Properties

Label 770.2.m.a.43.1
Level $770$
Weight $2$
Character 770.43
Analytic conductor $6.148$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 770.43
Dual form 770.2.m.a.197.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-2.00000 + 1.00000i) q^{5} +(0.707107 + 0.707107i) q^{7} +(0.707107 - 0.707107i) q^{8} -3.00000i q^{9} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-2.00000 + 1.00000i) q^{5} +(0.707107 + 0.707107i) q^{7} +(0.707107 - 0.707107i) q^{8} -3.00000i q^{9} +(2.12132 + 0.707107i) q^{10} +(-3.00000 + 1.41421i) q^{11} +(1.41421 - 1.41421i) q^{13} -1.00000i q^{14} -1.00000 q^{16} +(-2.12132 + 2.12132i) q^{18} +4.24264 q^{19} +(-1.00000 - 2.00000i) q^{20} +(3.12132 + 1.12132i) q^{22} +(-2.00000 - 2.00000i) q^{23} +(3.00000 - 4.00000i) q^{25} -2.00000 q^{26} +(-0.707107 + 0.707107i) q^{28} +7.07107 q^{29} +(0.707107 + 0.707107i) q^{32} +(-2.12132 - 0.707107i) q^{35} +3.00000 q^{36} +(6.00000 - 6.00000i) q^{37} +(-3.00000 - 3.00000i) q^{38} +(-0.707107 + 2.12132i) q^{40} -1.41421i q^{41} +(5.65685 - 5.65685i) q^{43} +(-1.41421 - 3.00000i) q^{44} +(3.00000 + 6.00000i) q^{45} +2.82843i q^{46} +(7.00000 - 7.00000i) q^{47} +1.00000i q^{49} +(-4.94975 + 0.707107i) q^{50} +(1.41421 + 1.41421i) q^{52} +(-4.00000 - 4.00000i) q^{53} +(4.58579 - 5.82843i) q^{55} +1.00000 q^{56} +(-5.00000 - 5.00000i) q^{58} +4.00000i q^{59} -2.82843i q^{61} +(2.12132 - 2.12132i) q^{63} -1.00000i q^{64} +(-1.41421 + 4.24264i) q^{65} +(-3.00000 + 3.00000i) q^{67} +(1.00000 + 2.00000i) q^{70} -8.00000 q^{71} +(-2.12132 - 2.12132i) q^{72} +(4.24264 - 4.24264i) q^{73} -8.48528 q^{74} +4.24264i q^{76} +(-3.12132 - 1.12132i) q^{77} -4.24264 q^{79} +(2.00000 - 1.00000i) q^{80} -9.00000 q^{81} +(-1.00000 + 1.00000i) q^{82} +(8.48528 - 8.48528i) q^{83} -8.00000 q^{86} +(-1.12132 + 3.12132i) q^{88} +14.0000i q^{89} +(2.12132 - 6.36396i) q^{90} +2.00000 q^{91} +(2.00000 - 2.00000i) q^{92} -9.89949 q^{94} +(-8.48528 + 4.24264i) q^{95} +(6.00000 - 6.00000i) q^{97} +(0.707107 - 0.707107i) q^{98} +(4.24264 + 9.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} + O(q^{10}) \) \( 4 q - 8 q^{5} - 12 q^{11} - 4 q^{16} - 4 q^{20} + 4 q^{22} - 8 q^{23} + 12 q^{25} - 8 q^{26} + 12 q^{36} + 24 q^{37} - 12 q^{38} + 12 q^{45} + 28 q^{47} - 16 q^{53} + 24 q^{55} + 4 q^{56} - 20 q^{58} - 12 q^{67} + 4 q^{70} - 32 q^{71} - 4 q^{77} + 8 q^{80} - 36 q^{81} - 4 q^{82} - 32 q^{86} + 4 q^{88} + 8 q^{91} + 8 q^{92} + 24 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) 1.00000i 0.500000i
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 3.00000i 1.00000i
\(10\) 2.12132 + 0.707107i 0.670820 + 0.223607i
\(11\) −3.00000 + 1.41421i −0.904534 + 0.426401i
\(12\) 0 0
\(13\) 1.41421 1.41421i 0.392232 0.392232i −0.483250 0.875482i \(-0.660544\pi\)
0.875482 + 0.483250i \(0.160544\pi\)
\(14\) 1.00000i 0.267261i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) −2.12132 + 2.12132i −0.500000 + 0.500000i
\(19\) 4.24264 0.973329 0.486664 0.873589i \(-0.338214\pi\)
0.486664 + 0.873589i \(0.338214\pi\)
\(20\) −1.00000 2.00000i −0.223607 0.447214i
\(21\) 0 0
\(22\) 3.12132 + 1.12132i 0.665468 + 0.239066i
\(23\) −2.00000 2.00000i −0.417029 0.417029i 0.467150 0.884178i \(-0.345281\pi\)
−0.884178 + 0.467150i \(0.845281\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −0.707107 + 0.707107i −0.133631 + 0.133631i
\(29\) 7.07107 1.31306 0.656532 0.754298i \(-0.272023\pi\)
0.656532 + 0.754298i \(0.272023\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 0 0
\(35\) −2.12132 0.707107i −0.358569 0.119523i
\(36\) 3.00000 0.500000
\(37\) 6.00000 6.00000i 0.986394 0.986394i −0.0135147 0.999909i \(-0.504302\pi\)
0.999909 + 0.0135147i \(0.00430201\pi\)
\(38\) −3.00000 3.00000i −0.486664 0.486664i
\(39\) 0 0
\(40\) −0.707107 + 2.12132i −0.111803 + 0.335410i
\(41\) 1.41421i 0.220863i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 0 0
\(43\) 5.65685 5.65685i 0.862662 0.862662i −0.128984 0.991647i \(-0.541172\pi\)
0.991647 + 0.128984i \(0.0411717\pi\)
\(44\) −1.41421 3.00000i −0.213201 0.452267i
\(45\) 3.00000 + 6.00000i 0.447214 + 0.894427i
\(46\) 2.82843i 0.417029i
\(47\) 7.00000 7.00000i 1.02105 1.02105i 0.0212814 0.999774i \(-0.493225\pi\)
0.999774 0.0212814i \(-0.00677460\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) −4.94975 + 0.707107i −0.700000 + 0.100000i
\(51\) 0 0
\(52\) 1.41421 + 1.41421i 0.196116 + 0.196116i
