Properties

Label 770.2.n.e.421.2
Level $770$
Weight $2$
Character 770.421
Analytic conductor $6.148$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
Defining polynomial: \(x^{8} - 3 x^{7} + 5 x^{6} + 2 x^{5} + 19 x^{4} + 28 x^{3} + 100 x^{2} + 88 x + 121\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 421.2
Root \(0.581882 + 1.79085i\) of defining polynomial
Character \(\chi\) \(=\) 770.421
Dual form 770.2.n.e.631.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{2} +(0.941506 + 2.89766i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(2.46489 + 1.79085i) q^{6} +(-0.309017 + 0.951057i) q^{7} +(-0.309017 - 0.951057i) q^{8} +(-5.08293 + 3.69296i) q^{9} +O(q^{10})\) \(q+(0.809017 - 0.587785i) q^{2} +(0.941506 + 2.89766i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(2.46489 + 1.79085i) q^{6} +(-0.309017 + 0.951057i) q^{7} +(-0.309017 - 0.951057i) q^{8} +(-5.08293 + 3.69296i) q^{9} +1.00000 q^{10} +(3.28837 - 0.432036i) q^{11} +3.04678 q^{12} +(0.285629 - 0.207522i) q^{13} +(0.309017 + 0.951057i) q^{14} +(-0.941506 + 2.89766i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(0.655877 + 0.476522i) q^{17} +(-1.94151 + 5.97534i) q^{18} +(0.801129 + 2.46562i) q^{19} +(0.809017 - 0.587785i) q^{20} -3.04678 q^{21} +(2.40640 - 2.28238i) q^{22} -2.00000 q^{23} +(2.46489 - 1.79085i) q^{24} +(0.309017 + 0.951057i) q^{25} +(0.109101 - 0.335777i) q^{26} +(-8.09186 - 5.87908i) q^{27} +(0.809017 + 0.587785i) q^{28} +(-2.95044 + 9.08052i) q^{29} +(0.941506 + 2.89766i) q^{30} +(4.61803 - 3.35520i) q^{31} -1.00000 q^{32} +(4.34790 + 9.12179i) q^{33} +0.810708 q^{34} +(-0.809017 + 0.587785i) q^{35} +(1.94151 + 5.97534i) q^{36} +(1.10121 - 3.38918i) q^{37} +(2.09738 + 1.52384i) q^{38} +(0.870248 + 0.632272i) q^{39} +(0.309017 - 0.951057i) q^{40} +(-2.55165 - 7.85318i) q^{41} +(-2.46489 + 1.79085i) q^{42} -9.49338 q^{43} +(0.605270 - 3.26093i) q^{44} -6.28284 q^{45} +(-1.61803 + 1.17557i) q^{46} +(-2.65993 - 8.18644i) q^{47} +(0.941506 - 2.89766i) q^{48} +(-0.809017 - 0.587785i) q^{49} +(0.809017 + 0.587785i) q^{50} +(-0.763286 + 2.34915i) q^{51} +(-0.109101 - 0.335777i) q^{52} +(2.26498 - 1.64560i) q^{53} -10.0021 q^{54} +(2.91429 + 1.58333i) q^{55} +1.00000 q^{56} +(-6.39025 + 4.64279i) q^{57} +(2.95044 + 9.08052i) q^{58} +(4.08188 - 12.5627i) q^{59} +(2.46489 + 1.79085i) q^{60} +(5.42536 + 3.94175i) q^{61} +(1.76393 - 5.42882i) q^{62} +(-1.94151 - 5.97534i) q^{63} +(-0.809017 + 0.587785i) q^{64} +0.353057 q^{65} +(8.87918 + 4.82405i) q^{66} -1.40749 q^{67} +(0.655877 - 0.476522i) q^{68} +(-1.88301 - 5.79531i) q^{69} +(-0.309017 + 0.951057i) q^{70} +(10.4515 + 7.59345i) q^{71} +(5.08293 + 3.69296i) q^{72} +(-1.59146 + 4.89802i) q^{73} +(-1.10121 - 3.38918i) q^{74} +(-2.46489 + 1.79085i) q^{75} +2.59251 q^{76} +(-0.605270 + 3.26093i) q^{77} +1.07569 q^{78} +(2.95044 - 2.14362i) q^{79} +(-0.309017 - 0.951057i) q^{80} +(3.59251 - 11.0566i) q^{81} +(-6.68031 - 4.85353i) q^{82} +(2.15861 + 1.56832i) q^{83} +(-0.941506 + 2.89766i) q^{84} +(0.250523 + 0.771029i) q^{85} +(-7.68031 + 5.58007i) q^{86} -29.0901 q^{87} +(-1.42705 - 2.99391i) q^{88} +9.63799 q^{89} +(-5.08293 + 3.69296i) q^{90} +(0.109101 + 0.335777i) q^{91} +(-0.618034 + 1.90211i) q^{92} +(14.0701 + 10.2225i) q^{93} +(-6.96380 - 5.05950i) q^{94} +(-0.801129 + 2.46562i) q^{95} +(-0.941506 - 2.89766i) q^{96} +(7.92705 - 5.75934i) q^{97} -1.00000 q^{98} +(-15.1190 + 14.3398i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{2} - q^{3} - 2q^{4} + 2q^{5} + q^{6} + 2q^{7} + 2q^{8} - 13q^{9} + O(q^{10}) \) \( 8q + 2q^{2} - q^{3} - 2q^{4} + 2q^{5} + q^{6} + 2q^{7} + 2q^{8} - 13q^{9} + 8q^{10} + 8q^{11} + 4q^{12} + 8q^{13} - 2q^{14} + q^{15} - 2q^{16} - 9q^{17} - 7q^{18} - 9q^{19} + 2q^{20} - 4q^{21} - 8q^{22} - 16q^{23} + q^{24} - 2q^{25} + 7q^{26} - 22q^{27} + 2q^{28} - q^{30} + 28q^{31} - 8q^{32} - q^{33} + 4q^{34} - 2q^{35} + 7q^{36} + 4q^{37} - 6q^{38} - 13q^{39} - 2q^{40} + 8q^{41} - q^{42} - 14q^{43} - 7q^{44} - 12q^{45} - 4q^{46} - q^{48} - 2q^{49} + 2q^{50} + 4q^{51} - 7q^{52} + 10q^{53} - 28q^{54} + 7q^{55} + 8q^{56} - 17q^{57} + 31q^{59} + q^{60} + 28q^{61} + 32q^{62} - 7q^{63} - 2q^{64} + 2q^{65} + 36q^{66} - 26q^{67} - 9q^{68} + 2q^{69} + 2q^{70} + 34q^{71} + 13q^{72} - 24q^{73} - 4q^{74} - q^{75} + 6q^{76} + 7q^{77} - 2q^{78} + 2q^{80} + 14q^{81} - 3q^{82} - 21q^{83} + q^{84} - 11q^{85} - 11q^{86} - 52q^{87} + 2q^{88} - 14q^{89} - 13q^{90} + 7q^{91} + 4q^{92} + 14q^{93} + 5q^{94} + 9q^{95} + q^{96} + 50q^{97} - 8q^{98} - 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 0.587785i 0.572061 0.415627i
\(3\) 0.941506 + 2.89766i 0.543578 + 1.67296i 0.724346 + 0.689437i \(0.242142\pi\)
−0.180767 + 0.983526i \(0.557858\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 2.46489 + 1.79085i 1.00629 + 0.731111i
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i
\(8\) −0.309017 0.951057i −0.109254 0.336249i
\(9\) −5.08293 + 3.69296i −1.69431 + 1.23099i
\(10\) 1.00000 0.316228
\(11\) 3.28837 0.432036i 0.991479 0.130264i
\(12\) 3.04678 0.879528
\(13\) 0.285629 0.207522i 0.0792192 0.0575561i −0.547471 0.836825i \(-0.684409\pi\)
0.626690 + 0.779269i \(0.284409\pi\)
\(14\) 0.309017 + 0.951057i 0.0825883 + 0.254181i
\(15\) −0.941506 + 2.89766i −0.243096 + 0.748172i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 0.655877 + 0.476522i 0.159073 + 0.115574i 0.664474 0.747311i \(-0.268655\pi\)
−0.505401 + 0.862885i \(0.668655\pi\)
\(18\) −1.94151 + 5.97534i −0.457617 + 1.40840i
\(19\) 0.801129 + 2.46562i 0.183792 + 0.565652i 0.999925 0.0122107i \(-0.00388687\pi\)
−0.816134 + 0.577863i \(0.803887\pi\)
\(20\) 0.809017 0.587785i 0.180902 0.131433i
\(21\) −3.04678 −0.664861
\(22\) 2.40640 2.28238i 0.513046 0.486604i
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 2.46489 1.79085i 0.503144 0.365556i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0.109101 0.335777i 0.0213964 0.0658513i
\(27\) −8.09186 5.87908i −1.55728 1.13143i
\(28\) 0.809017 + 0.587785i 0.152890 + 0.111081i
\(29\) −2.95044 + 9.08052i −0.547883 + 1.68621i 0.166153 + 0.986100i \(0.446866\pi\)
