# Properties

 Label 770.2.i.d.331.1 Level $770$ Weight $2$ Character 770.331 Analytic conductor $6.148$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$770 = 2 \cdot 5 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 770.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$6.14848095564$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 331.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 770.331 Dual form 770.2.i.d.221.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 - 0.866025i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} -3.00000 q^{6} +(0.500000 + 2.59808i) q^{7} -1.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +O(q^{10})$$ $$q+(0.500000 - 0.866025i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} -3.00000 q^{6} +(0.500000 + 2.59808i) q^{7} -1.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +(0.500000 + 0.866025i) q^{10} +(0.500000 + 0.866025i) q^{11} +(-1.50000 + 2.59808i) q^{12} -1.00000 q^{13} +(2.50000 + 0.866025i) q^{14} +3.00000 q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.00000 + 5.19615i) q^{17} +(3.00000 + 5.19615i) q^{18} +(-2.00000 + 3.46410i) q^{19} +1.00000 q^{20} +(6.00000 - 5.19615i) q^{21} +1.00000 q^{22} +(-2.00000 + 3.46410i) q^{23} +(1.50000 + 2.59808i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(-0.500000 + 0.866025i) q^{26} +9.00000 q^{27} +(2.00000 - 1.73205i) q^{28} +1.00000 q^{29} +(1.50000 - 2.59808i) q^{30} +(-4.00000 - 6.92820i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.50000 - 2.59808i) q^{33} +6.00000 q^{34} +(-2.50000 - 0.866025i) q^{35} +6.00000 q^{36} +(-4.00000 + 6.92820i) q^{37} +(2.00000 + 3.46410i) q^{38} +(1.50000 + 2.59808i) q^{39} +(0.500000 - 0.866025i) q^{40} -12.0000 q^{41} +(-1.50000 - 7.79423i) q^{42} +12.0000 q^{43} +(0.500000 - 0.866025i) q^{44} +(-3.00000 - 5.19615i) q^{45} +(2.00000 + 3.46410i) q^{46} +(3.00000 - 5.19615i) q^{47} +3.00000 q^{48} +(-6.50000 + 2.59808i) q^{49} -1.00000 q^{50} +(9.00000 - 15.5885i) q^{51} +(0.500000 + 0.866025i) q^{52} +(3.00000 + 5.19615i) q^{53} +(4.50000 - 7.79423i) q^{54} -1.00000 q^{55} +(-0.500000 - 2.59808i) q^{56} +12.0000 q^{57} +(0.500000 - 0.866025i) q^{58} +(-7.50000 - 12.9904i) q^{59} +(-1.50000 - 2.59808i) q^{60} +(-1.50000 + 2.59808i) q^{61} -8.00000 q^{62} +(-15.0000 - 5.19615i) q^{63} +1.00000 q^{64} +(0.500000 - 0.866025i) q^{65} +(-1.50000 - 2.59808i) q^{66} +(3.50000 + 6.06218i) q^{67} +(3.00000 - 5.19615i) q^{68} +12.0000 q^{69} +(-2.00000 + 1.73205i) q^{70} +10.0000 q^{71} +(3.00000 - 5.19615i) q^{72} +(2.00000 + 3.46410i) q^{73} +(4.00000 + 6.92820i) q^{74} +(-1.50000 + 2.59808i) q^{75} +4.00000 q^{76} +(-2.00000 + 1.73205i) q^{77} +3.00000 q^{78} +(-7.50000 + 12.9904i) q^{79} +(-0.500000 - 0.866025i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-6.00000 + 10.3923i) q^{82} +10.0000 q^{83} +(-7.50000 - 2.59808i) q^{84} -6.00000 q^{85} +(6.00000 - 10.3923i) q^{86} +(-1.50000 - 2.59808i) q^{87} +(-0.500000 - 0.866025i) q^{88} +(-3.00000 + 5.19615i) q^{89} -6.00000 q^{90} +(-0.500000 - 2.59808i) q^{91} +4.00000 q^{92} +(-12.0000 + 20.7846i) q^{93} +(-3.00000 - 5.19615i) q^{94} +(-2.00000 - 3.46410i) q^{95} +(1.50000 - 2.59808i) q^{96} -5.00000 q^{97} +(-1.00000 + 6.92820i) q^{98} -6.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} - 3 q^{3} - q^{4} - q^{5} - 6 q^{6} + q^{7} - 2 q^{8} - 6 q^{9}+O(q^{10})$$ 2 * q + q^2 - 3 * q^3 - q^4 - q^5 - 6 * q^6 + q^7 - 2 * q^8 - 6 * q^9 $$2 q + q^{2} - 3 q^{3} - q^{4} - q^{5} - 6 q^{6} + q^{7} - 2 q^{8} - 6 q^{9} + q^{10} + q^{11} - 3 q^{12} - 2 q^{13} + 5 q^{14} + 6 q^{15} - q^{16} + 6 q^{17} + 6 q^{18} - 4 q^{19} + 2 q^{20} + 12 q^{21} + 2 q^{22} - 4 q^{23} + 3 q^{24} - q^{25} - q^{26} + 18 q^{27} + 4 q^{28} + 2 q^{29} + 3 q^{30} - 8 q^{31} + q^{32} + 3 q^{33} + 12 q^{34} - 5 q^{35} + 12 q^{36} - 8 q^{37} + 4 q^{38} + 3 q^{39} + q^{40} - 24 q^{41} - 3 q^{42} + 24 q^{43} + q^{44} - 6 q^{45} + 4 q^{46} + 6 q^{47} + 6 q^{48} - 13 q^{49} - 2 q^{50} + 18 q^{51} + q^{52} + 6 q^{53} + 9 q^{54} - 2 q^{55} - q^{56} + 24 q^{57} + q^{58} - 15 q^{59} - 3 q^{60} - 3 q^{61} - 16 q^{62} - 30 q^{63} + 2 q^{64} + q^{65} - 3 q^{66} + 7 q^{67} + 6 q^{68} + 24 q^{69} - 4 q^{70} + 20 q^{71} + 6 q^{72} + 4 q^{73} + 8 q^{74} - 3 q^{75} + 8 q^{76} - 4 q^{77} + 6 q^{78} - 15 q^{79} - q^{80} - 9 q^{81} - 12 q^{82} + 20 q^{83} - 15 q^{84} - 12 q^{85} + 12 q^{86} - 3 q^{87} - q^{88} - 6 q^{89} - 12 q^{90} - q^{91} + 8 q^{92} - 24 q^{93} - 6 q^{94} - 4 q^{95} + 3 q^{96} - 10 q^{97} - 2 q^{98} - 12 q^{99}+O(q^{100})$$ 2 * q + q^2 - 3 * q^3 - q^4 - q^5 - 6 * q^6 + q^7 - 2 * q^8 - 6 * q^9 + q^10 + q^11 - 3 * q^12 - 2 * q^13 + 5 * q^14 + 6 * q^15 - q^16 + 6 * q^17 + 6 * q^18 - 4 * q^19 + 2 * q^20 + 12 * q^21 + 2 * q^22 - 4 * q^23 + 3 * q^24 - q^25 - q^26 + 18 * q^27 + 4 * q^28 + 2 * q^29 + 3 * q^30 - 8 * q^31 + q^32 + 3 * q^33 + 12 * q^34 - 5 * q^35 + 12 * q^36 - 8 * q^37 + 4 * q^38 + 3 * q^39 + q^40 - 24 * q^41 - 3 * q^42 + 24 * q^43 + q^44 - 6 * q^45 + 4 * q^46 + 6 * q^47 + 6 * q^48 - 13 * q^49 - 2 * q^50 + 18 * q^51 + q^52 + 6 * q^53 + 9 * q^54 - 2 * q^55 - q^56 + 24 * q^57 + q^58 - 15 * q^59 - 3 * q^60 - 3 * q^61 - 16 * q^62 - 30 * q^63 + 2 * q^64 + q^65 - 3 * q^66 + 7 * q^67 + 6 * q^68 + 24 * q^69 - 4 * q^70 + 20 * q^71 + 6 * q^72 + 4 * q^73 + 8 * q^74 - 3 * q^75 + 8 * q^76 - 4 * q^77 + 6 * q^78 - 15 * q^79 - q^80 - 9 * q^81 - 12 * q^82 + 20 * q^83 - 15 * q^84 - 12 * q^85 + 12 * q^86 - 3 * q^87 - q^88 - 6 * q^89 - 12 * q^90 - q^91 + 8 * q^92 - 24 * q^93 - 6 * q^94 - 4 * q^95 + 3 * q^96 - 10 * q^97 - 2 * q^98 - 12 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/770\mathbb{Z}\right)^\times$$.