\(53\) −4.00000 4.00000i −0.549442 0.549442i 0.376837 0.926279i \(-0.377012\pi\)
−0.926279 + 0.376837i \(0.877012\pi\)
\(54\) 0 0
\(55\) 4.58579 5.82843i 0.618347 0.785905i
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −5.00000 5.00000i −0.656532 0.656532i
\(59\) 4.00000i 0.520756i 0.965507 + 0.260378i \(0.0838471\pi\)
−0.965507 + 0.260378i \(0.916153\pi\)
\(60\) 0 0
\(61\) 2.82843i 0.362143i −0.983470 0.181071i \(-0.942043\pi\)
0.983470 0.181071i \(-0.0579565\pi\)
\(62\) 0 0
\(63\) 2.12132 2.12132i 0.267261 0.267261i
\(64\) 1.00000i 0.125000i
\(65\) −1.41421 + 4.24264i −0.175412 + 0.526235i
\(66\) 0 0
\(67\) −3.00000 + 3.00000i −0.366508 + 0.366508i −0.866202 0.499694i \(-0.833446\pi\)
0.499694 + 0.866202i \(0.333446\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.00000 + 2.00000i 0.119523 + 0.239046i
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −2.12132 2.12132i −0.250000 0.250000i
\(73\) 4.24264 4.24264i 0.496564 0.496564i −0.413803 0.910366i \(-0.635800\pi\)
0.910366 + 0.413803i \(0.135800\pi\)
\(74\) −8.48528 −0.986394
\(75\) 0 0
\(76\) 4.24264i 0.486664i
\(77\) −3.12132 1.12132i −0.355707 0.127786i
\(78\) 0 0
\(79\) −4.24264 −0.477334 −0.238667 0.971101i \(-0.576710\pi\)
−0.238667 + 0.971101i \(0.576710\pi\)
\(80\) 2.00000 1.00000i 0.223607 0.111803i
\(81\) −9.00000 −1.00000
\(82\) −1.00000 + 1.00000i −0.110432 + 0.110432i
\(83\) 8.48528 8.48528i 0.931381 0.931381i −0.0664117 0.997792i \(-0.521155\pi\)
0.997792 + 0.0664117i \(0.0211551\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) 0 0
\(88\) −1.12132 + 3.12132i −0.119533 + 0.332734i
\(89\) 14.0000i 1.48400i 0.670402 + 0.741999i \(0.266122\pi\)
−0.670402 + 0.741999i \(0.733878\pi\)
\(90\) 2.12132 6.36396i 0.223607 0.670820i
\(91\) 2.00000 0.209657
\(92\) 2.00000 2.00000i 0.208514 0.208514i
\(93\) 0 0
\(94\) −9.89949 −1.02105
\(95\) −8.48528 + 4.24264i −0.870572 + 0.435286i
\(96\) 0 0
\(97\) 6.00000 6.00000i 0.609208 0.609208i −0.333531 0.942739i \(-0.608240\pi\)
0.942739 + 0.333531i \(0.108240\pi\)
\(98\) 0.707107 0.707107i 0.0714286 0.0714286i
\(99\) 4.24264 + 9.00000i 0.426401 + 0.904534i
\(100\) 4.00000 + 3.00000i 0.400000 + 0.300000i
\(101\) 5.65685i 0.562878i −0.959579 0.281439i \(-0.909188\pi\)
0.959579 0.281439i \(-0.0908117\pi\)
\(102\) 0 0
\(103\) 3.00000 + 3.00000i 0.295599 + 0.295599i 0.839287 0.543688i \(-0.182973\pi\)
−0.543688 + 0.839287i \(0.682973\pi\)
\(104\) 2.00000i 0.196116i
\(105\) 0 0
\(106\) 5.65685i 0.549442i
\(107\) 8.48528 + 8.48528i 0.820303 + 0.820303i 0.986151 0.165848i \(-0.0530362\pi\)
−0.165848 + 0.986151i \(0.553036\pi\)
\(108\) 0 0
\(109\) −12.7279 −1.21911 −0.609557 0.792742i \(-0.708653\pi\)
−0.609557 + 0.792742i \(0.708653\pi\)
\(110\) −7.36396 + 0.878680i −0.702126 + 0.0837788i
\(111\) 0 0
\(112\) −0.707107 0.707107i −0.0668153 0.0668153i
\(113\) −9.00000 9.00000i −0.846649 0.846649i 0.143065 0.989713i \(-0.454304\pi\)
−0.989713 + 0.143065i \(0.954304\pi\)
\(114\) 0 0
\(115\) 6.00000 + 2.00000i 0.559503 + 0.186501i
\(116\) 7.07107i 0.656532i
\(117\) −4.24264 4.24264i −0.392232 0.392232i
\(118\) 2.82843 2.82843i 0.260378 0.260378i
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 8.48528i 0.636364 0.771389i
\(122\) −2.00000 + 2.00000i −0.181071 + 0.181071i
\(123\) 0 0
\(124\) 0 0
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) −3.00000 −0.267261
\(127\) −9.89949 9.89949i −0.878438 0.878438i 0.114935 0.993373i \(-0.463334\pi\)
−0.993373 + 0.114935i \(0.963334\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 4.00000 2.00000i 0.350823 0.175412i
\(131\) 1.41421i 0.123560i 0.998090 + 0.0617802i \(0.0196778\pi\)
−0.998090 + 0.0617802i \(0.980322\pi\)
\(132\) 0 0
\(133\) 3.00000 + 3.00000i 0.260133 + 0.260133i
\(134\) 4.24264 0.366508
\(135\) 0 0
\(136\) 0 0
\(137\) 5.00000 5.00000i 0.427179 0.427179i −0.460487 0.887666i \(-0.652325\pi\)
0.887666 + 0.460487i \(0.152325\pi\)
\(138\) 0 0
\(139\) 18.3848 1.55938 0.779688 0.626168i \(-0.215378\pi\)
0.779688 + 0.626168i \(0.215378\pi\)
\(140\) 0.707107 2.12132i 0.0597614 0.179284i
\(141\) 0 0
\(142\) 5.65685 + 5.65685i 0.474713 + 0.474713i
\(143\) −2.24264 + 6.24264i −0.187539 + 0.522036i
\(144\) 3.00000i 0.250000i
\(145\) −14.1421 + 7.07107i −1.17444 + 0.587220i
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) 6.00000 + 6.00000i 0.493197 + 0.493197i
\(149\) 9.89949 0.810998 0.405499 0.914095i \(-0.367098\pi\)
0.405499 + 0.914095i \(0.367098\pi\)
\(150\) 0 0