−0.714035 + 0.700110i \(0.753134\pi\)
\(30\) 0.941506 + 2.89766i 0.171895 + 0.529037i
\(31\) 4.61803 3.35520i 0.829423 0.602611i −0.0899727 0.995944i \(-0.528678\pi\)
0.919396 + 0.393333i \(0.128678\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.34790 + 9.12179i 0.756873 + 1.58790i
\(34\) 0.810708 0.139035
\(35\) −0.809017 + 0.587785i −0.136749 + 0.0993538i
\(36\) 1.94151 + 5.97534i 0.323584 + 0.995890i
\(37\) 1.10121 3.38918i 0.181038 0.557178i −0.818819 0.574051i \(-0.805371\pi\)
0.999858 + 0.0168729i \(0.00537106\pi\)
\(38\) 2.09738 + 1.52384i 0.340240 + 0.247199i
\(39\) 0.870248 + 0.632272i 0.139351 + 0.101245i
\(40\) 0.309017 0.951057i 0.0488599 0.150375i
\(41\) −2.55165 7.85318i −0.398501 1.22646i −0.926201 0.377029i \(-0.876946\pi\)
0.527700 0.849431i \(-0.323054\pi\)
\(42\) −2.46489 + 1.79085i −0.380341 + 0.276334i
\(43\) −9.49338 −1.44773 −0.723864 0.689943i \(-0.757636\pi\)
−0.723864 + 0.689943i \(0.757636\pi\)
\(44\) 0.605270 3.26093i 0.0912480 0.491603i
\(45\) −6.28284 −0.936591
\(46\) −1.61803 + 1.17557i −0.238566 + 0.173328i
\(47\) −2.65993 8.18644i −0.387991 1.19411i −0.934287 0.356522i \(-0.883962\pi\)
0.546296 0.837593i \(-0.316038\pi\)
\(48\) 0.941506 2.89766i 0.135895 0.418241i
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 0.809017 + 0.587785i 0.114412 + 0.0831254i
\(51\) −0.763286 + 2.34915i −0.106881 + 0.328947i
\(52\) −0.109101 0.335777i −0.0151295 0.0465639i
\(53\) 2.26498 1.64560i 0.311119 0.226041i −0.421258 0.906941i \(-0.638411\pi\)
0.732376 + 0.680900i \(0.238411\pi\)
\(54\) −10.0021 −1.36111
\(55\) 2.91429 + 1.58333i 0.392962 + 0.213496i
\(56\) 1.00000 0.133631
\(57\) −6.39025 + 4.64279i −0.846410 + 0.614953i
\(58\) 2.95044 + 9.08052i 0.387412 + 1.19233i
\(59\) 4.08188 12.5627i 0.531416 1.63553i −0.219853 0.975533i \(-0.570558\pi\)
0.751269 0.659997i \(-0.229442\pi\)
\(60\) 2.46489 + 1.79085i 0.318216 + 0.231198i
\(61\) 5.42536 + 3.94175i 0.694646 + 0.504690i 0.878184 0.478323i \(-0.158755\pi\)
−0.183538 + 0.983013i \(0.558755\pi\)
\(62\) 1.76393 5.42882i 0.224020 0.689461i
\(63\) −1.94151 5.97534i −0.244607 0.752822i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 0.353057 0.0437913
\(66\) 8.87918 + 4.82405i 1.09295 + 0.593799i
\(67\) −1.40749 −0.171953 −0.0859763 0.996297i \(-0.527401\pi\)
−0.0859763 + 0.996297i \(0.527401\pi\)
\(68\) 0.655877 0.476522i 0.0795367 0.0577868i
\(69\) −1.88301 5.79531i −0.226688 0.697674i
\(70\) −0.309017 + 0.951057i −0.0369346 + 0.113673i
\(71\) 10.4515 + 7.59345i 1.24036 + 0.901176i 0.997623 0.0689148i \(-0.0219537\pi\)
0.242740 + 0.970091i \(0.421954\pi\)
\(72\) 5.08293 + 3.69296i 0.599029 + 0.435220i
\(73\) −1.59146 + 4.89802i −0.186267 + 0.573269i −0.999968 0.00801375i \(-0.997449\pi\)
0.813701 + 0.581283i \(0.197449\pi\)
\(74\) −1.10121 3.38918i −0.128013 0.393985i
\(75\) −2.46489 + 1.79085i −0.284621 + 0.206790i
\(76\) 2.59251 0.297381
\(77\) −0.605270 + 3.26093i −0.0689770 + 0.371617i
\(78\) 1.07569 0.121797
\(79\) 2.95044 2.14362i 0.331950 0.241176i −0.409307 0.912397i \(-0.634230\pi\)
0.741258 + 0.671221i \(0.234230\pi\)
\(80\) −0.309017 0.951057i −0.0345492 0.106331i
\(81\) 3.59251 11.0566i 0.399167 1.22851i
\(82\) −6.68031 4.85353i −0.737717 0.535983i
\(83\) 2.15861 + 1.56832i 0.236939 + 0.172146i 0.699918 0.714223i \(-0.253220\pi\)
−0.462980 + 0.886369i \(0.653220\pi\)
\(84\) −0.941506 + 2.89766i −0.102727 + 0.316160i
\(85\) 0.250523 + 0.771029i 0.0271730 + 0.0836299i
\(86\) −7.68031 + 5.58007i −0.828189 + 0.601715i
\(87\) −29.0901 −3.11878
\(88\) −1.42705 2.99391i −0.152124 0.319152i
\(89\) 9.63799 1.02163 0.510813 0.859692i \(-0.329345\pi\)
0.510813 + 0.859692i \(0.329345\pi\)
\(90\) −5.08293 + 3.69296i −0.535788 + 0.389272i
\(91\) 0.109101 + 0.335777i 0.0114368 + 0.0351990i
\(92\) −0.618034 + 1.90211i −0.0644345 + 0.198309i
\(93\) 14.0701 + 10.2225i 1.45900 + 1.06003i
\(94\) −6.96380 5.05950i −0.718261 0.521847i
\(95\) −0.801129 + 2.46562i −0.0821941 + 0.252967i
\(96\) −0.941506 2.89766i −0.0960920 0.295741i
\(97\) 7.92705 5.75934i 0.804870 0.584772i −0.107469 0.994208i \(-0.534275\pi\)
0.912339 + 0.409436i \(0.134275\pi\)
\(98\) −1.00000 −0.101015
\(99\) −15.1190 + 14.3398i −1.51952 + 1.44121i
\(100\) 1.00000 0.100000
\(101\) 0.731641 0.531568i 0.0728010 0.0528930i −0.550789 0.834644i \(-0.685673\pi\)
0.623590 + 0.781751i \(0.285673\pi\)
\(102\) 0.763286 + 2.34915i 0.0755766 + 0.232601i
\(103\) 3.46726 10.6711i 0.341639 1.05146i −0.621719 0.783240i \(-0.713565\pi\)
0.963358 0.268217i \(-0.0864346\pi\)
\(104\) −0.285629 0.207522i −0.0280082 0.0203492i
\(105\) −2.46489 1.79085i −0.240549 0.174769i
\(106\) 0.865144 2.66264i 0.0840302 0.258618i
\(107\) 2.74906 + 8.46074i 0.265762 + 0.817930i 0.991517 + 0.129977i \(0.0414904\pi\)
−0.725755 + 0.687953i \(0.758510\pi\)
\(108\) −8.09186 + 5.87908i −0.778640 + 0.565715i
\(109\) 18.4763 1.76971 0.884855 0.465866i \(-0.154257\pi\)
0.884855 + 0.465866i \(0.154257\pi\)
\(110\) 3.28837 0.432036i 0.313533 0.0411930i
\(111\) 10.8575 1.03055
\(112\) 0.809017 0.587785i 0.0764449 0.0555405i
\(113\) −3.92150 12.0691i −0.368904 1.13537i −0.947500 0.319755i \(-0.896399\pi\)
0.578597 0.815614i \(-0.303601\pi\)
\(114\) −2.44086 + 7.51219i −0.228607 + 0.703581i
\(115\) −1.61803 1.17557i −0.150882 0.109623i
\(116\) 7.72435 + 5.61207i 0.717188 + 0.521067i
\(117\) −0.685462 + 2.10963i −0.0633710 + 0.195036i
\(118\) −4.08188 12.5627i −0.375768 1.15649i
\(119\) −0.655877 + 0.476522i −0.0601241 + 0.0436827i
\(120\) 3.04678 0.278131
\(121\) 10.6267 2.84138i 0.966063 0.258307i
\(122\) 6.70611 0.607143
\(123\) 20.3534 14.7876i 1.83520 1.33335i
\(124\) −1.76393 5.42882i −0.158406 0.487523i
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) −5.08293 3.69296i −0.452823 0.328995i
\(127\) −13.1369 9.54455i −1.16572 0.846942i −0.175226 0.984528i \(-0.556066\pi\)
−0.990490 + 0.137586i \(0.956066\pi\)
\(128\) −0.309017 + 0.951057i −0.0273135 + 0.0840623i
\(129\) −8.93807 27.5086i −0.786954 2.42199i
\(130\) 0.285629 0.207522i 0.0250513 0.0182008i