 $$n$$ $$211$$ $$617$$ $$661$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 0.866025i 0.353553 0.612372i
$$3$$ −1.50000 2.59808i −0.866025 1.50000i −0.866025 0.500000i $$-0.833333\pi$$
1.00000i $$-0.5\pi$$
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ −0.500000 + 0.866025i −0.223607 + 0.387298i
$$6$$ −3.00000 −1.22474
$$7$$ 0.500000 + 2.59808i 0.188982 + 0.981981i
$$8$$ −1.00000 −0.353553
$$9$$ −3.00000 + 5.19615i −1.00000 + 1.73205i
$$10$$ 0.500000 + 0.866025i 0.158114 + 0.273861i
$$11$$ 0.500000 + 0.866025i 0.150756 + 0.261116i
$$12$$ −1.50000 + 2.59808i −0.433013 + 0.750000i
$$13$$ −1.00000 −0.277350 −0.138675 0.990338i $$-0.544284\pi$$
−0.138675 + 0.990338i $$0.544284\pi$$
$$14$$ 2.50000 + 0.866025i 0.668153 + 0.231455i
$$15$$ 3.00000 0.774597
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i $$0.0927008\pi$$
−0.230285 + 0.973123i $$0.573966\pi$$
$$18$$ 3.00000 + 5.19615i 0.707107 + 1.22474i
$$19$$ −2.00000 + 3.46410i −0.458831 + 0.794719i −0.998899 0.0469020i $$-0.985065\pi$$
0.540068 + 0.841621i $$0.318398\pi$$
$$20$$ 1.00000 0.223607
$$21$$ 6.00000 5.19615i 1.30931 1.13389i
$$22$$ 1.00000 0.213201
$$23$$ −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i $$-0.970262\pi$$
0.578610 + 0.815604i $$0.303595\pi$$
$$24$$ 1.50000 + 2.59808i 0.306186 + 0.530330i
$$25$$ −0.500000 0.866025i −0.100000 0.173205i
$$26$$ −0.500000 + 0.866025i −0.0980581 + 0.169842i
$$27$$ 9.00000 1.73205
$$28$$ 2.00000 1.73205i 0.377964 0.327327i
$$29$$ 1.00000 0.185695 0.0928477 0.995680i $$-0.470403\pi$$
0.0928477 + 0.995680i $$0.470403\pi$$
$$30$$ 1.50000 2.59808i 0.273861 0.474342i
$$31$$ −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i $$-0.911532\pi$$
0.243204 0.969975i $$-0.421802\pi$$
$$32$$ 0.500000 + 0.866025i 0.0883883 + 0.153093i
$$33$$ 1.50000 2.59808i 0.261116 0.452267i
$$34$$ 6.00000 1.02899
$$35$$ −2.50000 0.866025i −0.422577 0.146385i
$$36$$ 6.00000 1.00000
$$37$$ −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i $$0.395093\pi$$
−0.981236 + 0.192809i $$0.938240\pi$$
$$38$$ 2.00000 + 3.46410i 0.324443 + 0.561951i
$$39$$ 1.50000 + 2.59808i 0.240192 + 0.416025i
$$40$$ 0.500000 0.866025i 0.0790569 0.136931i
$$41$$ −12.0000 −1.87409 −0.937043 0.349215i $$-0.886448\pi$$
−0.937043 + 0.349215i $$0.886448\pi$$
$$42$$ −1.50000 7.79423i −0.231455 1.20268i
$$43$$ 12.0000 1.82998 0.914991 0.403473i $$-0.132197\pi$$
0.914991 + 0.403473i $$0.132197\pi$$
$$44$$ 0.500000 0.866025i 0.0753778 0.130558i
$$45$$ −3.00000 5.19615i −0.447214 0.774597i
$$46$$ 2.00000 + 3.46410i 0.294884 + 0.510754i
$$47$$ 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i $$-0.689164\pi$$
0.997503 + 0.0706177i $$0.0224970\pi$$
$$48$$ 3.00000 0.433013
$$49$$ −6.50000 + 2.59808i −0.928571 + 0.371154i
$$50$$ −1.00000 −0.141421
$$51$$ 9.00000 15.5885i 1.26025 2.18282i
$$52$$ 0.500000 + 0.866025i 0.0693375 + 0.120096i
$$53$$ 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i $$-0.0314685\pi$$
−0.583036 + 0.812447i $$0.698135\pi$$
$$54$$ 4.50000 7.79423i 0.612372 1.06066i
$$55$$ −1.00000 −0.134840
$$56$$ −0.500000 2.59808i −0.0668153 0.347183i
$$57$$ 12.0000 1.58944
$$58$$ 0.500000 0.866025i 0.0656532 0.113715i
$$59$$ −7.50000 12.9904i −0.976417 1.69120i −0.675178 0.737655i $$-0.735933\pi$$
−0.301239 0.953549i $$-0.597400\pi$$
$$60$$ −1.50000 2.59808i −0.193649 0.335410i
$$61$$ −1.50000 + 2.59808i −0.192055 + 0.332650i −0.945931 0.324367i $$-0.894849\pi$$
0.753876 + 0.657017i $$0.228182\pi$$
$$62$$ −8.00000 −1.01600
$$63$$ −15.0000 5.19615i −1.88982 0.654654i
$$64$$ 1.00000 0.125000
$$65$$ 0.500000 0.866025i 0.0620174 0.107417i
$$66$$ −1.50000 2.59808i −0.184637 0.319801i
$$67$$ 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i $$-0.0260283\pi$$
−0.569066 + 0.822292i $$0.692695\pi$$
$$68$$ 3.00000 5.19615i 0.363803 0.630126i
$$69$$ 12.0000 1.44463
$$70$$ −2.00000 + 1.73205i −0.239046 + 0.207020i
$$71$$ 10.0000 1.18678 0.593391 0.804914i $$-0.297789\pi$$
0.593391 + 0.804914i $$0.297789\pi$$
$$72$$ 3.00000 5.19615i 0.353553 0.612372i
$$73$$ 2.00000 + 3.46410i 0.234082 + 0.405442i 0.959006 0.283387i $$-0.0914581\pi$$
−0.724923 + 0.688830i $$0.758125\pi$$
$$74$$ 4.00000 + 6.92820i 0.464991 + 0.805387i
$$75$$ −1.50000 + 2.59808i −0.173205 + 0.300000i
$$76$$ 4.00000 0.458831
$$77$$ −2.00000 + 1.73205i −0.227921 + 0.197386i
$$78$$ 3.00000 0.339683
$$79$$ −7.50000 + 12.9904i −0.843816 + 1.46153i 0.0428296 + 0.999082i $$0.486363\pi$$
−0.886646 + 0.462450i $$0.846971\pi$$
$$80$$ −0.500000 0.866025i −0.0559017 0.0968246i
$$81$$ −4.50000 7.79423i −0.500000 0.866025i
$$82$$ −6.00000 + 10.3923i −0.662589 + 1.14764i
$$83$$ 10.0000 1.09764 0.548821 0.835940i $$-0.315077\pi$$
0.548821 + 0.835940i $$0.315077\pi$$
$$84$$ −7.50000 2.59808i −0.818317 0.283473i
$$85$$ −6.00000 −0.650791
$$86$$ 6.00000 10.3923i 0.646997 1.12063i
$$87$$ −1.50000 2.59808i −0.160817 0.278543i
