.4740i −0.122882 0.378193i
\(768\) 0.649985 0.472241i 0.0234543 0.0170405i
\(769\) −38.3934 −1.38450 −0.692251 0.721657i \(-0.743381\pi\)
−0.692251 + 0.721657i \(0.743381\pi\)
\(770\) 1.74496 2.82048i 0.0628840 0.101643i
\(771\) −14.8011 −0.533050 </