\(131\) −8.08882 −0.706723 −0.353362 0.935487i \(-0.614961\pi\)
−0.353362 + 0.935487i \(0.614961\pi\)
\(132\) 10.0189 1.31632i 0.872034 0.114571i
\(133\) −2.59251 −0.224799
\(134\) −1.13869 + 0.827304i −0.0983675 + 0.0714682i
\(135\) −3.09082 9.51255i −0.266015 0.818710i
\(136\) 0.250523 0.771029i 0.0214821 0.0661152i
\(137\) −8.41533 6.11410i −0.718970 0.522363i 0.167085 0.985943i \(-0.446565\pi\)
−0.886055 + 0.463580i \(0.846565\pi\)
\(138\) −4.92979 3.58170i −0.419651 0.304895i
\(139\) 0.233978 0.720109i 0.0198457 0.0610789i −0.940643 0.339397i \(-0.889777\pi\)
0.960489 + 0.278318i \(0.0897770\pi\)
\(140\) 0.309017 + 0.951057i 0.0261167 + 0.0803789i
\(141\) 21.2171 15.4152i 1.78681 1.29819i
\(142\) 12.9187 1.08412
\(143\) 0.849596 0.805809i 0.0710468 0.0673851i
\(144\) 6.28284 0.523570
\(145\) −7.72435 + 5.61207i −0.641472 + 0.466057i
\(146\) 1.59146 + 4.89802i 0.131710 + 0.405363i
\(147\) 0.941506 2.89766i 0.0776541 0.238995i
\(148\) −2.88301 2.09463i −0.236982 0.172178i
\(149\) 7.25672 + 5.27232i 0.594494 + 0.431925i 0.843920 0.536469i \(-0.180242\pi\)
−0.249426 + 0.968394i \(0.580242\pi\)
\(150\) −0.941506 + 2.89766i −0.0768736 + 0.236593i
\(151\) −6.79006 20.8976i −0.552567 1.70063i −0.702284 0.711897i \(-0.747836\pi\)
0.149717 0.988729i \(-0.452164\pi\)
\(152\) 2.09738 1.52384i 0.170120 0.123600i
\(153\) −5.09355 −0.411789
\(154\) 1.42705 + 2.99391i 0.114995 + 0.241257i
\(155\) 5.70820 0.458494
\(156\) 0.870248 0.632272i 0.0696756 0.0506223i
\(157\) 0.0206519 + 0.0635599i 0.00164820 + 0.00507263i 0.951877 0.306480i \(-0.0991511\pi\)
−0.950229 + 0.311552i \(0.899151\pi\)
\(158\) 1.12697 3.46845i 0.0896567 0.275935i
\(159\) 6.90088 + 5.01378i 0.547275 + 0.397619i
\(160\) −0.809017 0.587785i −0.0639584 0.0464685i
\(161\) 0.618034 1.90211i 0.0487079 0.149908i
\(162\) −3.59251 11.0566i −0.282254 0.868688i
\(163\) −18.0161 + 13.0895i −1.41113 + 1.02525i −0.417975 + 0.908458i \(0.637260\pi\)
−0.993157 + 0.116789i \(0.962740\pi\)
\(164\) −8.25732 −0.644788
\(165\) −1.84412 + 9.93532i −0.143565 + 0.773463i
\(166\) 2.66819 0.207092
\(167\) 9.70820 7.05342i 0.751243 0.545810i −0.144969 0.989436i \(-0.546308\pi\)
0.896212 + 0.443626i \(0.146308\pi\)
\(168\) 0.941506 + 2.89766i 0.0726387 + 0.223559i
\(169\) −3.97870 + 12.2452i −0.306054 + 0.941937i
\(170\) 0.655877 + 0.476522i 0.0503034 + 0.0365476i
\(171\) −13.1775 9.57403i −1.00771 0.732145i
\(172\) −2.93362 + 9.02875i −0.223686 + 0.688435i
\(173\) 6.14010 + 18.8973i 0.466823 + 1.43673i 0.856675 + 0.515856i \(0.172526\pi\)
−0.389852 + 0.920878i \(0.627474\pi\)
\(174\) −23.5344 + 17.0987i −1.78414 + 1.29625i
\(175\) −1.00000 −0.0755929
\(176\) −2.91429 1.58333i −0.219673 0.119348i
\(177\) 40.2456 3.02505
\(178\) 7.79730 5.66507i 0.584432 0.424615i
\(179\) −2.66140 8.19094i −0.198922 0.612220i −0.999908 0.0135367i \(-0.995691\pi\)
0.800986 0.598683i \(-0.204309\pi\)
\(180\) −1.94151 + 5.97534i −0.144711 + 0.445376i
\(181\) −9.49338 6.89735i −0.705638 0.512676i 0.176126 0.984368i \(-0.443643\pi\)
−0.881763 + 0.471692i \(0.843643\pi\)
\(182\) 0.285629 + 0.207522i 0.0211722 + 0.0153825i
\(183\) −6.31384 + 19.4320i −0.466733 + 1.43646i
\(184\) 0.618034 + 1.90211i 0.0455621 + 0.140226i
\(185\) 2.88301 2.09463i 0.211963 0.154000i
\(186\) 17.3916 1.27522
\(187\) 2.36264 + 1.28362i 0.172773 + 0.0938674i
\(188\) −8.60773 −0.627783
\(189\) 8.09186 5.87908i 0.588596 0.427640i
\(190\) 0.801129 + 2.46562i 0.0581200 + 0.178875i
\(191\) −2.51868 + 7.75171i −0.182246 + 0.560894i −0.999890 0.0148293i \(-0.995280\pi\)
0.817644 + 0.575723i \(0.195280\pi\)
\(192\) −2.46489 1.79085i −0.177888 0.129243i
\(193\) −7.07230 5.13833i −0.509076 0.369865i 0.303397 0.952864i \(-0.401879\pi\)
−0.812473 + 0.582999i \(0.801879\pi\)
\(194\) 3.02786 9.31881i 0.217388 0.669051i
\(195\) 0.332405 + 1.02304i 0.0238040 + 0.0732612i
\(196\) −0.809017 + 0.587785i −0.0577869 + 0.0419847i
\(197\) 14.4568 1.03001 0.515003 0.857189i \(-0.327791\pi\)
0.515003 + 0.857189i \(0.327791\pi\)
\(198\) −3.80282 + 20.4879i −0.270255 + 1.45601i
\(199\) −11.0446 −0.782930 −0.391465 0.920193i \(-0.628032\pi\)
−0.391465 + 0.920193i \(0.628032\pi\)
\(200\) 0.809017 0.587785i 0.0572061 0.0415627i
\(201\) −1.32516 4.07843i −0.0934698 0.287670i
\(202\) 0.279462 0.860095i 0.0196629 0.0605161i
\(203\) −7.72435 5.61207i −0.542143 0.393890i
\(204\) 1.99831 + 1.45186i 0.139910 + 0.101650i
\(205\) 2.55165 7.85318i 0.178215 0.548490i
\(206\) −3.46726 10.6711i −0.241576 0.743493i
\(207\) 10.1659 7.38593i 0.706576 0.513357i
\(208\) −0.353057 −0.0244801
\(209\) 3.69964 + 7.76174i 0.255909 + 0.536891i
\(210\) −3.04678 −0.210248
\(211\) −19.1820 + 13.9365i −1.32054 + 0.959428i −0.320615 + 0.947210i \(0.603889\pi\)
−0.999925 + 0.0122188i \(0.996111\pi\)
\(212\) −0.865144 2.66264i −0.0594184 0.182871i
\(213\) −12.1631 + 37.4341i −0.833400 + 2.56494i
\(214\) 7.19713 + 5.22902i 0.491986 + 0.357449i
\(215\) −7.68031 5.58007i −0.523793 0.380558i
\(216\) −3.09082 + 9.51255i −0.210303 + 0.647247i
\(217\) 1.76393 + 5.42882i 0.119744 + 0.368533i
\(218\) 14.9477 10.8601i 1.01238 0.735539i
\(219\) −15.6911 −1.06031
\(220\) 2.40640 2.28238i 0.162239 0.153878i
\(221\) 0.286226 0.0192536
\(222\) 8.78389 6.38187i 0.589536 0.428323i
\(223\) −1.72736 5.31628i −0.115673 0.356004i 0.876414 0.481558i \(-0.159929\pi\)
−0.992087 + 0.125554i \(0.959929\pi\)
\(224\) 0.309017 0.951057i 0.0206471 0.0635451i
\(225\) −5.08293 3.69296i −0.338862 0.246198i
\(226\) −10.2666 7.45914i −0.682925 0.496174i
\(227\) −1.95362 + 6.01263i −0.129667 + 0.399073i −0.994722 0.102603i \(-0.967283\pi\)
0.865056 + 0.501676i \(0.167283\pi\)
\(228\) 2.44086 + 7.51219i 0.161650 + 0.497507i
\(229\) 3.14799 2.28715i 0.208025 0.151139i −0.478895 0.877872i \(-0.658962\pi\)
0.686920 + 0.726733i \(0.258962\pi\)
\(230\) −2.00000 −0.131876
\(231\) −10.0189 + 1.31632i −0.659196 + 0.0866072i
\(232\) 9.54782 0.626845
\(233\) −12.2694 + 8.91427i −0.803797 + 0.583993i −0.912026 0.410133i \(-0.865482\pi\)
0.108228 + 0.994126i \(0.465482\pi\)
\(234\) 0.685462 + 2.10963i 0.0448100 + 0.137911i