$$88$$ −0.500000 0.866025i −0.0533002 0.0923186i
$$89$$ −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i $$-0.936344\pi$$
0.662071 + 0.749441i $$0.269678\pi$$
$$90$$ −6.00000 −0.632456
$$91$$ −0.500000 2.59808i −0.0524142 0.272352i
$$92$$ 4.00000 0.417029
$$93$$ −12.0000 + 20.7846i −1.24434 + 2.15526i
$$94$$ −3.00000 5.19615i −0.309426 0.535942i
$$95$$ −2.00000 3.46410i −0.205196 0.355409i
$$96$$ 1.50000 2.59808i 0.153093 0.265165i
$$97$$ −5.00000 −0.507673 −0.253837 0.967247i $$-0.581693\pi$$
−0.253837 + 0.967247i $$0.581693\pi$$
$$98$$ −1.00000 + 6.92820i −0.101015 + 0.699854i
$$99$$ −6.00000 −0.603023
$$100$$ −0.500000 + 0.866025i −0.0500000 + 0.0866025i
$$101$$ 1.50000 + 2.59808i 0.149256 + 0.258518i 0.930953 0.365140i $$-0.118979\pi$$
−0.781697 + 0.623658i $$0.785646\pi$$
$$102$$ −9.00000 15.5885i −0.891133 1.54349i
$$103$$ −3.00000 + 5.19615i −0.295599 + 0.511992i −0.975124 0.221660i $$-0.928852\pi$$
0.679525 + 0.733652i $$0.262186\pi$$
$$104$$ 1.00000 0.0980581
$$105$$ 1.50000 + 7.79423i 0.146385 + 0.760639i
$$106$$ 6.00000 0.582772
$$107$$ 1.00000 1.73205i 0.0966736 0.167444i −0.813632 0.581380i $$-0.802513\pi$$
0.910306 + 0.413936i $$0.135846\pi$$
$$108$$ −4.50000 7.79423i −0.433013 0.750000i
$$109$$ 3.00000 + 5.19615i 0.287348 + 0.497701i 0.973176 0.230063i $$-0.0738931\pi$$
−0.685828 + 0.727764i $$0.740560\pi$$
$$110$$ −0.500000 + 0.866025i −0.0476731 + 0.0825723i
$$111$$ 24.0000 2.27798
$$112$$ −2.50000 0.866025i −0.236228 0.0818317i
$$113$$ −15.0000 −1.41108 −0.705541 0.708669i $$-0.749296\pi$$
−0.705541 + 0.708669i $$0.749296\pi$$
$$114$$ 6.00000 10.3923i 0.561951 0.973329i
$$115$$ −2.00000 3.46410i −0.186501 0.323029i
$$116$$ −0.500000 0.866025i −0.0464238 0.0804084i
$$117$$ 3.00000 5.19615i 0.277350 0.480384i
$$118$$ −15.0000 −1.38086
$$119$$ −12.0000 + 10.3923i −1.10004 + 0.952661i
$$120$$ −3.00000 −0.273861
$$121$$ −0.500000 + 0.866025i −0.0454545 + 0.0787296i
$$122$$ 1.50000 + 2.59808i 0.135804 + 0.235219i
$$123$$ 18.0000 + 31.1769i 1.62301 + 2.81113i
$$124$$ −4.00000 + 6.92820i −0.359211 + 0.622171i
$$125$$ 1.00000 0.0894427
$$126$$ −12.0000 + 10.3923i −1.06904 + 0.925820i
$$127$$ −1.00000 −0.0887357 −0.0443678 0.999015i $$-0.514127\pi$$
−0.0443678 + 0.999015i $$0.514127\pi$$
$$128$$ 0.500000 0.866025i 0.0441942 0.0765466i
$$129$$ −18.0000 31.1769i −1.58481 2.74497i
$$130$$ −0.500000 0.866025i −0.0438529 0.0759555i
$$131$$ −4.00000 + 6.92820i −0.349482 + 0.605320i −0.986157 0.165812i $$-0.946976\pi$$
0.636676 + 0.771132i $$0.280309\pi$$
$$132$$ −3.00000 −0.261116
$$133$$ −10.0000 3.46410i −0.867110 0.300376i
$$134$$ 7.00000 0.604708
$$135$$ −4.50000 + 7.79423i −0.387298 + 0.670820i
$$136$$ −3.00000 5.19615i −0.257248 0.445566i
$$137$$ −3.50000 6.06218i −0.299025 0.517927i 0.676888 0.736086i $$-0.263328\pi$$
−0.975913 + 0.218159i $$0.929995\pi$$
$$138$$ 6.00000 10.3923i 0.510754 0.884652i
$$139$$ 16.0000 1.35710 0.678551 0.734553i $$-0.262608\pi$$
0.678551 + 0.734553i $$0.262608\pi$$
$$140$$ 0.500000 + 2.59808i 0.0422577 + 0.219578i
$$141$$ −18.0000 −1.51587
$$142$$ 5.00000 8.66025i 0.419591 0.726752i
$$143$$ −0.500000 0.866025i −0.0418121 0.0724207i
$$144$$ −3.00000 5.19615i −0.250000 0.433013i
$$145$$ −0.500000 + 0.866025i −0.0415227 + 0.0719195i
$$146$$ 4.00000 0.331042
$$147$$ 16.5000 + 12.9904i 1.36090 + 1.07143i
$$148$$ 8.00000 0.657596
$$149$$ 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i $$-0.754293\pi$$
0.962348 + 0.271821i $$0.0876260\pi$$
$$150$$ 1.50000 + 2.59808i 0.122474 + 0.212132i
$$151$$ 2.50000 + 4.33013i 0.203447 + 0.352381i 0.949637 0.313353i $$-0.101452\pi$$
−0.746190 + 0.665733i $$0.768119\pi$$
$$152$$ 2.00000 3.46410i 0.162221 0.280976i
$$153$$ −36.0000 −2.91043
$$154$$ 0.500000 + 2.59808i 0.0402911 + 0.209359i
$$155$$ 8.00000 0.642575
$$156$$ 1.50000 2.59808i 0.120096 0.208013i
$$157$$ 6.00000 + 10.3923i 0.478852 + 0.829396i 0.999706 0.0242497i $$-0.00771967\pi$$
−0.520854 + 0.853646i $$0.674386\pi$$
$$158$$ 7.50000 + 12.9904i 0.596668 + 1.03346i
$$159$$ 9.00000 15.5885i 0.713746 1.23625i
$$160$$ −1.00000 −0.0790569
$$161$$ −10.0000 3.46410i −0.788110 0.273009i
$$162$$ −9.00000 −0.707107
$$163$$ −7.50000 + 12.9904i −0.587445 + 1.01749i 0.407120 + 0.913375i $$0.366533\pi$$
−0.994566 + 0.104111i $$0.966800\pi$$
$$164$$ 6.00000 + 10.3923i 0.468521 + 0.811503i
$$165$$ 1.50000 + 2.59808i 0.116775 + 0.202260i
$$166$$ 5.00000 8.66025i 0.388075 0.672166i
$$167$$ −7.00000 −0.541676 −0.270838 0.962625i $$-0.587301\pi$$
−0.270838 + 0.962625i $$0.587301\pi$$
$$168$$ −6.00000 + 5.19615i −0.462910 + 0.400892i
$$169$$ −12.0000 −0.923077
$$170$$ −3.00000 + 5.19615i −0.230089 + 0.398527i
$$171$$ −12.0000 20.7846i −0.917663 1.58944i
$$172$$ −6.00000 10.3923i −0.457496 0.792406i
$$173$$ 0.500000 0.866025i 0.0380143 0.0658427i −0.846392 0.532560i $$-0.821230\pi$$
0.884407 + 0.466717i $$0.154563\pi$$