\(151\) 18.3848i 1.49613i 0.663624 + 0.748066i \(0.269017\pi\)
−0.663624 + 0.748066i \(0.730983\pi\)
\(152\) 3.00000 3.00000i 0.243332 0.243332i
\(153\) 0 0
\(154\) 1.41421 + 3.00000i 0.113961 + 0.241747i
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000 7.00000i 0.558661 0.558661i −0.370265 0.928926i \(-0.620733\pi\)
0.928926 + 0.370265i \(0.120733\pi\)
\(158\) 3.00000 + 3.00000i 0.238667 + 0.238667i
\(159\) 0 0
\(160\) −2.12132 0.707107i −0.167705 0.0559017i
\(161\) 2.82843i 0.222911i
\(162\) 6.36396 + 6.36396i 0.500000 + 0.500000i
\(163\) 1.00000 + 1.00000i 0.0783260 + 0.0783260i 0.745184 0.666858i \(-0.232361\pi\)
−0.666858 + 0.745184i \(0.732361\pi\)
\(164\) 1.41421 0.110432
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 9.00000i 0.692308i
\(170\) 0 0
\(171\) 12.7279i 0.973329i
\(172\) 5.65685 + 5.65685i 0.431331 + 0.431331i
\(173\) −12.7279 + 12.7279i −0.967686 + 0.967686i −0.999494 0.0318080i \(-0.989873\pi\)
0.0318080 + 0.999494i \(0.489873\pi\)
\(174\) 0 0
\(175\) 4.94975 0.707107i 0.374166 0.0534522i
\(176\) 3.00000 1.41421i 0.226134 0.106600i
\(177\) 0 0
\(178\) 9.89949 9.89949i 0.741999 0.741999i
\(179\) 2.00000i 0.149487i −0.997203 0.0747435i \(-0.976186\pi\)
0.997203 0.0747435i \(-0.0238138\pi\)
\(180\) −6.00000 + 3.00000i −0.447214 + 0.223607i
\(181\) 4.00000 0.297318 0.148659 0.988889i \(-0.452504\pi\)
0.148659 + 0.988889i \(0.452504\pi\)
\(182\) −1.41421 1.41421i −0.104828 0.104828i
\(183\) 0 0
\(184\) −2.82843 −0.208514
\(185\) −6.00000 + 18.0000i −0.441129 + 1.32339i
\(186\) 0 0
\(187\) 0 0
\(188\) 7.00000 + 7.00000i 0.510527 + 0.510527i
\(189\) 0 0
\(190\) 9.00000 + 3.00000i 0.652929 + 0.217643i
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0 0
\(193\) −7.07107 + 7.07107i −0.508987 + 0.508987i −0.914215 0.405229i \(-0.867192\pi\)
0.405229 + 0.914215i \(0.367192\pi\)
\(194\) −8.48528 −0.609208
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) −8.48528 8.48528i −0.604551 0.604551i 0.336966 0.941517i \(-0.390599\pi\)
−0.941517 + 0.336966i \(0.890599\pi\)
\(198\) 3.36396 9.36396i 0.239066 0.665468i
\(199\) 22.0000i 1.55954i 0.626067 + 0.779769i \(0.284664\pi\)
−0.626067 + 0.779769i \(0.715336\pi\)
\(200\) −0.707107 4.94975i −0.0500000 0.350000i
\(201\) 0 0
\(202\) −4.00000 + 4.00000i −0.281439 + 0.281439i
\(203\) 5.00000 + 5.00000i 0.350931 + 0.350931i
\(204\) 0 0
\(205\) 1.41421 + 2.82843i 0.0987730 + 0.197546i
\(206\) 4.24264i 0.295599i
\(207\) −6.00000 + 6.00000i −0.417029 + 0.417029i
\(208\) −1.41421 + 1.41421i −0.0980581 + 0.0980581i
\(209\) −12.7279 + 6.00000i −0.880409 + 0.415029i
\(210\) 0 0
\(211\) 5.65685i 0.389434i 0.980859 + 0.194717i \(0.0623788\pi\)
−0.980859 + 0.194717i \(0.937621\pi\)
\(212\) 4.00000 4.00000i 0.274721 0.274721i
\(213\) 0 0
\(214\) 12.0000i 0.820303i
\(215\) −5.65685 + 16.9706i −0.385794 + 1.15738i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.00000 + 9.00000i 0.609557 + 0.609557i
\(219\) 0 0
\(220\) 5.82843 + 4.58579i 0.392952 + 0.309174i
\(221\) 0 0
\(222\) 0 0
\(223\) −7.00000 7.00000i −0.468755 0.468755i 0.432756 0.901511i \(-0.357541\pi\)
−0.901511 + 0.432756i \(0.857541\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) −12.0000 9.00000i −0.800000 0.600000i
\(226\) 12.7279i 0.846649i
\(227\) 15.5563 + 15.5563i 1.03251 + 1.03251i 0.999453 + 0.0330577i \(0.0105245\pi\)
0.0330577 + 0.999453i \(0.489475\pi\)
\(228\) 0 0
\(229\) 2.00000i 0.132164i −0.997814 0.0660819i \(-0.978950\pi\)
0.997814 0.0660819i \(-0.0210498\pi\)
\(230\) −2.82843 5.65685i −0.186501 0.373002i
\(231\) 0 0
\(232\) 5.00000 5.00000i 0.328266 0.328266i
\(233\) −18.3848 + 18.3848i −1.20443 + 1.20443i −0.231621 + 0.972806i \(0.574403\pi\)
−0.972806 + 0.231621i \(0.925597\pi\)
\(234\) 6.00000i 0.392232i
\(235\) −7.00000 + 21.0000i −0.456630 + 1.36989i
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) 0 0
\(239\) 12.7279 0.823301 0.411650 0.911342i \(-0.364952\pi\)
0.411650 + 0.911342i \(0.364952\pi\)
\(240\) 0 0
\(241\) 21.2132i 1.36646i −0.730202 0.683231i \(-0.760574\pi\)
0.730202 0.683231i \(-0.239426\pi\)
\(242\) −10.9497 + 1.05025i −0.703876 + 0.0675128i
\(243\) 0 0
\(244\) 2.82843 0.181071
\(245\) −1.00000 2.00000i −0.0638877 0.127775i
\(246\) 0 0
\(247\) 6.00000 6.00000i 0.381771 0.381771i
\(248\) 0 0
\(249\) 0 0
\(250\) 9.19239 6.36396i 0.581378 0.402492i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 2.12132 + 2.12132i 0.133631 + 0.133631i