\(235\) 2.65993 8.18644i 0.173515 0.534024i
\(236\) −10.6865 7.76420i −0.695632 0.505406i
\(237\) 8.98933 + 6.53113i 0.583920 + 0.424242i
\(238\) −0.250523 + 0.771029i −0.0162390 + 0.0499784i
\(239\) −6.51868 20.0624i −0.421659 1.29773i −0.906158 0.422940i \(-0.860998\pi\)
0.484499 0.874792i \(-0.339002\pi\)
\(240\) 2.46489 1.79085i 0.159108 0.115599i
\(241\) −11.9416 −0.769228 −0.384614 0.923078i \(-0.625665\pi\)
−0.384614 + 0.923078i \(0.625665\pi\)
\(242\) 6.92705 8.54494i 0.445288 0.549289i
\(243\) 5.41432 0.347329
\(244\) 5.42536 3.94175i 0.347323 0.252345i
\(245\) −0.309017 0.951057i −0.0197424 0.0607608i
\(246\) 7.77431 23.9269i 0.495672 1.52552i
\(247\) 0.740495 + 0.538001i 0.0471166 + 0.0342322i
\(248\) −4.61803 3.35520i −0.293245 0.213055i
\(249\) −2.51212 + 7.73150i −0.159199 + 0.489964i
\(250\) 0.309017 + 0.951057i 0.0195440 + 0.0601501i
\(251\) −1.71377 + 1.24513i −0.108172 + 0.0785919i −0.640556 0.767911i \(-0.721296\pi\)
0.532384 + 0.846503i \(0.321296\pi\)
\(252\) −6.28284 −0.395782
\(253\) −6.57673 + 0.864071i −0.413475 + 0.0543237i
\(254\) −16.2382 −1.01887
\(255\) −1.99831 + 1.45186i −0.125139 + 0.0909188i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −6.40088 + 19.6999i −0.399276 + 1.22884i 0.526305 + 0.850296i \(0.323577\pi\)
−0.925581 + 0.378549i \(0.876423\pi\)
\(258\) −23.4002 17.0012i −1.45683 1.05845i
\(259\) 2.88301 + 2.09463i 0.179142 + 0.130154i
\(260\) 0.109101 0.335777i 0.00676613 0.0208240i
\(261\) −18.5371 57.0515i −1.14742 3.53140i
\(262\) −6.54399 + 4.75449i −0.404289 + 0.293733i
\(263\) 3.89531 0.240195 0.120097 0.992762i \(-0.461679\pi\)
0.120097 + 0.992762i \(0.461679\pi\)
\(264\) 7.33176 6.95389i 0.451239 0.427982i
\(265\) 2.79967 0.171982
\(266\) −2.09738 + 1.52384i −0.128599 + 0.0934325i
\(267\) 9.07422 + 27.9276i 0.555333 + 1.70914i
\(268\) −0.434939 + 1.33861i −0.0265681 + 0.0817683i
\(269\) 18.5009 + 13.4417i 1.12802 + 0.819556i 0.985406 0.170222i \(-0.0544483\pi\)
0.142617 + 0.989778i \(0.454448\pi\)
\(270\) −8.09186 5.87908i −0.492455 0.357789i
\(271\) 6.36828 19.5995i 0.386845 1.19059i −0.548287 0.836290i \(-0.684720\pi\)
0.935133 0.354298i \(-0.115280\pi\)
\(272\) −0.250523 0.771029i −0.0151902 0.0467505i
\(273\) −0.870248 + 0.632272i −0.0526698 + 0.0382668i
\(274\) −10.4019 −0.628403
\(275\) 1.42705 + 2.99391i 0.0860544 + 0.180540i
\(276\) −6.09355 −0.366789
\(277\) −13.9187 + 10.1126i −0.836296 + 0.607605i −0.921334 0.388773i \(-0.872899\pi\)
0.0850373 + 0.996378i \(0.472899\pi\)
\(278\) −0.233978 0.720109i −0.0140331 0.0431893i
\(279\) −11.0825 + 34.1085i −0.663492 + 2.04202i
\(280\) 0.809017 + 0.587785i 0.0483480 + 0.0351269i
\(281\) −24.6301 17.8948i −1.46931 1.06751i −0.980814 0.194945i \(-0.937547\pi\)
−0.488492 0.872569i \(-0.662453\pi\)
\(282\) 8.10423 24.9422i 0.482600 1.48529i
\(283\) 3.08868 + 9.50597i 0.183603 + 0.565071i 0.999921 0.0125305i \(-0.00398868\pi\)
−0.816319 + 0.577602i \(0.803989\pi\)
\(284\) 10.4515 7.59345i 0.620181 0.450588i
\(285\) −7.89879 −0.467884
\(286\) 0.213695 1.15129i 0.0126360 0.0680774i
\(287\) 8.25732 0.487414
\(288\) 5.08293 3.69296i 0.299514 0.217610i
\(289\) −5.05019 15.5429i −0.297070 0.914287i
\(290\) −2.95044 + 9.08052i −0.173256 + 0.533226i
\(291\) 24.1519 + 17.5474i 1.41581 + 1.02865i
\(292\) 4.16650 + 3.02714i 0.243826 + 0.177150i
\(293\) −1.99871 + 6.15139i −0.116766 + 0.359368i −0.992311 0.123768i \(-0.960502\pi\)
0.875545 + 0.483136i \(0.160502\pi\)
\(294\) −0.941506 2.89766i −0.0549097 0.168995i
\(295\) 10.6865 7.76420i 0.622192 0.452049i
\(296\) −3.56360 −0.207130
\(297\) −29.1490 15.8366i −1.69139 0.918932i
\(298\) 8.96980 0.519607
\(299\) −0.571258 + 0.415043i −0.0330367 + 0.0240026i
\(300\) 0.941506 + 2.89766i 0.0543578 + 0.167296i
\(301\) 2.93362 9.02875i 0.169091 0.520408i
\(302\) −17.7766 12.9155i −1.02293 0.743201i
\(303\) 2.22915 + 1.61957i 0.128061 + 0.0930418i
\(304\) 0.801129 2.46562i 0.0459479 0.141413i
\(305\) 2.07230 + 6.37789i 0.118660 + 0.365197i
\(306\) −4.12077 + 2.99391i −0.235569 + 0.171151i
\(307\) −20.6473 −1.17840 −0.589202 0.807986i \(-0.700558\pi\)
−0.589202 + 0.807986i \(0.700558\pi\)
\(308\) 2.91429 + 1.58333i 0.166057 + 0.0902185i
\(309\) 34.1857 1.94476
\(310\) 4.61803 3.35520i 0.262287 0.190562i
\(311\) 7.24289 + 22.2913i 0.410707 + 1.26403i 0.916035 + 0.401098i \(0.131371\pi\)
−0.505328 + 0.862927i \(0.668629\pi\)
\(312\) 0.332405 1.02304i 0.0188187 0.0579181i
\(313\) −9.63207 6.99811i −0.544437 0.395557i 0.281293 0.959622i \(-0.409237\pi\)
−0.825730 + 0.564065i \(0.809237\pi\)
\(314\) 0.0540673 + 0.0392822i 0.00305119 + 0.00221682i
\(315\) 1.94151 5.97534i 0.109391 0.336672i
\(316\) −1.12697 3.46845i −0.0633969 0.195116i
\(317\) 27.8451 20.2307i 1.56394 1.13627i 0.631255 0.775575i \(-0.282540\pi\)
0.932685 0.360693i \(-0.117460\pi\)
\(318\) 8.52995 0.478336
\(319\) −5.77901 + 31.1348i −0.323563 + 1.74321i
\(320\) −1.00000 −0.0559017
\(321\) −21.9280 + 15.9317i −1.22390 + 0.889218i
\(322\) −0.618034 1.90211i −0.0344417 0.106001i
\(323\) −0.649481 + 1.99890i −0.0361381 + 0.111222i
\(324\) −9.40531 6.83335i −0.522517 0.379631i
\(325\) 0.285629 + 0.207522i 0.0158438 + 0.0115112i
\(326\) −6.88155 + 21.1792i −0.381134 + 1.17301i
\(327\) 17.3956 + 53.5380i 0.961976 + 2.96066i
\(328\) −6.68031 + 4.85353i −0.368858 + 0.267991i
\(329\) 8.60773 0.474559
\(330\) 4.34790 + 9.12179i 0.239344 + 0.502138i
\(331\) −11.6770 −0.641829 −0.320914 0.947108i \(-0.603990\pi\)
−0.320914 + 0.947108i \(0.603990\pi\)
\(332\) 2.15861 1.56832i 0.118469 0.0860730i
\(333\) 6.91874 + 21.2937i 0.379145 + 1.16689i
\(334\) 3.70820 11.4127i 0.202904 0.624474i
\(335\) −1.13869 0.827304i −0.0622131 0.0452004i
\(336\) 2.46489 + 1.79085i 0.134471 + 0.0976989i
\(337\) −3.19330 + 9.82797i −0.173950 + 0.535364i −0.999584 0.0288428i \(-0.990818\pi\)
0.825634 + 0.564206i \(0.190818\pi\)
\(338\) 3.97870 + 12.2452i 0.216413 + 0.666050i
\(339\) 31.2801 22.7263i 1.69890 1.23432i
\(340\) 0.810708 0.0439668
\(341\) 13.7362 13.0283i 0.743858 0.705520i
\(342\) −16.2883 −0.880771