$$174$$ −3.00000 −0.227429
$$175$$ 2.00000 1.73205i 0.151186 0.130931i
$$176$$ −1.00000 −0.0753778
$$177$$ −22.5000 + 38.9711i −1.69120 + 2.92925i
$$178$$ 3.00000 + 5.19615i 0.224860 + 0.389468i
$$179$$ −3.50000 6.06218i −0.261602 0.453108i 0.705066 0.709142i $$-0.250918\pi$$
−0.966668 + 0.256034i $$0.917584\pi$$
$$180$$ −3.00000 + 5.19615i −0.223607 + 0.387298i
$$181$$ 2.00000 0.148659 0.0743294 0.997234i $$-0.476318\pi$$
0.0743294 + 0.997234i $$0.476318\pi$$
$$182$$ −2.50000 0.866025i −0.185312 0.0641941i
$$183$$ 9.00000 0.665299
$$184$$ 2.00000 3.46410i 0.147442 0.255377i
$$185$$ −4.00000 6.92820i −0.294086 0.509372i
$$186$$ 12.0000 + 20.7846i 0.879883 + 1.52400i
$$187$$ −3.00000 + 5.19615i −0.219382 + 0.379980i
$$188$$ −6.00000 −0.437595
$$189$$ 4.50000 + 23.3827i 0.327327 + 1.70084i
$$190$$ −4.00000 −0.290191
$$191$$ 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i $$-0.607592\pi$$
0.982828 0.184525i $$-0.0590746\pi$$
$$192$$ −1.50000 2.59808i −0.108253 0.187500i
$$193$$ −2.00000 3.46410i −0.143963 0.249351i 0.785022 0.619467i $$-0.212651\pi$$
−0.928986 + 0.370116i $$0.879318\pi$$
$$194$$ −2.50000 + 4.33013i −0.179490 + 0.310885i
$$195$$ −3.00000 −0.214834
$$196$$ 5.50000 + 4.33013i 0.392857 + 0.309295i
$$197$$ 25.0000 1.78118 0.890588 0.454811i $$-0.150293\pi$$
0.890588 + 0.454811i $$0.150293\pi$$
$$198$$ −3.00000 + 5.19615i −0.213201 + 0.369274i
$$199$$ −2.00000 3.46410i −0.141776 0.245564i 0.786389 0.617731i $$-0.211948\pi$$
−0.928166 + 0.372168i $$0.878615\pi$$
$$200$$ 0.500000 + 0.866025i 0.0353553 + 0.0612372i
$$201$$ 10.5000 18.1865i 0.740613 1.28278i
$$202$$ 3.00000 0.211079
$$203$$ 0.500000 + 2.59808i 0.0350931 + 0.182349i
$$204$$ −18.0000 −1.26025
$$205$$ 6.00000 10.3923i 0.419058 0.725830i
$$206$$ 3.00000 + 5.19615i 0.209020 + 0.362033i
$$207$$ −12.0000 20.7846i −0.834058 1.44463i
$$208$$ 0.500000 0.866025i 0.0346688 0.0600481i
$$209$$ −4.00000 −0.276686
$$210$$ 7.50000 + 2.59808i 0.517549 + 0.179284i
$$211$$ 8.00000 0.550743 0.275371 0.961338i $$-0.411199\pi$$
0.275371 + 0.961338i $$0.411199\pi$$
$$212$$ 3.00000 5.19615i 0.206041 0.356873i
$$213$$ −15.0000 25.9808i −1.02778 1.78017i
$$214$$ −1.00000 1.73205i −0.0683586 0.118401i
$$215$$ −6.00000 + 10.3923i −0.409197 + 0.708749i
$$216$$ −9.00000 −0.612372
$$217$$ 16.0000 13.8564i 1.08615 0.940634i
$$218$$ 6.00000 0.406371
$$219$$ 6.00000 10.3923i 0.405442 0.702247i
$$220$$ 0.500000 + 0.866025i 0.0337100 + 0.0583874i
$$221$$ −3.00000 5.19615i −0.201802 0.349531i
$$222$$ 12.0000 20.7846i 0.805387 1.39497i
$$223$$ −12.0000 −0.803579 −0.401790 0.915732i $$-0.631612\pi$$
−0.401790 + 0.915732i $$0.631612\pi$$
$$224$$ −2.00000 + 1.73205i −0.133631 + 0.115728i
$$225$$ 6.00000 0.400000
$$226$$ −7.50000 + 12.9904i −0.498893 + 0.864107i
$$227$$ −9.00000 15.5885i −0.597351 1.03464i −0.993210 0.116331i $$-0.962887\pi$$
0.395860 0.918311i $$-0.370447\pi$$
$$228$$ −6.00000 10.3923i −0.397360 0.688247i
$$229$$ 2.00000 3.46410i 0.132164 0.228914i −0.792347 0.610071i $$-0.791141\pi$$
0.924510 + 0.381157i $$0.124474\pi$$
$$230$$ −4.00000 −0.263752
$$231$$ 7.50000 + 2.59808i 0.493464 + 0.170941i
$$232$$ −1.00000 −0.0656532
$$233$$ 8.00000 13.8564i 0.524097 0.907763i −0.475509 0.879711i $$-0.657736\pi$$
0.999606 0.0280525i $$-0.00893057\pi$$
$$234$$ −3.00000 5.19615i −0.196116 0.339683i
$$235$$ 3.00000 + 5.19615i 0.195698 + 0.338960i
$$236$$ −7.50000 + 12.9904i −0.488208 + 0.845602i
$$237$$ 45.0000 2.92306
$$238$$ 3.00000 + 15.5885i 0.194461 + 1.01045i
$$239$$ −11.0000 −0.711531 −0.355765 0.934575i $$-0.615780\pi$$
−0.355765 + 0.934575i $$0.615780\pi$$
$$240$$ −1.50000 + 2.59808i −0.0968246 + 0.167705i
$$241$$ 8.00000 + 13.8564i 0.515325 + 0.892570i 0.999842 + 0.0177875i $$0.00566223\pi$$
−0.484516 + 0.874782i $$0.661004\pi$$
$$242$$ 0.500000 + 0.866025i 0.0321412 + 0.0556702i
$$243$$ 0 0
$$244$$ 3.00000 0.192055
$$245$$ 1.00000 6.92820i 0.0638877 0.442627i
$$246$$ 36.0000 2.29528
$$247$$ 2.00000 3.46410i 0.127257 0.220416i
$$248$$ 4.00000 + 6.92820i 0.254000 + 0.439941i
$$249$$ −15.0000 25.9808i −0.950586 1.64646i
$$250$$ 0.500000 0.866025i 0.0316228 0.0547723i
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ 3.00000 + 15.5885i 0.188982 + 0.981981i
$$253$$ −4.00000 −0.251478
$$254$$ −0.500000 + 0.866025i −0.0313728 + 0.0543393i
$$255$$ 9.00000 + 15.5885i 0.563602 + 0.976187i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ −7.50000 + 12.9904i −0.467837 + 0.810318i −0.999325 0.0367485i $$-0.988300\pi$$
0.531487 + 0.847066i $$0.321633\pi$$
$$258$$ −36.0000 −2.24126
$$259$$ −20.0000 6.92820i −1.24274 0.430498i
$$260$$ −1.00000 −0.0620174
$$261$$ −3.00000 + 5.19615i −0.185695 + 0.321634i
$$262$$ 4.00000 + 6.92820i 0.247121 + 0.428026i
$$263$$ 7.50000 + 12.9904i 0.462470 + 0.801021i 0.999083 0.0428069i $$-0.0136300\pi$$
−0.536614 + 0.843828i $$0.680297\pi$$