\(253\) 8.82843 + 3.17157i 0.555038 + 0.199395i
\(254\) 14.0000i 0.878438i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.00000 8.00000i 0.499026 0.499026i −0.412108 0.911135i \(-0.635208\pi\)
0.911135 + 0.412108i \(0.135208\pi\)
\(258\) 0 0
\(259\) 8.48528 0.527250
\(260\) −4.24264 1.41421i −0.263117 0.0877058i
\(261\) 21.2132i 1.31306i
\(262\) 1.00000 1.00000i 0.0617802 0.0617802i
\(263\) −9.89949 + 9.89949i −0.610429 + 0.610429i −0.943058 0.332629i \(-0.892064\pi\)
0.332629 + 0.943058i \(0.392064\pi\)
\(264\) 0 0
\(265\) 12.0000 + 4.00000i 0.737154 + 0.245718i
\(266\) 4.24264i 0.260133i
\(267\) 0 0
\(268\) −3.00000 3.00000i −0.183254 0.183254i
\(269\) 18.0000i 1.09748i −0.835993 0.548740i \(-0.815108\pi\)
0.835993 0.548740i \(-0.184892\pi\)
\(270\) 0 0
\(271\) 31.1127i 1.88996i 0.327125 + 0.944981i \(0.393920\pi\)
−0.327125 + 0.944981i \(0.606080\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −7.07107 −0.427179
\(275\) −3.34315 + 16.2426i −0.201599 + 0.979468i
\(276\) 0 0
\(277\) 5.65685 + 5.65685i 0.339887 + 0.339887i 0.856325 0.516437i \(-0.172742\pi\)
−0.516437 + 0.856325i \(0.672742\pi\)
\(278\) −13.0000 13.0000i −0.779688 0.779688i
\(279\) 0 0
\(280\) −2.00000 + 1.00000i −0.119523 + 0.0597614i
\(281\) 28.2843i 1.68730i −0.536895 0.843649i \(-0.680403\pi\)
0.536895 0.843649i \(-0.319597\pi\)
\(282\) 0 0
\(283\) 4.24264 4.24264i 0.252199 0.252199i −0.569673 0.821872i \(-0.692930\pi\)
0.821872 + 0.569673i \(0.192930\pi\)
\(284\) 8.00000i 0.474713i
\(285\) 0 0
\(286\) 6.00000 2.82843i 0.354787 0.167248i
\(287\) 1.00000 1.00000i 0.0590281 0.0590281i
\(288\) 2.12132 2.12132i 0.125000 0.125000i
\(289\) 17.0000i 1.00000i
\(290\) 15.0000 + 5.00000i 0.880830 + 0.293610i
\(291\) 0 0
\(292\) 4.24264 + 4.24264i 0.248282 + 0.248282i
\(293\) 21.2132 21.2132i 1.23929 1.23929i 0.278996 0.960292i \(-0.409998\pi\)
0.960292 0.278996i \(-0.0900018\pi\)
\(294\) 0 0
\(295\) −4.00000 8.00000i −0.232889 0.465778i
\(296\) 8.48528i 0.493197i
\(297\) 0 0
\(298\) −7.00000 7.00000i −0.405499 0.405499i
\(299\) −5.65685 −0.327144
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 13.0000 13.0000i 0.748066 0.748066i
\(303\) 0 0
\(304\) −4.24264 −0.243332
\(305\) 2.82843 + 5.65685i 0.161955 + 0.323911i
\(306\) 0 0
\(307\) 18.3848 + 18.3848i 1.04927 + 1.04927i 0.998721 + 0.0505532i \(0.0160985\pi\)
0.0505532 + 0.998721i \(0.483902\pi\)
\(308\) 1.12132 3.12132i 0.0638932 0.177854i
\(309\) 0 0
\(310\) 0 0
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 0 0
\(313\) −12.0000 12.0000i −0.678280 0.678280i 0.281331 0.959611i \(-0.409224\pi\)
−0.959611 + 0.281331i \(0.909224\pi\)
\(314\) −9.89949 −0.558661
\(315\) −2.12132 + 6.36396i −0.119523 + 0.358569i
\(316\) 4.24264i 0.238667i
\(317\) 8.00000 8.00000i 0.449325 0.449325i −0.445805 0.895130i \(-0.647083\pi\)
0.895130 + 0.445805i \(0.147083\pi\)
\(318\) 0 0
\(319\) −21.2132 + 10.0000i −1.18771 + 0.559893i
\(320\) 1.00000 + 2.00000i 0.0559017 + 0.111803i
\(321\) 0 0
\(322\) −2.00000 + 2.00000i −0.111456 + 0.111456i
\(323\) 0 0
\(324\) 9.00000i 0.500000i
\(325\) −1.41421 9.89949i −0.0784465 0.549125i
\(326\) 1.41421i 0.0783260i
\(327\) 0 0
\(328\) −1.00000 1.00000i −0.0552158 0.0552158i
\(329\) 9.89949 0.545777
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 8.48528 + 8.48528i 0.465690 + 0.465690i
\(333\) −18.0000 18.0000i −0.986394 0.986394i
\(334\) 0 0
\(335\) 3.00000 9.00000i 0.163908 0.491723i
\(336\) 0 0
\(337\) −15.5563 15.5563i −0.847408 0.847408i 0.142401 0.989809i \(-0.454518\pi\)
−0.989809 + 0.142401i \(0.954518\pi\)
\(338\) 6.36396 6.36396i 0.346154 0.346154i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) −9.00000 + 9.00000i −0.486664 + 0.486664i
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 8.00000i 0.431331i
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) −2.82843 2.82843i −0.151838 0.151838i 0.627100 0.778938i \(-0.284242\pi\)
−0.778938 + 0.627100i \(0.784242\pi\)
\(348\) 0 0
\(349\) −33.9411 −1.81683 −0.908413 0.418073i \(-0.862706\pi\)
−0.908413 + 0.418073i \(0.862706\pi\)
\(350\) −4.00000 3.00000i −0.213809 0.160357i
\(351\) 0 0
\(352\) −3.12132 1.12132i −0.166367 0.0597666i
\(353\) −4.00000 4.00000i −0.212899 0.212899i 0.592599 0.805498i \(-0.298102\pi\)
−0.805498 + 0.592599i \(0.798102\pi\)
\(354\) 0 0
\(355\) 16.0000 8.00000i 0.849192 0.424596i
\(356\) −14.0000 −0.741999
\(357\) 0 0
\(358\) −1.41421 + 1.41421i −0.0747435 + 0.0747435i