\(343\) 0.809017 0.587785i 0.0436828 0.0317374i
\(344\) 2.93362 + 9.02875i 0.158170 + 0.486797i
\(345\) 1.88301 5.79531i 0.101378 0.312009i
\(346\) 16.0750 + 11.6792i 0.864197 + 0.627876i
\(347\) 14.8214 + 10.7684i 0.795652 + 0.578075i 0.909635 0.415407i \(-0.136361\pi\)
−0.113983 + 0.993483i \(0.536361\pi\)
\(348\) −8.98933 + 27.6663i −0.481878 + 1.48307i
\(349\) −9.24627 28.4571i −0.494942 1.52327i −0.817048 0.576570i \(-0.804391\pi\)
0.322106 0.946704i \(-0.395609\pi\)
\(350\) −0.809017 + 0.587785i −0.0432438 + 0.0314184i
\(351\) −3.53131 −0.188487
\(352\) −3.28837 + 0.432036i −0.175270 + 0.0230276i
\(353\) −8.93024 −0.475309 −0.237654 0.971350i \(-0.576379\pi\)
−0.237654 + 0.971350i \(0.576379\pi\)
\(354\) 32.5594 23.6558i 1.73051 1.25729i
\(355\) 3.99211 + 12.2865i 0.211879 + 0.652097i
\(356\) 2.97830 9.16627i 0.157850 0.485812i
\(357\) −1.99831 1.45186i −0.105762 0.0768404i
\(358\) −6.96763 5.06228i −0.368251 0.267550i
\(359\) −9.20610 + 28.3334i −0.485879 + 1.49538i 0.344824 + 0.938667i \(0.387938\pi\)
−0.830704 + 0.556715i \(0.812062\pi\)
\(360\) 1.94151 + 5.97534i 0.102326 + 0.314928i
\(361\) 9.93385 7.21736i 0.522834 0.379861i
\(362\) −11.7345 −0.616750
\(363\) 18.2384 + 28.1173i 0.957270 + 1.47578i
\(364\) 0.353057 0.0185052
\(365\) −4.16650 + 3.02714i −0.218085 + 0.158448i
\(366\) 6.31384 + 19.4320i 0.330030 + 1.01573i
\(367\) −7.64926 + 23.5420i −0.399288 + 1.22888i 0.526283 + 0.850309i \(0.323585\pi\)
−0.925571 + 0.378573i \(0.876415\pi\)
\(368\) 1.61803 + 1.17557i 0.0843459 + 0.0612808i
\(369\) 41.9713 + 30.4940i 2.18494 + 1.58745i
\(370\) 1.10121 3.38918i 0.0572493 0.176195i
\(371\) 0.865144 + 2.66264i 0.0449161 + 0.138237i
\(372\) 14.0701 10.2225i 0.729501 0.530014i
\(373\) −9.75070 −0.504872 −0.252436 0.967614i \(-0.581232\pi\)
−0.252436 + 0.967614i \(0.581232\pi\)
\(374\) 2.66590 0.350255i 0.137851 0.0181112i
\(375\) −3.04678 −0.157335
\(376\) −6.96380 + 5.05950i −0.359131 + 0.260924i
\(377\) 1.04167 + 3.20594i 0.0536489 + 0.165114i
\(378\) 3.09082 9.51255i 0.158974 0.489273i
\(379\) −17.0261 12.3702i −0.874571 0.635413i 0.0572388 0.998361i \(-0.481770\pi\)
−0.931810 + 0.362948i \(0.881770\pi\)
\(380\) 2.09738 + 1.52384i 0.107593 + 0.0781712i
\(381\) 15.2883 47.0526i 0.783244 2.41058i
\(382\) 2.51868 + 7.75171i 0.128867 + 0.396612i
\(383\) 28.2208 20.5036i 1.44202 1.04769i 0.454398 0.890799i \(-0.349854\pi\)
0.987617 0.156887i \(-0.0501457\pi\)
\(384\) −3.04678 −0.155480
\(385\) −2.40640 + 2.28238i −0.122641 + 0.116321i
\(386\) −8.74185 −0.444948
\(387\) 48.2542 35.0587i 2.45290 1.78213i
\(388\) −3.02786 9.31881i −0.153717 0.473091i
\(389\) −3.92663 + 12.0849i −0.199088 + 0.612730i 0.800816 + 0.598910i \(0.204399\pi\)
−0.999904 + 0.0138204i \(0.995601\pi\)
\(390\) 0.870248 + 0.632272i 0.0440667 + 0.0320163i
\(391\) −1.31175 0.953044i −0.0663382 0.0481975i
\(392\) −0.309017 + 0.951057i −0.0156077 + 0.0480356i
\(393\) −7.61567 23.4386i −0.384160 1.18232i
\(394\) 11.6958 8.49750i 0.589226 0.428098i
\(395\) 3.64694 0.183498
\(396\) 8.96594 + 18.8103i 0.450555 + 0.945253i
\(397\) 3.33036 0.167146 0.0835729 0.996502i \(-0.473367\pi\)
0.0835729 + 0.996502i \(0.473367\pi\)
\(398\) −8.93526 + 6.49185i −0.447884 + 0.325407i
\(399\) −2.44086 7.51219i −0.122196 0.376080i
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) 7.50159 + 5.45023i 0.374612 + 0.272171i 0.759121 0.650950i \(-0.225629\pi\)
−0.384509 + 0.923121i \(0.625629\pi\)
\(402\) −3.46932 2.52061i −0.173034 0.125717i
\(403\) 0.622768 1.91668i 0.0310223 0.0954768i
\(404\) −0.279462 0.860095i −0.0139038 0.0427913i
\(405\) 9.40531 6.83335i 0.467353 0.339552i
\(406\) −9.54782 −0.473850
\(407\) 2.15694 11.6206i 0.106916 0.576013i
\(408\) 2.47005 0.122285
\(409\) 0.282844 0.205498i 0.0139857 0.0101612i −0.580770 0.814067i \(-0.697249\pi\)
0.594756 + 0.803906i \(0.297249\pi\)
\(410\) −2.55165 7.85318i −0.126017 0.387841i
\(411\) 9.79347 30.1412i 0.483076 1.48676i
\(412\) −9.07741 6.59512i −0.447212 0.324918i
\(413\) 10.6865 + 7.76420i 0.525849 + 0.382051i
\(414\) 3.88301 11.9507i 0.190840 0.587344i
\(415\) 0.824517 + 2.53760i 0.0404739 + 0.124566i
\(416\) −0.285629 + 0.207522i −0.0140041 + 0.0101746i
\(417\) 2.30692 0.112970
\(418\) 7.55531 + 4.10479i 0.369542 + 0.200772i
\(419\) 27.9340 1.36466 0.682332 0.731043i \(-0.260966\pi\)
0.682332 + 0.731043i \(0.260966\pi\)
\(420\) −2.46489 + 1.79085i −0.120274 + 0.0873845i
\(421\) 2.49445 + 7.67712i 0.121572 + 0.374160i 0.993261 0.115899i \(-0.0369750\pi\)
−0.871689 + 0.490060i \(0.836975\pi\)
\(422\) −7.32685 + 22.5497i −0.356666 + 1.09770i
\(423\) 43.7525 + 31.7880i 2.12732 + 1.54559i
\(424\) −2.26498 1.64560i −0.109997 0.0799175i
\(425\) −0.250523 + 0.771029i −0.0121521 + 0.0374004i
\(426\) 12.1631 + 37.4341i 0.589303 + 1.81369i
\(427\) −5.42536 + 3.94175i −0.262552 + 0.190755i
\(428\) 8.89614 0.430011
\(429\) 3.13486 + 1.70316i 0.151352 + 0.0822295i
\(430\) −9.49338 −0.457812
\(431\) −16.1875 + 11.7609i −0.779723 + 0.566502i −0.904896 0.425633i \(-0.860051\pi\)
0.125173 + 0.992135i \(0.460051\pi\)
\(432\) 3.09082 + 9.51255i 0.148707 + 0.457673i
\(433\) −11.9728 + 36.8484i −0.575375 + 1.77082i 0.0595231 + 0.998227i \(0.481042\pi\)
−0.634898 + 0.772596i \(0.718958\pi\)
\(434\) 4.61803 + 3.35520i 0.221673 + 0.161055i
\(435\) −23.5344 17.0987i −1.12839 0.819821i
\(436\) 5.70950 17.5720i 0.273435 0.841547i
\(437\) −1.60226 4.93124i −0.0766464 0.235893i
\(438\) −12.6944 + 9.22302i −0.606562 + 0.440693i
\(439\) 5.62560 0.268495 0.134248 0.990948i \(-0.457138\pi\)
0.134248 + 0.990948i \(0.457138\pi\)
\(440\) 0.605270 3.26093i 0.0288551 0.155459i
\(441\) 6.28284 0.299183
\(442\) 0.231562 0.168239i 0.0110143 0.00800233i
\(443\) −4.84425 14.9091i −0.230157 0.708351i −0.997727 0.0673854i \(-0.978534\pi\)
0.767570 0.640965i \(-0.221466\pi\)
\(444\) 3.35515 10.3261i 0.159228 0.490054i
\(445\) 7.79730 + 5.66507i 0.369627 + 0.268550i
\(446\) −4.52229 3.28564i −0.214137 0.155580i
\(447\) −8.44512 + 25.9914i −0.399440 + 1.22935i
\(448\) −0.309017 0.951057i −0.0145997 0.0449332i