$$264$$ −1.50000 + 2.59808i −0.0923186 + 0.159901i
$$265$$ −6.00000 −0.368577
$$266$$ −8.00000 + 6.92820i −0.490511 + 0.424795i
$$267$$ 18.0000 1.10158
$$268$$ 3.50000 6.06218i 0.213797 0.370306i
$$269$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$270$$ 4.50000 + 7.79423i 0.273861 + 0.474342i
$$271$$ 10.5000 18.1865i 0.637830 1.10475i −0.348079 0.937465i $$-0.613166\pi$$
0.985908 0.167288i $$-0.0535009\pi$$
$$272$$ −6.00000 −0.363803
$$273$$ −6.00000 + 5.19615i −0.363137 + 0.314485i
$$274$$ −7.00000 −0.422885
$$275$$ 0.500000 0.866025i 0.0301511 0.0522233i
$$276$$ −6.00000 10.3923i −0.361158 0.625543i
$$277$$ −12.5000 21.6506i −0.751052 1.30086i −0.947313 0.320309i $$-0.896213\pi$$
0.196261 0.980552i $$-0.437120\pi$$
$$278$$ 8.00000 13.8564i 0.479808 0.831052i
$$279$$ 48.0000 2.87368
$$280$$ 2.50000 + 0.866025i 0.149404 + 0.0517549i
$$281$$ −12.0000 −0.715860 −0.357930 0.933748i $$-0.616517\pi$$
−0.357930 + 0.933748i $$0.616517\pi$$
$$282$$ −9.00000 + 15.5885i −0.535942 + 0.928279i
$$283$$ 8.00000 + 13.8564i 0.475551 + 0.823678i 0.999608 0.0280052i $$-0.00891551\pi$$
−0.524057 + 0.851683i $$0.675582\pi$$
$$284$$ −5.00000 8.66025i −0.296695 0.513892i
$$285$$ −6.00000 + 10.3923i −0.355409 + 0.615587i
$$286$$ −1.00000 −0.0591312
$$287$$ −6.00000 31.1769i −0.354169 1.84032i
$$288$$ −6.00000 −0.353553
$$289$$ −9.50000 + 16.4545i −0.558824 + 0.967911i
$$290$$ 0.500000 + 0.866025i 0.0293610 + 0.0508548i
$$291$$ 7.50000 + 12.9904i 0.439658 + 0.761510i
$$292$$ 2.00000 3.46410i 0.117041 0.202721i
$$293$$ 26.0000 1.51894 0.759468 0.650545i $$-0.225459\pi$$
0.759468 + 0.650545i $$0.225459\pi$$
$$294$$ 19.5000 7.79423i 1.13726 0.454569i
$$295$$ 15.0000 0.873334
$$296$$ 4.00000 6.92820i 0.232495 0.402694i
$$297$$ 4.50000 + 7.79423i 0.261116 + 0.452267i
$$298$$ −3.00000 5.19615i −0.173785 0.301005i
$$299$$ 2.00000 3.46410i 0.115663 0.200334i
$$300$$ 3.00000 0.173205
$$301$$ 6.00000 + 31.1769i 0.345834 + 1.79701i
$$302$$ 5.00000 0.287718
$$303$$ 4.50000 7.79423i 0.258518 0.447767i
$$304$$ −2.00000 3.46410i −0.114708 0.198680i
$$305$$ −1.50000 2.59808i −0.0858898 0.148765i
$$306$$ −18.0000 + 31.1769i −1.02899 + 1.78227i
$$307$$ −26.0000 −1.48390 −0.741949 0.670456i $$-0.766098\pi$$
−0.741949 + 0.670456i $$0.766098\pi$$
$$308$$ 2.50000 + 0.866025i 0.142451 + 0.0493464i
$$309$$ 18.0000 1.02398
$$310$$ 4.00000 6.92820i 0.227185 0.393496i
$$311$$ −3.00000 5.19615i −0.170114 0.294647i 0.768345 0.640036i $$-0.221080\pi$$
−0.938460 + 0.345389i $$0.887747\pi$$
$$312$$ −1.50000 2.59808i −0.0849208 0.147087i
$$313$$ 1.50000 2.59808i 0.0847850 0.146852i −0.820515 0.571626i $$-0.806313\pi$$
0.905300 + 0.424774i $$0.139646\pi$$
$$314$$ 12.0000 0.677199
$$315$$ 12.0000 10.3923i 0.676123 0.585540i
$$316$$ 15.0000 0.843816
$$317$$ 12.0000 20.7846i 0.673987 1.16738i −0.302777 0.953062i $$-0.597914\pi$$
0.976764 0.214318i $$-0.0687530\pi$$
$$318$$ −9.00000 15.5885i −0.504695 0.874157i
$$319$$ 0.500000 + 0.866025i 0.0279946 + 0.0484881i
$$320$$ −0.500000 + 0.866025i −0.0279508 + 0.0484123i
$$321$$ −6.00000 −0.334887
$$322$$ −8.00000 + 6.92820i −0.445823 + 0.386094i
$$323$$ −24.0000 −1.33540
$$324$$ −4.50000 + 7.79423i −0.250000 + 0.433013i
$$325$$ 0.500000 + 0.866025i 0.0277350 + 0.0480384i
$$326$$ 7.50000 + 12.9904i 0.415387 + 0.719471i
$$327$$ 9.00000 15.5885i 0.497701 0.862044i
$$328$$ 12.0000 0.662589
$$329$$ 15.0000 + 5.19615i 0.826977 + 0.286473i
$$330$$ 3.00000 0.165145
$$331$$ 3.50000 6.06218i 0.192377 0.333207i −0.753660 0.657264i $$-0.771714\pi$$
0.946038 + 0.324057i $$0.105047\pi$$
$$332$$ −5.00000 8.66025i −0.274411 0.475293i
$$333$$ −24.0000 41.5692i −1.31519 2.27798i
$$334$$ −3.50000 + 6.06218i −0.191511 + 0.331708i
$$335$$ −7.00000 −0.382451
$$336$$ 1.50000 + 7.79423i 0.0818317 + 0.425210i
$$337$$ −32.0000 −1.74315 −0.871576 0.490261i $$-0.836901\pi$$
−0.871576 + 0.490261i $$0.836901\pi$$
$$338$$ −6.00000 + 10.3923i −0.326357 + 0.565267i
$$339$$ 22.5000 + 38.9711i 1.22203 + 2.11662i
$$340$$ 3.00000 + 5.19615i 0.162698 + 0.281801i
$$341$$ 4.00000 6.92820i 0.216612 0.375183i
$$342$$ −24.0000 −1.29777
$$343$$ −10.0000 15.5885i −0.539949 0.841698i
$$344$$ −12.0000 −0.646997
$$345$$ −6.00000 + 10.3923i −0.323029 + 0.559503i
$$346$$ −0.500000 0.866025i −0.0268802 0.0465578i
$$347$$ −15.0000 25.9808i −0.805242 1.39472i −0.916127 0.400887i $$-0.868702\pi$$
0.110885 0.993833i $$-0.464631\pi$$
$$348$$ −1.50000 + 2.59808i −0.0804084 + 0.139272i
$$349$$ −34.0000 −1.81998 −0.909989 0.414632i $$-0.863910\pi$$
−0.909989 + 0.414632i $$0.863910\pi$$
$$350$$ −0.500000 2.59808i −0.0267261 0.138873i
$$351$$ −9.00000 −0.480384
$$352$$ −0.500000 + 0.866025i −0.0266501 + 0.0461593i
$$353$$ 9.00000 + 15.5885i 0.479022 + 0.829690i 0.999711 0.0240566i $$-0.00765819\pi$$
−0.520689 + 0.853746i $$0.674325\pi$$
$$354$$ 22.5000 + 38.9711i 1.19586 + 2.07129i
$$355$$ −5.00000 + 8.66025i −0.265372 + 0.459639i