\(359\) 9.89949 0.522475 0.261238 0.965275i \(-0.415869\pi\)
0.261238 + 0.965275i \(0.415869\pi\)
\(360\) 6.36396 + 2.12132i 0.335410 + 0.111803i
\(361\) −1.00000 −0.0526316
\(362\) −2.82843 2.82843i −0.148659 0.148659i
\(363\) 0 0
\(364\) 2.00000i 0.104828i
\(365\) −4.24264 + 12.7279i −0.222070 + 0.666210i
\(366\) 0 0
\(367\) 25.0000 25.0000i 1.30499 1.30499i 0.380005 0.924984i \(-0.375922\pi\)
0.924984 0.380005i \(-0.124078\pi\)
\(368\) 2.00000 + 2.00000i 0.104257 + 0.104257i
\(369\) −4.24264 −0.220863
\(370\) 16.9706 8.48528i 0.882258 0.441129i
\(371\) 5.65685i 0.293689i
\(372\) 0 0
\(373\) −14.1421 + 14.1421i −0.732252 + 0.732252i −0.971065 0.238813i \(-0.923242\pi\)
0.238813 + 0.971065i \(0.423242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 9.89949i 0.510527i
\(377\) 10.0000 10.0000i 0.515026 0.515026i
\(378\) 0 0
\(379\) 30.0000i 1.54100i −0.637442 0.770498i \(-0.720007\pi\)
0.637442 0.770498i \(-0.279993\pi\)
\(380\) −4.24264 8.48528i −0.217643 0.435286i
\(381\) 0 0
\(382\) 11.3137 + 11.3137i 0.578860 + 0.578860i
\(383\) −9.00000 9.00000i −0.459879 0.459879i 0.438737 0.898616i \(-0.355426\pi\)
−0.898616 + 0.438737i \(0.855426\pi\)
\(384\) 0 0
\(385\) 7.36396 0.878680i 0.375302 0.0447817i
\(386\) 10.0000 0.508987
\(387\) −16.9706 16.9706i −0.862662 0.862662i
\(388\) 6.00000 + 6.00000i 0.304604 + 0.304604i
\(389\) 30.0000i 1.52106i −0.649303 0.760530i \(-0.724939\pi\)
0.649303 0.760530i \(-0.275061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.707107 + 0.707107i 0.0357143 + 0.0357143i
\(393\) 0 0
\(394\) 12.0000i 0.604551i
\(395\) 8.48528 4.24264i 0.426941 0.213470i
\(396\) −9.00000 + 4.24264i −0.452267 + 0.213201i
\(397\) −9.00000 + 9.00000i −0.451697 + 0.451697i −0.895918 0.444220i \(-0.853481\pi\)
0.444220 + 0.895918i \(0.353481\pi\)
\(398\) 15.5563 15.5563i 0.779769 0.779769i
\(399\) 0 0
\(400\) −3.00000 + 4.00000i −0.150000 + 0.200000i
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 5.65685 0.281439
\(405\) 18.0000 9.00000i 0.894427 0.447214i
\(406\) 7.07107i 0.350931i
\(407\) −9.51472 + 26.4853i −0.471627 + 1.31283i
\(408\) 0 0
\(409\) 9.89949 0.489499 0.244749 0.969586i \(-0.421294\pi\)
0.244749 + 0.969586i \(0.421294\pi\)
\(410\) 1.00000 3.00000i 0.0493865 0.148159i
\(411\) 0 0
\(412\) −3.00000 + 3.00000i −0.147799 + 0.147799i
\(413\) −2.82843 + 2.82843i −0.139178 + 0.139178i
\(414\) 8.48528 0.417029
\(415\) −8.48528 + 25.4558i −0.416526 + 1.24958i
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) 13.2426 + 4.75736i 0.647719 + 0.232690i
\(419\) 8.00000i 0.390826i 0.980721 + 0.195413i \(0.0626047\pi\)
−0.980721 + 0.195413i \(0.937395\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 4.00000 4.00000i 0.194717 0.194717i
\(423\) −21.0000 21.0000i −1.02105 1.02105i
\(424\) −5.65685 −0.274721
\(425\) 0 0
\(426\) 0 0
\(427\) 2.00000 2.00000i 0.0967868 0.0967868i
\(428\) −8.48528 + 8.48528i −0.410152 + 0.410152i
\(429\) 0 0
\(430\) 16.0000 8.00000i 0.771589 0.385794i
\(431\) 9.89949i 0.476842i 0.971162 + 0.238421i \(0.0766298\pi\)
−0.971162 + 0.238421i \(0.923370\pi\)
\(432\) 0 0
\(433\) 20.0000 + 20.0000i 0.961139 + 0.961139i 0.999273 0.0381340i \(-0.0121414\pi\)
−0.0381340 + 0.999273i \(0.512141\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 12.7279i 0.609557i
\(437\) −8.48528 8.48528i −0.405906 0.405906i
\(438\) 0 0
\(439\) 31.1127 1.48493 0.742464 0.669886i \(-0.233657\pi\)
0.742464 + 0.669886i \(0.233657\pi\)
\(440\) −0.878680 7.36396i −0.0418894 0.351063i
\(441\) 3.00000 0.142857
\(442\) 0 0
\(443\) −15.0000 15.0000i −0.712672 0.712672i 0.254422 0.967093i \(-0.418115\pi\)
−0.967093 + 0.254422i \(0.918115\pi\)
\(444\) 0 0
\(445\) −14.0000 28.0000i −0.663664 1.32733i
\(446\) 9.89949i 0.468755i
\(447\) 0 0
\(448\) 0.707107 0.707107i 0.0334077 0.0334077i
\(449\) 24.0000i 1.13263i 0.824189 + 0.566315i \(0.191631\pi\)
−0.824189 + 0.566315i \(0.808369\pi\)
\(450\) 2.12132 + 14.8492i 0.100000 + 0.700000i
\(451\) 2.00000 + 4.24264i 0.0941763 + 0.199778i
\(452\) 9.00000 9.00000i 0.423324 0.423324i
\(453\) 0 0
\(454\) 22.0000i 1.03251i
\(455\) −4.00000 + 2.00000i −0.187523 + 0.0937614i
\(456\) 0 0
\(457\) 1.41421 + 1.41421i 0.0661541 + 0.0661541i 0.739410 0.673256i \(-0.235105\pi\)
−0.673256 + 0.739410i \(0.735105\pi\)
\(458\) −1.41421 + 1.41421i −0.0660819 + 0.0660819i
\(459\) 0 0
\(460\) −2.00000 + 6.00000i −0.0932505 + 0.279751i
\(461\) 2.82843i 0.131733i 0.997828 + 0.0658665i \(0.0209811\pi\)