\(449\) 21.1179 15.3431i 0.996617 0.724085i 0.0352568 0.999378i \(-0.488775\pi\)
0.961360 + 0.275294i \(0.0887751\pi\)
\(450\) −6.28284 −0.296176
\(451\) −11.7836 24.7217i −0.554869 1.16410i
\(452\) −12.6902 −0.596899
\(453\) 54.1613 39.3505i 2.54472 1.84885i
\(454\) 1.95362 + 6.01263i 0.0916881 + 0.282187i
\(455\) −0.109101 + 0.335777i −0.00511471 + 0.0157415i
\(456\) 6.39025 + 4.64279i 0.299251 + 0.217419i
\(457\) 28.7938 + 20.9199i 1.34692 + 0.978593i 0.999159 + 0.0410094i \(0.0130573\pi\)
0.347759 + 0.937584i \(0.386943\pi\)
\(458\) 1.20242 3.70068i 0.0561856 0.172922i
\(459\) −2.50575 7.71190i −0.116958 0.359961i
\(460\) −1.61803 + 1.17557i −0.0754412 + 0.0548113i
\(461\) −9.66571 −0.450177 −0.225088 0.974338i \(-0.572267\pi\)
−0.225088 + 0.974338i \(0.572267\pi\)
\(462\) −7.33176 + 6.95389i −0.341104 + 0.323524i
\(463\) −29.9726 −1.39295 −0.696473 0.717583i \(-0.745248\pi\)
−0.696473 + 0.717583i \(0.745248\pi\)
\(464\) 7.72435 5.61207i 0.358594 0.260534i
\(465\) 5.37431 + 16.5404i 0.249227 + 0.767043i
\(466\) −4.68651 + 14.4236i −0.217098 + 0.668160i
\(467\) −24.6820 17.9325i −1.14215 0.829818i −0.154729 0.987957i \(-0.549450\pi\)
−0.987417 + 0.158139i \(0.949450\pi\)
\(468\) 1.79456 + 1.30383i 0.0829537 + 0.0602694i
\(469\) 0.434939 1.33861i 0.0200836 0.0618111i
\(470\) −2.65993 8.18644i −0.122694 0.377612i
\(471\) −0.164731 + 0.119684i −0.00759040 + 0.00551475i
\(472\) −13.2092 −0.608005
\(473\) −31.2177 + 4.10148i −1.43539 + 0.188586i
\(474\) 11.1114 0.510364
\(475\) −2.09738 + 1.52384i −0.0962345 + 0.0699185i
\(476\) 0.250523 + 0.771029i 0.0114827 + 0.0353401i
\(477\) −5.43557 + 16.7290i −0.248877 + 0.765966i
\(478\) −17.0661 12.3993i −0.780587 0.567130i
\(479\) 31.3192 + 22.7547i 1.43101 + 1.03969i 0.989827 + 0.142274i \(0.0454415\pi\)
0.441184 + 0.897417i \(0.354559\pi\)
\(480\) 0.941506 2.89766i 0.0429737 0.132259i
\(481\) −0.388791 1.19657i −0.0177273 0.0545591i
\(482\) −9.66098 + 7.01911i −0.440046 + 0.319712i
\(483\) 6.09355 0.277266
\(484\) 0.581513 10.9846i 0.0264324 0.499301i
\(485\) 9.79837 0.444921
\(486\) 4.38027 3.18246i 0.198693 0.144359i
\(487\) 10.4564 + 32.1814i 0.473823 + 1.45828i 0.847539 + 0.530734i \(0.178084\pi\)
−0.373716 + 0.927543i \(0.621916\pi\)
\(488\) 2.07230 6.37789i 0.0938088 0.288714i
\(489\) −54.8911 39.8807i −2.48226 1.80347i
\(490\) −0.809017 0.587785i −0.0365477 0.0265534i
\(491\) −5.74014 + 17.6663i −0.259049 + 0.797271i 0.733956 + 0.679197i \(0.237672\pi\)
−0.993005 + 0.118074i \(0.962328\pi\)
\(492\) −7.77431 23.9269i −0.350493 1.07871i
\(493\) −6.26219 + 4.54975i −0.282035 + 0.204910i
\(494\) 0.915302 0.0411814
\(495\) −20.6603 + 2.71441i −0.928611 + 0.122004i
\(496\) −5.70820 −0.256306
\(497\) −10.4515 + 7.59345i −0.468813 + 0.340613i
\(498\) 2.51212 + 7.73150i 0.112571 + 0.346457i
\(499\) −4.54469 + 13.9871i −0.203448 + 0.626149i 0.796325 + 0.604868i \(0.206774\pi\)
−0.999774 + 0.0212804i \(0.993226\pi\)
\(500\) 0.809017 + 0.587785i 0.0361803 + 0.0262866i
\(501\) 29.5787 + 21.4902i 1.32148 + 0.960111i
\(502\) −0.654603 + 2.01466i −0.0292164 + 0.0899188i
\(503\) 1.70032 + 5.23303i 0.0758133 + 0.233329i 0.981781 0.190018i \(-0.0608548\pi\)
−0.905967 + 0.423348i \(0.860855\pi\)
\(504\) −5.08293 + 3.69296i −0.226412 + 0.164498i
\(505\) 0.904358 0.0402434
\(506\) −4.81280 + 4.56475i −0.213955 + 0.202928i
\(507\) −39.2283 −1.74219
\(508\) −13.1369 + 9.54455i −0.582858 + 0.423471i
\(509\) 7.44870 + 22.9247i 0.330158 + 1.01612i 0.969058 + 0.246832i \(0.0793895\pi\)
−0.638901 + 0.769289i \(0.720610\pi\)
\(510\) −0.763286 + 2.34915i −0.0337989 + 0.104022i
\(511\) −4.16650 3.02714i −0.184315 0.133913i
\(512\) 0.809017 + 0.587785i 0.0357538 + 0.0259767i
\(513\) 8.01296 24.6614i 0.353781 1.08883i
\(514\) 6.40088 + 19.6999i 0.282331 + 0.868924i
\(515\) 9.07741 6.59512i 0.399998 0.290616i
\(516\) −28.9242 −1.27332
\(517\) −12.2837 25.7708i −0.540235 1.13340i
\(518\) 3.56360 0.156575
\(519\) −48.9769 + 35.5838i −2.14985 + 1.56196i
\(520\) −0.109101 0.335777i −0.00478438 0.0147248i
\(521\) 2.69862 8.30551i 0.118229 0.363871i −0.874378 0.485246i \(-0.838730\pi\)
0.992607 + 0.121374i \(0.0387302\pi\)
\(522\) −48.5309 35.2598i −2.12414 1.54328i
\(523\) −35.7970 26.0080i −1.56529 1.13725i −0.931495 0.363754i \(-0.881495\pi\)
−0.633799 0.773498i \(-0.718505\pi\)
\(524\) −2.49958 + 7.69292i −0.109195 + 0.336067i
\(525\) −0.941506 2.89766i −0.0410907 0.126464i
\(526\) 3.15137 2.28960i 0.137406 0.0998315i
\(527\) 4.62769 0.201585
\(528\) 1.84412 9.93532i 0.0802552 0.432379i
\(529\) −19.0000 −0.826087
\(530\) 2.26498 1.64560i 0.0983843 0.0714804i
\(531\) 25.6458 + 78.9298i 1.11293 + 3.42526i
\(532\) −0.801129 + 2.46562i −0.0347333 + 0.106898i
\(533\) −2.35853 1.71357i −0.102159 0.0742230i
\(534\) 23.7566 + 17.2602i 1.02805 + 0.746922i
\(535\) −2.74906 + 8.46074i −0.118852 + 0.365789i
\(536\) 0.434939 + 1.33861i 0.0187865 + 0.0578190i
\(537\) 21.2288 15.4236i 0.916091 0.665579i
\(538\) 22.8684 0.985928
\(539\) −2.91429 1.58333i −0.125527 0.0681988i
\(540\) −10.0021 −0.430421
\(541\) −11.3591 + 8.25289i −0.488367 + 0.354819i −0.804556 0.593877i \(-0.797597\pi\)
0.316189 + 0.948696i \(0.397597\pi\)
\(542\) −6.36828 19.5995i −0.273541 0.841873i
\(543\) 11.0481 34.0025i 0.474118 1.45919i
\(544\) −0.655877 0.476522i −0.0281205 0.0204307i
\(545\) 14.9477 + 10.8601i 0.640287 + 0.465196i
\(546\) −0.332405 + 1.02304i −0.0142256 + 0.0437820i
\(547\) 2.00272 + 6.16373i 0.0856300 + 0.263542i 0.984699 0.174266i \(-0.0557551\pi\)
−0.899069 + 0.437808i \(0.855755\pi\)
\(548\) −8.41533 + 6.11410i −0.359485 + 0.261181i
\(549\) −42.1335 −1.79821
\(550\) 2.91429 + 1.58333i 0.124266 + 0.0675133i
\(551\) −24.7528 −1.05450
\(552\) −4.92979 + 3.58170i −0.209826 + 0.152447i
\(553\) 1.12697 + 3.46845i 0.0479235 + 0.147493i
\(554\) −5.31649 + 16.3625i −0.225876 + 0.695175i
\(555\) 8.78389 + 6.38187i 0.372855 + 0.270895i
\(556\) −0.612562 0.445052i −0.0259784 0.0188744i
\(557\) 3.09355 9.52097i 0.131078 0.403417i −0.863881 0.503695i \(-0.831973\pi\)
0.994959 + 0.100279i \(0.0319734\pi\)