$$356$$ 6.00000 0.317999
$$357$$ 45.0000 + 15.5885i 2.38165 + 0.825029i
$$358$$ −7.00000 −0.369961
$$359$$ −1.50000 + 2.59808i −0.0791670 + 0.137121i −0.902891 0.429870i $$-0.858559\pi$$
0.823724 + 0.566991i $$0.191893\pi$$
$$360$$ 3.00000 + 5.19615i 0.158114 + 0.273861i
$$361$$ 1.50000 + 2.59808i 0.0789474 + 0.136741i
$$362$$ 1.00000 1.73205i 0.0525588 0.0910346i
$$363$$ 3.00000 0.157459
$$364$$ −2.00000 + 1.73205i −0.104828 + 0.0907841i
$$365$$ −4.00000 −0.209370
$$366$$ 4.50000 7.79423i 0.235219 0.407411i
$$367$$ 12.0000 + 20.7846i 0.626395 + 1.08495i 0.988269 + 0.152721i $$0.0488036\pi$$
−0.361874 + 0.932227i $$0.617863\pi$$
$$368$$ −2.00000 3.46410i −0.104257 0.180579i
$$369$$ 36.0000 62.3538i 1.87409 3.24601i
$$370$$ −8.00000 −0.415900
$$371$$ −12.0000 + 10.3923i −0.623009 + 0.539542i
$$372$$ 24.0000 1.24434
$$373$$ 1.50000 2.59808i 0.0776671 0.134523i −0.824576 0.565751i $$-0.808586\pi$$
0.902243 + 0.431228i $$0.141920\pi$$
$$374$$ 3.00000 + 5.19615i 0.155126 + 0.268687i
$$375$$ −1.50000 2.59808i −0.0774597 0.134164i
$$376$$ −3.00000 + 5.19615i −0.154713 + 0.267971i
$$377$$ −1.00000 −0.0515026
$$378$$ 22.5000 + 7.79423i 1.15728 + 0.400892i
$$379$$ 13.0000 0.667765 0.333883 0.942615i $$-0.391641\pi$$
0.333883 + 0.942615i $$0.391641\pi$$
$$380$$ −2.00000 + 3.46410i −0.102598 + 0.177705i
$$381$$ 1.50000 + 2.59808i 0.0768473 + 0.133103i
$$382$$ −9.00000 15.5885i −0.460480 0.797575i
$$383$$ 7.00000 12.1244i 0.357683 0.619526i −0.629890 0.776684i $$-0.716900\pi$$
0.987573 + 0.157159i $$0.0502334\pi$$
$$384$$ −3.00000 −0.153093
$$385$$ −0.500000 2.59808i −0.0254824 0.132410i
$$386$$ −4.00000 −0.203595
$$387$$ −36.0000 + 62.3538i −1.82998 + 3.16962i
$$388$$ 2.50000 + 4.33013i 0.126918 + 0.219829i
$$389$$ 11.0000 + 19.0526i 0.557722 + 0.966003i 0.997686 + 0.0679877i $$0.0216579\pi$$
−0.439964 + 0.898015i $$0.645009\pi$$
$$390$$ −1.50000 + 2.59808i −0.0759555 + 0.131559i
$$391$$ −24.0000 −1.21373
$$392$$ 6.50000 2.59808i 0.328300 0.131223i
$$393$$ 24.0000 1.21064
$$394$$ 12.5000 21.6506i 0.629741 1.09074i
$$395$$ −7.50000 12.9904i −0.377366 0.653617i
$$396$$ 3.00000 + 5.19615i 0.150756 + 0.261116i
$$397$$ −7.00000 + 12.1244i −0.351320 + 0.608504i −0.986481 0.163876i $$-0.947600\pi$$
0.635161 + 0.772380i $$0.280934\pi$$
$$398$$ −4.00000 −0.200502
$$399$$ 6.00000 + 31.1769i 0.300376 + 1.56080i
$$400$$ 1.00000 0.0500000
$$401$$ −11.5000 + 19.9186i −0.574283 + 0.994687i 0.421837 + 0.906672i $$0.361386\pi$$
−0.996119 + 0.0880147i $$0.971948\pi$$
$$402$$ −10.5000 18.1865i −0.523692 0.907062i
$$403$$ 4.00000 + 6.92820i 0.199254 + 0.345118i
$$404$$ 1.50000 2.59808i 0.0746278 0.129259i
$$405$$ 9.00000 0.447214
$$406$$ 2.50000 + 0.866025i 0.124073 + 0.0429801i
$$407$$ −8.00000 −0.396545
$$408$$ −9.00000 + 15.5885i −0.445566 + 0.771744i
$$409$$ 7.00000 + 12.1244i 0.346128 + 0.599511i 0.985558 0.169338i $$-0.0541630\pi$$
−0.639430 + 0.768849i $$0.720830\pi$$
$$410$$ −6.00000 10.3923i −0.296319 0.513239i
$$411$$ −10.5000 + 18.1865i −0.517927 + 0.897076i
$$412$$ 6.00000 0.295599
$$413$$ 30.0000 25.9808i 1.47620 1.27843i
$$414$$ −24.0000 −1.17954
$$415$$ −5.00000 + 8.66025i −0.245440 + 0.425115i
$$416$$ −0.500000 0.866025i −0.0245145 0.0424604i
$$417$$ −24.0000 41.5692i −1.17529 2.03565i
$$418$$ −2.00000 + 3.46410i −0.0978232 + 0.169435i
$$419$$ −24.0000 −1.17248 −0.586238 0.810139i $$-0.699392\pi$$
−0.586238 + 0.810139i $$0.699392\pi$$
$$420$$ 6.00000 5.19615i 0.292770 0.253546i
$$421$$ 32.0000 1.55958 0.779792 0.626038i $$-0.215325\pi$$
0.779792 + 0.626038i $$0.215325\pi$$
$$422$$ 4.00000 6.92820i 0.194717 0.337260i
$$423$$ 18.0000 + 31.1769i 0.875190 + 1.51587i
$$424$$ −3.00000 5.19615i −0.145693 0.252347i
$$425$$ 3.00000 5.19615i 0.145521 0.252050i
$$426$$ −30.0000 −1.45350
$$427$$ −7.50000 2.59808i −0.362950 0.125730i
$$428$$ −2.00000 −0.0966736
$$429$$ −1.50000 + 2.59808i −0.0724207 + 0.125436i
$$430$$ 6.00000 + 10.3923i 0.289346 + 0.501161i
$$431$$ −3.50000 6.06218i −0.168589 0.292005i 0.769335 0.638846i $$-0.220588\pi$$
−0.937924 + 0.346841i $$0.887254\pi$$
$$432$$ −4.50000 + 7.79423i −0.216506 + 0.375000i
$$433$$ −10.0000 −0.480569 −0.240285 0.970702i $$-0.577241\pi$$
−0.240285 + 0.970702i $$0.577241\pi$$
$$434$$ −4.00000 20.7846i −0.192006 0.997693i
$$435$$ 3.00000 0.143839
$$436$$ 3.00000 5.19615i 0.143674 0.248851i
$$437$$ −8.00000 13.8564i −0.382692 0.662842i
$$438$$ −6.00000 10.3923i −0.286691 0.496564i
$$439$$ 9.50000 16.4545i 0.453410 0.785330i −0.545185 0.838316i $$-0.683541\pi$$
0.998595 + 0.0529862i $$0.0168739\pi$$
$$440$$ 1.00000 0.0476731
$$441$$ 6.00000 41.5692i 0.285714 1.97949i
$$442$$ −6.00000 −0.285391
$$443$$ 14.0000 24.2487i 0.665160 1.15209i −0.314082 0.949396i $$-0.601697\pi$$
0.979242 0.202695i $$-0.0649700\pi$$
$$444$$ −12.0000 20.7846i −0.569495 0.986394i
$$445$$ −3.00000 5.19615i −0.142214 0.246321i