−0.997828 + 0.0658665i \(0.979019\pi\)
\(462\) 0 0
\(463\) −10.0000 10.0000i −0.464739 0.464739i 0.435466 0.900205i \(-0.356584\pi\)
−0.900205 + 0.435466i \(0.856584\pi\)
\(464\) −7.07107 −0.328266
\(465\) 0 0
\(466\) 26.0000 1.20443
\(467\) −2.00000 + 2.00000i −0.0925490 + 0.0925490i −0.751865 0.659317i \(-0.770846\pi\)
0.659317 + 0.751865i \(0.270846\pi\)
\(468\) 4.24264 4.24264i 0.196116 0.196116i
\(469\) −4.24264 −0.195907
\(470\) 19.7990 9.89949i 0.913259 0.456630i
\(471\) 0 0
\(472\) 2.82843 + 2.82843i 0.130189 + 0.130189i
\(473\) −8.97056 + 24.9706i −0.412467 + 1.14815i
\(474\) 0 0
\(475\) 12.7279 16.9706i 0.583997 0.778663i
\(476\) 0 0
\(477\) −12.0000 + 12.0000i −0.549442 + 0.549442i
\(478\) −9.00000 9.00000i −0.411650 0.411650i
\(479\) 8.48528 0.387702 0.193851 0.981031i \(-0.437902\pi\)
0.193851 + 0.981031i \(0.437902\pi\)
\(480\) 0 0
\(481\) 16.9706i 0.773791i
\(482\) −15.0000 + 15.0000i −0.683231 + 0.683231i
\(483\) 0 0
\(484\) 8.48528 + 7.00000i 0.385695 + 0.318182i
\(485\) −6.00000 + 18.0000i −0.272446 + 0.817338i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −2.00000 2.00000i −0.0905357 0.0905357i
\(489\) 0 0
\(490\) −0.707107 + 2.12132i −0.0319438 + 0.0958315i
\(491\) 2.82843i 0.127645i −0.997961 0.0638226i \(-0.979671\pi\)
0.997961 0.0638226i \(-0.0203292\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.48528 −0.381771
\(495\) −17.4853 13.7574i −0.785905 0.618347i
\(496\) 0 0
\(497\) −5.65685 5.65685i −0.253745 0.253745i
\(498\) 0 0
\(499\) 44.0000i 1.96971i 0.173379 + 0.984855i \(0.444532\pi\)
−0.173379 + 0.984855i \(0.555468\pi\)
\(500\) −11.0000 2.00000i −0.491935 0.0894427i
\(501\) 0 0
\(502\) 0 0
\(503\) −19.7990 + 19.7990i −0.882793 + 0.882793i −0.993818 0.111024i \(-0.964587\pi\)
0.111024 + 0.993818i \(0.464587\pi\)
\(504\) 3.00000i 0.133631i
\(505\) 5.65685 + 11.3137i 0.251727 + 0.503453i
\(506\) −4.00000 8.48528i −0.177822 0.377217i
\(507\) 0 0
\(508\) 9.89949 9.89949i 0.439219 0.439219i
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −11.3137 −0.499026
\(515\) −9.00000 3.00000i −0.396587 0.132196i
\(516\) 0 0
\(517\) −11.1005 + 30.8995i −0.488200 + 1.35896i
\(518\) −6.00000 6.00000i −0.263625 0.263625i
\(519\) 0 0
\(520\) 2.00000 + 4.00000i 0.0877058 + 0.175412i
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) −15.0000 + 15.0000i −0.656532 + 0.656532i
\(523\) 9.89949 9.89949i 0.432875 0.432875i −0.456730 0.889605i \(-0.650980\pi\)
0.889605 + 0.456730i \(0.150980\pi\)
\(524\) −1.41421 −0.0617802
\(525\) 0 0
\(526\) 14.0000 0.610429
\(527\) 0 0
\(528\) 0 0
\(529\) 15.0000i 0.652174i
\(530\) −5.65685 11.3137i −0.245718 0.491436i
\(531\) 12.0000 0.520756
\(532\) −3.00000 + 3.00000i −0.130066 + 0.130066i
\(533\) −2.00000 2.00000i −0.0866296 0.0866296i
\(534\) 0 0
\(535\) −25.4558 8.48528i −1.10055 0.366851i
\(536\) 4.24264i 0.183254i
\(537\) 0 0
\(538\) −12.7279 + 12.7279i −0.548740 + 0.548740i
\(539\) −1.41421 3.00000i −0.0609145 0.129219i
\(540\) 0 0
\(541\) 41.0122i 1.76325i 0.471949 + 0.881626i \(0.343551\pi\)
−0.471949 + 0.881626i \(0.656449\pi\)
\(542\) 22.0000 22.0000i 0.944981 0.944981i
\(543\) 0 0
\(544\) 0 0
\(545\) 25.4558 12.7279i 1.09041 0.545204i
\(546\) 0 0
\(547\) −2.82843 2.82843i −0.120935 0.120935i 0.644049 0.764984i \(-0.277253\pi\)
−0.764984 + 0.644049i \(0.777253\pi\)
\(548\) 5.00000 + 5.00000i 0.213589 + 0.213589i
\(549\) −8.48528 −0.362143
\(550\) 13.8492 9.12132i 0.590534 0.388934i
\(551\) 30.0000 1.27804
\(552\) 0 0
\(553\) −3.00000 3.00000i −0.127573 0.127573i
\(554\) 8.00000i 0.339887i
\(555\) 0 0
\(556\) 18.3848i 0.779688i
\(557\) 1.41421 + 1.41421i 0.0599222 + 0.0599222i 0.736433 0.676511i \(-0.236509\pi\)
−0.676511 + 0.736433i \(0.736509\pi\)
\(558\) 0 0
\(559\) 16.0000i 0.676728i
\(560\) 2.12132 + 0.707107i 0.0896421 + 0.0298807i
\(561\) 0 0
\(562\) −20.0000 + 20.0000i −0.843649 + 0.843649i
\(563\) 14.1421 14.1421i 0.596020 0.596020i −0.343231 0.939251i \(-0.611521\pi\)
0.939251 + 0.343231i \(0.111521\pi\)
\(564\) 0 0
\(565\) 27.0000 + 9.00000i 1.13590 + 0.378633i
\(566\) −6.00000 −0.252199
\(567\) −6.36396 6.36396i −0.267261 0.267261i
\(568\) −5.65685 + 5.65685i −0.237356 + 0.237356i
\(569\) 28.2843 1.18574 0.592869 0.805299i \(-0.297995\pi\)
0.592869 + 0.805299i \(0.297995\pi\)
\(570\) 0 0
\(571\) 33.9411i 1.42039i −0.704004 0.710196i \(-0.748606\pi\)
0.704004 0.710196i \(-0.251394\pi\)
\(572\) −6.24264 2.24264i −0.261018 0.0937695i