\(558\) 11.0825 + 34.1085i 0.469160 + 1.44393i
\(559\) −2.71159 + 1.97008i −0.114688 + 0.0833256i
\(560\) 1.00000 0.0422577
\(561\) −1.49505 + 8.05464i −0.0631209 + 0.340067i
\(562\) −30.4444 −1.28422
\(563\) −2.68760 + 1.95266i −0.113269 + 0.0822947i −0.642978 0.765885i \(-0.722301\pi\)
0.529709 + 0.848180i \(0.322301\pi\)
\(564\) −8.10423 24.9422i −0.341249 1.05026i
\(565\) 3.92150 12.0691i 0.164979 0.507752i
\(566\) 8.08626 + 5.87501i 0.339891 + 0.246945i
\(567\) 9.40531 + 6.83335i 0.394986 + 0.286974i
\(568\) 3.99211 12.2865i 0.167505 0.515528i
\(569\) 9.42871 + 29.0186i 0.395272 + 1.21652i 0.928749 + 0.370708i \(0.120885\pi\)
−0.533477 + 0.845814i \(0.679115\pi\)
\(570\) −6.39025 + 4.64279i −0.267658 + 0.194465i
\(571\) 2.37904 0.0995597 0.0497799 0.998760i \(-0.484148\pi\)
0.0497799 + 0.998760i \(0.484148\pi\)
\(572\) −0.503830 1.05702i −0.0210662 0.0441963i
\(573\) −24.8332 −1.03742
\(574\) 6.68031 4.85353i 0.278831 0.202582i
\(575\) −0.618034 1.90211i −0.0257738 0.0793236i
\(576\) 1.94151 5.97534i 0.0808961 0.248972i
\(577\) 10.1438 + 7.36989i 0.422291 + 0.306813i 0.778559 0.627571i \(-0.215951\pi\)
−0.356268 + 0.934384i \(0.615951\pi\)
\(578\) −13.2216 9.60603i −0.549945 0.399558i
\(579\) 8.23050 25.3309i 0.342048 1.05271i
\(580\) 2.95044 + 9.08052i 0.122510 + 0.377048i
\(581\) −2.15861 + 1.56832i −0.0895543 + 0.0650650i
\(582\) 29.8535 1.23747
\(583\) 6.73711 6.38989i 0.279023 0.264642i
\(584\) 5.15008 0.213112
\(585\) −1.79456 + 1.30383i −0.0741960 + 0.0539066i
\(586\) 1.99871 + 6.15139i 0.0825659 + 0.254112i
\(587\) 13.4670 41.4471i 0.555841 1.71070i −0.137870 0.990450i \(-0.544026\pi\)
0.693712 0.720253i \(-0.255974\pi\)
\(588\) −2.46489 1.79085i −0.101650 0.0738534i
\(589\) 11.9723 + 8.69837i 0.493309 + 0.358410i
\(590\) 4.08188 12.5627i 0.168048 0.517200i
\(591\) 13.6112 + 41.8909i 0.559889 + 1.72316i
\(592\) −2.88301 + 2.09463i −0.118491 + 0.0860888i
\(593\) 0.0535401 0.00219863 0.00109931 0.999999i \(-0.499650\pi\)
0.00109931 + 0.999999i \(0.499650\pi\)
\(594\) −32.8905 + 4.32126i −1.34951 + 0.177303i
\(595\) −0.810708 −0.0332358
\(596\) 7.25672 5.27232i 0.297247 0.215962i
\(597\) −10.3985 32.0034i −0.425584 1.30981i
\(598\) −0.218201 + 0.671554i −0.00892291 + 0.0274619i
\(599\) −23.4214 17.0166i −0.956971 0.695280i −0.00452535 0.999990i \(-0.501440\pi\)
−0.952445 + 0.304710i \(0.901440\pi\)
\(600\) 2.46489 + 1.79085i 0.100629 + 0.0731111i
\(601\) 9.59206 29.5213i 0.391268 1.20420i −0.540562 0.841304i \(-0.681788\pi\)
0.931830 0.362895i \(-0.118212\pi\)
\(602\) −2.93362 9.02875i −0.119565 0.367984i
\(603\) 7.15419 5.19782i 0.291341 0.211672i
\(604\) −21.9731 −0.894072
\(605\) 10.2673 + 3.94749i 0.417425 + 0.160488i
\(606\) 2.75538 0.111929
\(607\) −6.63627 + 4.82153i −0.269358 + 0.195700i −0.714262 0.699878i \(-0.753238\pi\)
0.444904 + 0.895578i \(0.353238\pi\)
\(608\) −0.801129 2.46562i −0.0324901 0.0999941i
\(609\) 8.98933 27.6663i 0.364266 1.12110i
\(610\) 5.42536 + 3.94175i 0.219666 + 0.159597i
\(611\) −2.45862 1.78629i −0.0994650 0.0722656i
\(612\) −1.57399 + 4.84426i −0.0636249 + 0.195817i
\(613\) −6.67585 20.5462i −0.269635 0.829852i −0.990589 0.136869i \(-0.956296\pi\)
0.720954 0.692983i \(-0.243704\pi\)
\(614\) −16.7040 + 12.1362i −0.674119 + 0.489776i
\(615\) 25.1582 1.01448
\(616\) 3.28837 0.432036i 0.132492 0.0174072i
\(617\) 16.5772 0.667372 0.333686 0.942684i \(-0.391707\pi\)
0.333686 + 0.942684i \(0.391707\pi\)
\(618\) 27.6568 20.0939i 1.11252 0.808294i
\(619\) −5.50460 16.9414i −0.221248 0.680933i −0.998651 0.0519291i \(-0.983463\pi\)
0.777402 0.629004i \(-0.216537\pi\)
\(620\) 1.76393 5.42882i 0.0708412 0.218027i
\(621\) 16.1837 + 11.7582i 0.649430 + 0.471839i
\(622\) 18.9621 + 13.7768i 0.760312 + 0.552399i
\(623\) −2.97830 + 9.16627i −0.119323 + 0.367239i
\(624\) −0.332405 1.02304i −0.0133068 0.0409543i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) −11.9059 −0.475855
\(627\) −19.0076 + 18.0280i −0.759092 + 0.719969i
\(628\) 0.0668308 0.00266684
\(629\) 2.33728 1.69813i 0.0931935 0.0677090i
\(630\) −1.94151 5.97534i −0.0773514 0.238063i
\(631\) 4.17546 12.8508i 0.166223 0.511581i −0.832902 0.553421i \(-0.813322\pi\)
0.999124 + 0.0418403i \(0.0133221\pi\)
\(632\) −2.95044 2.14362i −0.117362 0.0852686i
\(633\) −58.4431 42.4614i −2.32291 1.68769i
\(634\) 10.6359 32.7339i 0.422406 1.30003i
\(635\) −5.01787 15.4434i −0.199128 0.612853i
\(636\) 6.90088 5.01378i 0.273638 0.198809i
\(637\) −0.353057 −0.0139886
\(638\) 13.6252 + 28.5854i 0.539428 + 1.13171i
\(639\) −81.1665 −3.21090
\(640\) −0.809017 + 0.587785i −0.0319792 + 0.0232343i
\(641\) 13.6930 + 42.1429i 0.540843 + 1.66454i 0.730674 + 0.682726i \(0.239206\pi\)
−0.189832 + 0.981817i \(0.560794\pi\)
\(642\) −8.37577 + 25.7780i −0.330565 + 1.01738i
\(643\) −27.7373 20.1524i −1.09385 0.794731i −0.113808 0.993503i \(-0.536305\pi\)
−0.980046 + 0.198772i \(0.936305\pi\)
\(644\) −1.61803 1.17557i −0.0637595 0.0463240i
\(645\) 8.93807 27.5086i 0.351936 1.08315i
\(646\) 0.649481 + 1.99890i 0.0255535 + 0.0786456i
\(647\) −22.5507 + 16.3841i −0.886561 + 0.644124i −0.934979 0.354703i \(-0.884582\pi\)
0.0484181 + 0.998827i \(0.484582\pi\)
\(648\) −11.6256 −0.456697
\(649\) 7.99517 43.0744i 0.313838 1.69082i
\(650\) 0.353057 0.0138480
\(651\) −14.0701 + 10.2225i −0.551451 + 0.400653i
\(652\) 6.88155 + 21.1792i 0.269502 + 0.829443i
\(653\) −8.52365 + 26.2331i −0.333556 + 1.02658i 0.633873 + 0.773437i \(0.281464\pi\)
−0.967429 + 0.253143i \(0.918536\pi\)
\(654\) 45.5422 + 33.0883i 1.78084 + 1.29386i
\(655\) −6.54399 4.75449i −0.255695 0.185773i
\(656\) −2.55165 + 7.85318i −0.0996252 + 0.306615i
\(657\) −9.99891 30.7735i −0.390094 1.20059i
\(658\) 6.96380 5.05950i 0.271477 0.197240i
\(659\) 2.49969 0.0973742 0.0486871 0.998814i \(-0.484496\pi\)
0.0486871 + 0.998814i \(0.484496\pi\)
\(660\) 8.87918 + 4.82405i 0.345622 + 0.187776i
\(661\) 10.1499 0.394785 0.197393 0.980325i \(-0.436753\pi\)
0.197393 + 0.980325i \(0.436753\pi\)
\(662\) −9.44693 + 6.86360i −0.367165 + 0.266761i
\(663\) 0.269483 + 0.829385i 0.0104659 + 0.0322106i