$$446$$ −6.00000 + 10.3923i −0.284108 + 0.492090i
$$447$$ −18.0000 −0.851371
$$448$$ 0.500000 + 2.59808i 0.0236228 + 0.122748i
$$449$$ 26.0000 1.22702 0.613508 0.789689i $$-0.289758\pi$$
0.613508 + 0.789689i $$0.289758\pi$$
$$450$$ 3.00000 5.19615i 0.141421 0.244949i
$$451$$ −6.00000 10.3923i −0.282529 0.489355i
$$452$$ 7.50000 + 12.9904i 0.352770 + 0.611016i
$$453$$ 7.50000 12.9904i 0.352381 0.610341i
$$454$$ −18.0000 −0.844782
$$455$$ 2.50000 + 0.866025i 0.117202 + 0.0405999i
$$456$$ −12.0000 −0.561951
$$457$$ −17.0000 + 29.4449i −0.795226 + 1.37737i 0.127469 + 0.991843i $$0.459315\pi$$
−0.922695 + 0.385530i $$0.874019\pi$$
$$458$$ −2.00000 3.46410i −0.0934539 0.161867i
$$459$$ 27.0000 + 46.7654i 1.26025 + 2.18282i
$$460$$ −2.00000 + 3.46410i −0.0932505 + 0.161515i
$$461$$ −15.0000 −0.698620 −0.349310 0.937007i $$-0.613584\pi$$
−0.349310 + 0.937007i $$0.613584\pi$$
$$462$$ 6.00000 5.19615i 0.279145 0.241747i
$$463$$ 34.0000 1.58011 0.790057 0.613033i $$-0.210051\pi$$
0.790057 + 0.613033i $$0.210051\pi$$
$$464$$ −0.500000 + 0.866025i −0.0232119 + 0.0402042i
$$465$$ −12.0000 20.7846i −0.556487 0.963863i
$$466$$ −8.00000 13.8564i −0.370593 0.641886i
$$467$$ 18.0000 31.1769i 0.832941 1.44270i −0.0627555 0.998029i $$-0.519989\pi$$
0.895696 0.444667i $$-0.146678\pi$$
$$468$$ −6.00000 −0.277350
$$469$$ −14.0000 + 12.1244i −0.646460 + 0.559851i
$$470$$ 6.00000 0.276759
$$471$$ 18.0000 31.1769i 0.829396 1.43656i
$$472$$ 7.50000 + 12.9904i 0.345215 + 0.597931i
$$473$$ 6.00000 + 10.3923i 0.275880 + 0.477839i
$$474$$ 22.5000 38.9711i 1.03346 1.79000i
$$475$$ 4.00000 0.183533
$$476$$ 15.0000 + 5.19615i 0.687524 + 0.238165i
$$477$$ −36.0000 −1.64833
$$478$$ −5.50000 + 9.52628i −0.251564 + 0.435722i
$$479$$ 7.50000 + 12.9904i 0.342684 + 0.593546i 0.984930 0.172953i $$-0.0553307\pi$$
−0.642246 + 0.766498i $$0.721997\pi$$
$$480$$ 1.50000 + 2.59808i 0.0684653 + 0.118585i
$$481$$ 4.00000 6.92820i 0.182384 0.315899i
$$482$$ 16.0000 0.728780
$$483$$ 6.00000 + 31.1769i 0.273009 + 1.41860i
$$484$$ 1.00000 0.0454545
$$485$$ 2.50000 4.33013i 0.113519 0.196621i
$$486$$ 0 0
$$487$$ 18.0000 + 31.1769i 0.815658 + 1.41276i 0.908855 + 0.417113i $$0.136958\pi$$
−0.0931967 + 0.995648i $$0.529709\pi$$
$$488$$ 1.50000 2.59808i 0.0679018 0.117609i
$$489$$ 45.0000 2.03497
$$490$$ −5.50000 4.33013i −0.248465 0.195615i
$$491$$ −14.0000 −0.631811 −0.315906 0.948791i $$-0.602308\pi$$
−0.315906 + 0.948791i $$0.602308\pi$$
$$492$$ 18.0000 31.1769i 0.811503 1.40556i
$$493$$ 3.00000 + 5.19615i 0.135113 + 0.234023i
$$494$$ −2.00000 3.46410i −0.0899843 0.155857i
$$495$$ 3.00000 5.19615i 0.134840 0.233550i
$$496$$ 8.00000 0.359211
$$497$$ 5.00000 + 25.9808i 0.224281 + 1.16540i
$$498$$ −30.0000 −1.34433
$$499$$ −18.0000 + 31.1769i −0.805791 + 1.39567i 0.109965 + 0.993935i $$0.464926\pi$$
−0.915756 + 0.401735i $$0.868407\pi$$
$$500$$ −0.500000 0.866025i −0.0223607 0.0387298i
$$501$$ 10.5000 + 18.1865i 0.469105 + 0.812514i
$$502$$ 0 0
$$503$$ 9.00000 0.401290 0.200645 0.979664i $$-0.435696\pi$$
0.200645 + 0.979664i $$0.435696\pi$$
$$504$$ 15.0000 + 5.19615i 0.668153 + 0.231455i
$$505$$ −3.00000 −0.133498
$$506$$ −2.00000 + 3.46410i −0.0889108 + 0.153998i
$$507$$ 18.0000 + 31.1769i 0.799408 + 1.38462i
$$508$$ 0.500000 + 0.866025i 0.0221839 + 0.0384237i
$$509$$ 21.0000 36.3731i 0.930809 1.61221i 0.148866 0.988857i $$-0.452438\pi$$
0.781943 0.623350i $$-0.214229\pi$$
$$510$$ 18.0000 0.797053
$$511$$ −8.00000 + 6.92820i −0.353899 + 0.306486i
$$512$$ −1.00000 −0.0441942
$$513$$ −18.0000 + 31.1769i −0.794719 + 1.37649i
$$514$$ 7.50000 + 12.9904i 0.330811 + 0.572981i
$$515$$ −3.00000 5.19615i −0.132196 0.228970i
$$516$$ −18.0000 + 31.1769i −0.792406 + 1.37249i
$$517$$ 6.00000 0.263880
$$518$$ −16.0000 + 13.8564i −0.703000 + 0.608816i
$$519$$ −3.00000 −0.131685
$$520$$ −0.500000 + 0.866025i −0.0219265 + 0.0379777i
$$521$$ −5.00000 8.66025i −0.219054 0.379413i 0.735465 0.677563i $$-0.236964\pi$$
−0.954519 + 0.298150i $$0.903630\pi$$
$$522$$ 3.00000 + 5.19615i 0.131306 + 0.227429i
$$523$$ −11.0000 + 19.0526i −0.480996 + 0.833110i −0.999762 0.0218062i $$-0.993058\pi$$
0.518766 + 0.854916i $$0.326392\pi$$
$$524$$ 8.00000 0.349482
$$525$$ −7.50000 2.59808i −0.327327 0.113389i
$$526$$ 15.0000 0.654031
$$527$$ 24.0000 41.5692i 1.04546 1.81078i
$$528$$ 1.50000 + 2.59808i 0.0652791 + 0.113067i
$$529$$ 3.50000 + 6.06218i 0.152174 + 0.263573i
$$530$$ −3.00000 + 5.19615i −0.130312 + 0.225706i
$$531$$ 90.0000 3.90567
$$532$$ 2.00000 + 10.3923i 0.0867110 + 0.450564i
$$533$$ 12.0000 0.519778
$$534$$ 9.00000 15.5885i 0.389468 0.674579i
$$535$$ 1.00000 + 1.73205i 0.0432338 + 0.0748831i
$$536$$ −3.50000 6.06218i −0.151177 0.261846i
$$537$$ −10.5000 + 18.1865i −0.453108 + 0.784807i
$$538$$ 0 0
$$539$$ −5.50000 4.33013i −0.236902 0.186512i
$$540$$ 9.00000 0.387298
$$541$$ 8.50000 14.7224i 0.365444 0.632967i −0.623404 0.781900i $$-0.714251\pi$$