\(573\) 0 0
\(574\) −1.41421 −0.0590281
\(575\) −14.0000 + 2.00000i −0.583840 + 0.0834058i
\(576\) −3.00000 −0.125000
\(577\) 2.00000 2.00000i 0.0832611 0.0832611i −0.664250 0.747511i \(-0.731249\pi\)
0.747511 + 0.664250i \(0.231249\pi\)
\(578\) −12.0208 + 12.0208i −0.500000 + 0.500000i
\(579\) 0 0
\(580\) −7.07107 14.1421i −0.293610 0.587220i
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 17.6569 + 6.34315i 0.731272 + 0.262706i
\(584\) 6.00000i 0.248282i
\(585\) 12.7279 + 4.24264i 0.526235 + 0.175412i
\(586\) −30.0000 −1.23929
\(587\) 14.0000 14.0000i 0.577842 0.577842i −0.356466 0.934308i \(-0.616019\pi\)
0.934308 + 0.356466i \(0.116019\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −2.82843 + 8.48528i −0.116445 + 0.349334i
\(591\) 0 0
\(592\) −6.00000 + 6.00000i −0.246598 + 0.246598i
\(593\) 24.0416 24.0416i 0.987271 0.987271i −0.0126486 0.999920i \(-0.504026\pi\)
0.999920 + 0.0126486i \(0.00402627\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.89949i 0.405499i
\(597\) 0 0
\(598\) 4.00000 + 4.00000i 0.163572 + 0.163572i
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 29.6985i 1.21143i 0.795683 + 0.605713i \(0.207112\pi\)
−0.795683 + 0.605713i \(0.792888\pi\)
\(602\) −5.65685 5.65685i −0.230556 0.230556i
\(603\) 9.00000 + 9.00000i 0.366508 + 0.366508i
\(604\) −18.3848 −0.748066
\(605\) −5.51472 + 23.9706i −0.224205 + 0.974542i
\(606\) 0 0
\(607\) −5.65685 5.65685i −0.229605 0.229605i 0.582923 0.812527i \(-0.301909\pi\)
−0.812527 + 0.582923i \(0.801909\pi\)
\(608\) 3.00000 + 3.00000i 0.121666 + 0.121666i
\(609\) 0 0
\(610\) 2.00000 6.00000i 0.0809776 0.242933i
\(611\) 19.7990i 0.800981i
\(612\) 0 0
\(613\) −7.07107 + 7.07107i −0.285598 + 0.285598i −0.835337 0.549739i \(-0.814727\pi\)
0.549739 + 0.835337i \(0.314727\pi\)
\(614\) 26.0000i 1.04927i
\(615\) 0 0
\(616\) −3.00000 + 1.41421i −0.120873 + 0.0569803i
\(617\) −17.0000 + 17.0000i −0.684394 + 0.684394i −0.960987 0.276593i \(-0.910795\pi\)
0.276593 + 0.960987i \(0.410795\pi\)
\(618\) 0 0
\(619\) 12.0000i 0.482321i −0.970485 0.241160i \(-0.922472\pi\)
0.970485 0.241160i \(-0.0775280\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 21.2132 + 21.2132i 0.850572 + 0.850572i
\(623\) −9.89949 + 9.89949i −0.396615 + 0.396615i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 16.9706i 0.678280i
\(627\) 0 0
\(628\) 7.00000 + 7.00000i 0.279330 + 0.279330i
\(629\) 0 0
\(630\) 6.00000 3.00000i 0.239046 0.119523i
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) −3.00000 + 3.00000i −0.119334 + 0.119334i
\(633\) 0 0
\(634\) −11.3137 −0.449325
\(635\) 29.6985 + 9.89949i 1.17855 + 0.392849i
\(636\) 0 0
\(637\) 1.41421 + 1.41421i 0.0560332 + 0.0560332i
\(638\) 22.0711 + 7.92893i 0.873802 + 0.313909i
\(639\) 24.0000i 0.949425i
\(640\) 0.707107 2.12132i 0.0279508 0.0838525i
\(641\) 8.00000 0.315981 0.157991 0.987441i \(-0.449498\pi\)
0.157991 + 0.987441i \(0.449498\pi\)
\(642\) 0 0
\(643\) 28.0000 + 28.0000i 1.10421 + 1.10421i 0.993897 + 0.110316i \(0.0351862\pi\)
0.110316 + 0.993897i \(0.464814\pi\)
\(644\) 2.82843 0.111456
\(645\) 0 0
\(646\) 0 0
\(647\) −19.0000 + 19.0000i −0.746967 + 0.746967i −0.973908 0.226941i \(-0.927127\pi\)
0.226941 + 0.973908i \(0.427127\pi\)
\(648\) −6.36396 + 6.36396i −0.250000 + 0.250000i
\(649\) −5.65685 12.0000i −0.222051 0.471041i
\(650\) −6.00000 + 8.00000i −0.235339 + 0.313786i
\(651\) 0 0
\(652\) −1.00000 + 1.00000i −0.0391630 + 0.0391630i
\(653\) 4.00000 + 4.00000i 0.156532 + 0.156532i 0.781028 0.624496i \(-0.214696\pi\)
−0.624496 + 0.781028i \(0.714696\pi\)
\(654\) 0 0
\(655\) −1.41421 2.82843i −0.0552579 0.110516i
\(656\) 1.41421i 0.0552158i
\(657\) −12.7279 12.7279i −0.496564 0.496564i
\(658\) −7.00000 7.00000i −0.272888 0.272888i
\(659\) 31.1127 1.21198 0.605989 0.795473i \(-0.292777\pi\)
0.605989 + 0.795473i \(0.292777\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) −2.82843 2.82843i −0.109930 0.109930i
\(663\) 0 0
\(664\) 12.0000i 0.465690i
\(665\) −9.00000 3.00000i −0.349005 0.116335i
\(666\) 25.4558i 0.986394i
\(667\) −14.1421 14.1421i −0.547586 0.547586i
\(668\) 0 0
\(669\) 0 0
\(670\) −8.48528 + 4.24264i −0.327815 + 0.163908i
\(671\) 4.00000 + 8.48528i 0.154418 + 0.327571i
\(672\) 0 0
\(673\) −15.5563 + 15.5563i −0.599653 + 0.599653i −0.940220 0.340567i \(-0.889381\pi\)
0.340567 + 0.940220i \(0.389381\pi\)
\(674\) 22.0000i 0.847408i