\(664\) 0.824517 2.53760i 0.0319975 0.0984780i
\(665\) −2.09738 1.52384i −0.0813330 0.0590919i
\(666\) 18.1135 + 13.1602i 0.701884 + 0.509949i
\(667\) 5.90088 18.1610i 0.228483 0.703198i
\(668\) −3.70820 11.4127i −0.143475 0.441570i
\(669\) 13.7784 10.0106i 0.532704 0.387032i
\(670\) −1.40749 −0.0543762
\(671\) 19.5435 + 10.6180i 0.754470 + 0.409903i
\(672\) 3.04678 0.117532
\(673\) −29.8922 + 21.7180i −1.15226 + 0.837166i −0.988780 0.149381i \(-0.952272\pi\)
−0.163480 + 0.986547i \(0.552272\pi\)
\(674\) 3.19330 + 9.82797i 0.123001 + 0.378559i
\(675\) 3.09082 9.51255i 0.118966 0.366138i
\(676\) 10.4164 + 7.56794i 0.400630 + 0.291075i
\(677\) −7.14971 5.19457i −0.274786 0.199643i 0.441854 0.897087i \(-0.354321\pi\)
−0.716640 + 0.697443i \(0.754321\pi\)
\(678\) 11.9479 36.7720i 0.458858 1.41222i
\(679\) 3.02786 + 9.31881i 0.116199 + 0.357623i
\(680\) 0.655877 0.476522i 0.0251517 0.0182738i
\(681\) −19.2619 −0.738117
\(682\) 3.45501 18.6140i 0.132299 0.712768i
\(683\) 33.0803 1.26578 0.632892 0.774240i \(-0.281868\pi\)
0.632892 + 0.774240i \(0.281868\pi\)
\(684\) −13.1775 + 9.57403i −0.503855 + 0.366072i
\(685\) −3.21437 9.89282i −0.122815 0.377985i
\(686\) 0.309017 0.951057i 0.0117983 0.0363115i
\(687\) 9.59122 + 6.96843i 0.365928 + 0.265862i
\(688\) 7.68031 + 5.58007i 0.292809 + 0.212738i
\(689\) 0.305445 0.940063i 0.0116365 0.0358136i
\(690\) −1.88301 5.79531i −0.0716850 0.220624i
\(691\) 7.46019 5.42014i 0.283799 0.206192i −0.436774 0.899571i \(-0.643879\pi\)
0.720573 + 0.693379i \(0.243879\pi\)
\(692\) 19.8698 0.755336
\(693\) −8.96594 18.8103i −0.340588 0.714544i
\(694\) 18.3202 0.695426
\(695\) 0.612562 0.445052i 0.0232358 0.0168818i
\(696\) 8.98933 + 27.6663i 0.340740 + 1.04869i
\(697\) 2.06864 6.36663i 0.0783555 0.241153i
\(698\) −24.2071 17.5875i −0.916251 0.665695i
\(699\) −37.3822 27.1598i −1.41393 1.02728i
\(700\) −0.309017 + 0.951057i −0.0116797 + 0.0359466i
\(701\) 8.12619 + 25.0098i 0.306922 + 0.944608i 0.978953 + 0.204085i \(0.0654220\pi\)
−0.672031 + 0.740523i \(0.734578\pi\)
\(702\) −2.85689 + 2.07565i −0.107826 + 0.0783404i
\(703\) 9.23865 0.348442
\(704\) −2.40640 + 2.28238i −0.0906946 + 0.0860203i
\(705\) 26.2258 0.987722
\(706\) −7.22472 + 5.24907i −0.271906 + 0.197551i
\(707\) 0.279462 + 0.860095i 0.0105102 + 0.0323472i
\(708\) 12.4366 38.2759i 0.467395 1.43849i
\(709\) 28.0104 + 20.3508i 1.05195 + 0.764289i 0.972583 0.232557i \(-0.0747091\pi\)
0.0793701 + 0.996845i \(0.474709\pi\)
\(710\) 10.4515 + 7.59345i 0.392237 + 0.284977i
\(711\) −7.08056 + 21.7917i −0.265542 + 0.817254i
\(712\) −2.97830 9.16627i −0.111617 0.343521i
\(713\) −9.23607 + 6.71040i −0.345893 + 0.251306i
\(714\) −2.47005 −0.0924391
\(715\) 1.16098 0.152533i 0.0434182 0.00570442i
\(716\) −8.61246 −0.321863
\(717\) 51.9967 37.7778i 1.94185 1.41084i
\(718\) 9.20610 + 28.3334i 0.343568 + 1.05739i
\(719\) −11.4905 + 35.3640i −0.428522 + 1.31885i 0.471060 + 0.882101i \(0.343872\pi\)
−0.899581 + 0.436753i \(0.856128\pi\)
\(720\) 5.08293 + 3.69296i 0.189430 + 0.137629i
\(721\) 9.07741 + 6.59512i 0.338060 + 0.245615i
\(722\) 3.79439 11.6779i 0.141213 0.434608i
\(723\) −11.2431 34.6027i −0.418136 1.28689i
\(724\) −9.49338 + 6.89735i −0.352819 + 0.256338i
\(725\) −9.54782 −0.354597
\(726\) 31.2821 + 12.0271i 1.16099 + 0.446368i
\(727\) 16.8666 0.625547 0.312773 0.949828i \(-0.398742\pi\)
0.312773 + 0.949828i \(0.398742\pi\)
\(728\) 0.285629 0.207522i 0.0105861 0.00769126i
\(729\) −5.67991 17.4810i −0.210367 0.647443i
\(730\) −1.59146 + 4.89802i −0.0589026 + 0.181284i
\(731\) −6.22649 4.52381i −0.230295 0.167319i
\(732\) 16.5299 + 12.0096i 0.610961 + 0.443889i
\(733\) 10.8449 33.3771i 0.400564 1.23281i −0.523979 0.851731i \(-0.675553\pi\)
0.924543 0.381078i \(-0.124447\pi\)
\(734\) 7.64926 + 23.5420i 0.282339 + 0.868951i
\(735\) 2.46489 1.79085i 0.0909190 0.0660565i
\(736\) 2.00000 0.0737210
\(737\) −4.62835 + 0.608087i −0.170488 + 0.0223992i
\(738\) 51.8794 1.90971
\(739\) 7.27016 5.28208i 0.267437 0.194304i −0.445982 0.895042i \(-0.647146\pi\)
0.713419 + 0.700737i \(0.247146\pi\)
\(740\) −1.10121 3.38918i −0.0404814 0.124589i
\(741\) −0.861762 + 2.65223i −0.0316576 + 0.0974322i
\(742\) 2.26498 + 1.64560i 0.0831499 + 0.0604120i
\(743\) 7.76383 + 5.64076i 0.284827 + 0.206939i 0.721020 0.692914i \(-0.243673\pi\)
−0.436193 + 0.899853i \(0.643673\pi\)
\(744\) 5.37431 16.5404i 0.197032 0.606401i
\(745\) 2.77182 + 8.53079i 0.101552 + 0.312544i
\(746\) −7.88848 + 5.73132i −0.288818 + 0.209838i
\(747\) −16.7638 −0.613357
\(748\) 1.95089 1.85034i 0.0713315 0.0676552i
\(749\) −8.89614 −0.325058
\(750\) −2.46489 + 1.79085i −0.0900052 + 0.0653926i
\(751\) −4.37232 13.4566i −0.159548 0.491039i 0.839045 0.544062i \(-0.183114\pi\)
−0.998593 + 0.0530230i \(0.983114\pi\)
\(752\) −2.65993 + 8.18644i −0.0969978 + 0.298529i
\(753\) −5.22149 3.79363i −0.190282 0.138248i
\(754\) 2.72713 + 1.98138i 0.0993164 + 0.0721576i
\(755\) 6.79006 20.8976i 0.247115 0.760543i
\(756\) −3.09082 9.51255i −0.112412 0.345968i
\(757\) −36.9530 + 26.8479i −1.34308 + 0.975805i −0.343756 + 0.939059i \(0.611699\pi\)
−0.999325 + 0.0367462i \(0.988301\pi\)
\(758\) −21.0454 −0.764403
\(759\) −8.69581 18.2436i −0.315638 0.662200i
\(760\) 2.59251 0.0940401
\(761\) 13.3680 9.71241i 0.484589 0.352075i −0.318510 0.947919i \(-0.603183\pi\)
0.803100 + 0.595845i \(0.203183\pi\)
\(762\) −15.2883 47.0526i −0.553837 1.70454i
\(763\) −5.70950 + 17.5720i −0.206698 + 0.636150i
\(764\) 6.59400 + 4.79082i 0.238563 + 0.173326i
\(765\) −4.12077 2.99391i −0.148987 0.108245i
\(766\) 10.7794 33.1755i 0.389475 1.19868i
\(767\) −1.44114 4.43536i −0.0520364 0.160152i
\(768\) −2.46489 + 1.79085i −0.0889442 + 0.0646217i
\(769\) 26.5929 0.958963 0.479482 0.877552i \(-0.340825\pi\)
0.479482 + 0.877552i \(0.340825\pi\)
\(770\) −0.605270 + 3.26093i −0.0218124 + 0.117516i
\(771\) −63.1099 −2.27285
\(772\) −7.07230 + 5.13833i −0.254538 + 0.184933i
\(773\) 10.9632 + 33.7413i 0.394319 + 1.21359i 0.929491 + 0.368846i \(0.120247\pi\)
−0.535172 + 0.844743i \(0.679753\pi\)
\(774\) 18.4315 56.7262i