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 18.3848 + 18.3848i 0.706584 + 0.706584i 0.965815 0.259231i \(-0.0834691\pi\)
−0.259231 + 0.965815i \(0.583469\pi\)
\(678\) 0 0
\(679\) 8.48528 0.325635
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33.0000 + 33.0000i 1.26271 + 1.26271i 0.949774 + 0.312936i \(0.101312\pi\)
0.312936 + 0.949774i \(0.398688\pi\)
\(684\) 12.7279 0.486664
\(685\) −5.00000 + 15.0000i −0.191040 + 0.573121i
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) −5.65685 + 5.65685i −0.215666 + 0.215666i
\(689\) −11.3137 −0.431018
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) −12.7279 12.7279i −0.483843 0.483843i
\(693\) −3.36396 + 9.36396i −0.127786 + 0.355707i
\(694\) 4.00000i 0.151838i
\(695\) −36.7696 + 18.3848i −1.39475 + 0.697374i
\(696\) 0 0
\(697\) 0 0
\(698\) 24.0000 + 24.0000i 0.908413 + 0.908413i
\(699\) 0 0
\(700\) 0.707107 + 4.94975i 0.0267261 + 0.187083i
\(701\) 38.1838i 1.44218i −0.692841 0.721090i \(-0.743641\pi\)
0.692841 0.721090i \(-0.256359\pi\)
\(702\) 0 0
\(703\) 25.4558 25.4558i 0.960085 0.960085i
\(704\) 1.41421 + 3.00000i 0.0533002 + 0.113067i
\(705\) 0 0
\(706\) 5.65685i 0.212899i
\(707\) 4.00000 4.00000i 0.150435 0.150435i
\(708\) 0 0
\(709\) 10.0000i 0.375558i 0.982211 + 0.187779i \(0.0601289\pi\)
−0.982211 + 0.187779i \(0.939871\pi\)
\(710\) −16.9706 5.65685i −0.636894 0.212298i
\(711\) 12.7279i 0.477334i
\(712\) 9.89949 + 9.89949i 0.370999 + 0.370999i
\(713\) 0 0
\(714\) 0 0
\(715\) −1.75736 14.7279i −0.0657215 0.550793i
\(716\) 2.00000 0.0747435
\(717\) 0 0
\(718\) −7.00000 7.00000i −0.261238 0.261238i
\(719\) 24.0000i 0.895049i 0.894272 + 0.447524i \(0.147694\pi\)
−0.894272 + 0.447524i \(0.852306\pi\)
\(720\) −3.00000 6.00000i −0.111803 0.223607i
\(721\) 4.24264i 0.158004i
\(722\) 0.707107 + 0.707107i 0.0263158 + 0.0263158i
\(723\) 0 0
\(724\) 4.00000i 0.148659i
\(725\) 21.2132 28.2843i 0.787839 1.05045i
\(726\) 0 0
\(727\) −31.0000 + 31.0000i −1.14973 + 1.14973i −0.163120 + 0.986606i \(0.552156\pi\)
−0.986606 + 0.163120i \(0.947844\pi\)
\(728\) 1.41421 1.41421i 0.0524142 0.0524142i
\(729\) 27.0000i 1.00000i
\(730\) 12.0000 6.00000i 0.444140 0.222070i
\(731\) 0 0
\(732\) 0 0
\(733\) −9.89949 + 9.89949i −0.365646 + 0.365646i −0.865887 0.500240i \(-0.833245\pi\)
0.500240 + 0.865887i \(0.333245\pi\)
\(734\) −35.3553 −1.30499
\(735\) 0 0
\(736\) 2.82843i 0.104257i
\(737\) 4.75736 13.2426i 0.175240 0.487799i
\(738\) 3.00000 + 3.00000i 0.110432 + 0.110432i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) −18.0000 6.00000i −0.661693 0.220564i
\(741\) 0 0
\(742\) −4.00000 + 4.00000i −0.146845 + 0.146845i
\(743\) −1.41421 + 1.41421i −0.0518825 + 0.0518825i −0.732572 0.680690i \(-0.761680\pi\)
0.680690 + 0.732572i \(0.261680\pi\)
\(744\) 0 0
\(745\) −19.7990 + 9.89949i −0.725379 + 0.362689i
\(746\) 20.0000 0.732252
\(747\) −25.4558 25.4558i −0.931381 0.931381i
\(748\) 0 0
\(749\) 12.0000i 0.438470i
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) −7.00000 + 7.00000i −0.255264 + 0.255264i
\(753\) 0 0
\(754\) −14.1421 −0.515026
\(755\) −18.3848 36.7696i −0.669091 1.33818i
\(756\) 0 0
\(757\) −14.0000 + 14.0000i −0.508839 + 0.508839i −0.914170 0.405331i \(-0.867156\pi\)
0.405331 + 0.914170i \(0.367156\pi\)
\(758\) −21.2132 + 21.2132i −0.770498 + 0.770498i
\(759\) 0 0
\(760\) −3.00000 + 9.00000i −0.108821 + 0.326464i
\(761\) 9.89949i 0.358856i −0.983771 0.179428i \(-0.942575\pi\)
0.983771 0.179428i \(-0.0574248\pi\)
\(762\) 0 0
\(763\) −9.00000 9.00000i −0.325822 0.325822i
\(764\) 16.0000i 0.578860i
\(765\) 0 0
\(766\) 12.7279i 0.459879i
\(767\) 5.65685 + 5.65685i 0.204257 + 0.204257i
\(768\) 0 0
\(769\) −43.8406 −1.58093 −0.790467 0.612505i \(-0.790162\pi\)
−0.790467 + 0.612505i \(0.790162\pi\)
\(770\) −5.82843 4.58579i −0.210042 0.165260i
\(771\) 0 0
\(772\) −7.07107 7.07107i −0.254493 0.254493i
\(773\) 15.0000 + 15.0000i 0.539513 + 0.539513i 0.923386 0.383873i \(-0.125410\pi\)
−0.383873 + 0.923386i \(0.625410\pi\)
\(774\) 24.0000i 0.862662i
\(775\) 0 0
\(776\) 8.48528i 0.304604i
\(777\) 0 0
\(778\) −21.2132 + 21.2132i −0.760530 + 0.760530i
\(779\) 6.00000i 0.214972i
\(780\) 0 0
\(781\) 24.0000 11.3137i 0.858788 0.404836i
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) −7.00000 + 21.0000i −0.249841 + 0.749522i
\(786\) 0 0
\(787\) −8.48528 8.48528i −0.302468 0.302468i 0.539511 0.841979i \(-0.318609\pi\)
−0.841979 + 0.539511i \(0.818609\pi\)
\(788\) 8.48528 8.48528i 0.302276 0.302276i