0.988847 + 0.148933i $$0.0475840\pi$$
$$542$$ −10.5000 18.1865i −0.451014 0.781179i
$$543$$ −3.00000 5.19615i −0.128742 0.222988i
$$544$$ −3.00000 + 5.19615i −0.128624 + 0.222783i
$$545$$ −6.00000 −0.257012
$$546$$ 1.50000 + 7.79423i 0.0641941 + 0.333562i
$$547$$ 18.0000 0.769624 0.384812 0.922995i $$-0.374266\pi$$
0.384812 + 0.922995i $$0.374266\pi$$
$$548$$ −3.50000 + 6.06218i −0.149513 + 0.258963i
$$549$$ −9.00000 15.5885i −0.384111 0.665299i
$$550$$ −0.500000 0.866025i −0.0213201 0.0369274i
$$551$$ −2.00000 + 3.46410i −0.0852029 + 0.147576i
$$552$$ −12.0000 −0.510754
$$553$$ −37.5000 12.9904i −1.59466 0.552407i
$$554$$ −25.0000 −1.06215
$$555$$ −12.0000 + 20.7846i −0.509372 + 0.882258i
$$556$$ −8.00000 13.8564i −0.339276 0.587643i
$$557$$ −3.00000 5.19615i −0.127114 0.220168i 0.795443 0.606028i $$-0.207238\pi$$
−0.922557 + 0.385860i $$0.873905\pi$$
$$558$$ 24.0000 41.5692i 1.01600 1.75977i
$$559$$ −12.0000 −0.507546
$$560$$ 2.00000 1.73205i 0.0845154 0.0731925i
$$561$$ 18.0000 0.759961
$$562$$ −6.00000 + 10.3923i −0.253095 + 0.438373i
$$563$$ 14.0000 + 24.2487i 0.590030 + 1.02196i 0.994228 + 0.107290i $$0.0342173\pi$$
−0.404198 + 0.914671i $$0.632449\pi$$
$$564$$ 9.00000 + 15.5885i 0.378968 + 0.656392i
$$565$$ 7.50000 12.9904i 0.315527 0.546509i
$$566$$ 16.0000 0.672530
$$567$$ 18.0000 15.5885i 0.755929 0.654654i
$$568$$ −10.0000 −0.419591
$$569$$ 2.00000 3.46410i 0.0838444 0.145223i −0.821054 0.570851i $$-0.806613\pi$$
0.904898 + 0.425628i $$0.139947\pi$$
$$570$$ 6.00000 + 10.3923i 0.251312 + 0.435286i
$$571$$ −15.0000 25.9808i −0.627730 1.08726i −0.988006 0.154415i $$-0.950651\pi$$
0.360276 0.932846i $$-0.382683\pi$$
$$572$$ −0.500000 + 0.866025i −0.0209061 + 0.0362103i
$$573$$ −54.0000 −2.25588
$$574$$ −30.0000 10.3923i −1.25218 0.433766i
$$575$$ 4.00000 0.166812
$$576$$ −3.00000 + 5.19615i −0.125000 + 0.216506i
$$577$$ 15.5000 + 26.8468i 0.645273 + 1.11765i 0.984238 + 0.176847i $$0.0565899\pi$$
−0.338965 + 0.940799i $$0.610077\pi$$
$$578$$ 9.50000 + 16.4545i 0.395148 + 0.684416i
$$579$$ −6.00000 + 10.3923i −0.249351 + 0.431889i
$$580$$ 1.00000 0.0415227
$$581$$ 5.00000 + 25.9808i 0.207435 + 1.07786i
$$582$$ 15.0000 0.621770
$$583$$ −3.00000 + 5.19615i −0.124247 + 0.215203i
$$584$$ −2.00000 3.46410i −0.0827606 0.143346i
$$585$$ 3.00000 + 5.19615i 0.124035 + 0.214834i
$$586$$ 13.0000 22.5167i 0.537025 0.930155i
$$587$$ 11.0000 0.454019 0.227009 0.973893i $$-0.427105\pi$$
0.227009 + 0.973893i $$0.427105\pi$$
$$588$$ 3.00000 20.7846i 0.123718 0.857143i
$$589$$ 32.0000 1.31854
$$590$$ 7.50000 12.9904i 0.308770 0.534806i
$$591$$ −37.5000 64.9519i −1.54254 2.67176i
$$592$$ −4.00000 6.92820i −0.164399 0.284747i
$$593$$ 3.00000 5.19615i 0.123195 0.213380i −0.797831 0.602881i $$-0.794019\pi$$
0.921026 + 0.389501i $$0.127353\pi$$
$$594$$ 9.00000 0.369274
$$595$$ −3.00000 15.5885i −0.122988 0.639064i
$$596$$ −6.00000 −0.245770
$$597$$ −6.00000 + 10.3923i −0.245564 + 0.425329i
$$598$$ −2.00000 3.46410i −0.0817861 0.141658i
$$599$$ 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i $$-0.0878284\pi$$
−0.717021 + 0.697051i $$0.754495\pi$$
$$600$$ 1.50000 2.59808i 0.0612372 0.106066i
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ 30.0000 + 10.3923i 1.22271 + 0.423559i
$$603$$ −42.0000 −1.71037
$$604$$ 2.50000 4.33013i 0.101724 0.176190i
$$605$$ −0.500000 0.866025i −0.0203279 0.0352089i
$$606$$ −4.50000 7.79423i −0.182800 0.316619i
$$607$$ 8.00000 13.8564i 0.324710 0.562414i −0.656744 0.754114i $$-0.728067\pi$$
0.981454 + 0.191700i $$0.0614000\pi$$
$$608$$ −4.00000 −0.162221
$$609$$ 6.00000 5.19615i 0.243132 0.210559i
$$610$$ −3.00000 −0.121466
$$611$$ −3.00000 + 5.19615i −0.121367 + 0.210214i
$$612$$ 18.0000 + 31.1769i 0.727607 + 1.26025i
$$613$$ 13.0000 + 22.5167i 0.525065 + 0.909439i 0.999574 + 0.0291886i $$0.00929235\pi$$
−0.474509 + 0.880251i $$0.657374\pi$$
$$614$$ −13.0000 + 22.5167i −0.524637 + 0.908698i
$$615$$ −36.0000 −1.45166
$$616$$ 2.00000 1.73205i 0.0805823 0.0697863i
$$617$$ −3.00000 −0.120775 −0.0603877 0.998175i $$-0.519234\pi$$
−0.0603877 + 0.998175i $$0.519234\pi$$
$$618$$ 9.00000 15.5885i 0.362033 0.627060i
$$619$$ −14.0000 24.2487i −0.562708 0.974638i −0.997259 0.0739910i $$-0.976426\pi$$
0.434551 0.900647i $$-0.356907\pi$$
$$620$$ −4.00000 6.92820i −0.160644 0.278243i
$$621$$ −18.0000 + 31.1769i −0.722315 + 1.25109i
$$622$$ −6.00000 −0.240578
$$623$$ −15.0000 5.19615i −0.600962 0.208179i
$$624$$ −3.00000 −0.120096
$$625$$ −0.500000 + 0.866025i −0.0200000 + 0.0346410i
$$626$$ −1.50000 2.59808i −0.0599521 0.103840i
$$627$$ 6.00000 + 10.3923i 0.239617 + 0.415029i
$$628$$ 6.00000 10.3923i 0.239426 0.414698i
$$629$$ −48.0000 −1.91389
$$630$$ −3.00000 15.5885i −0.119523 0.621059i
$$631$$ −10.0000 −0.398094 −0.199047 0.979990i $$-0.563785\pi$$
−0.199047 + 0.979990i $$0.563785\pi$$
$$632$$ 7.50000 12.9904i 0.298334 0.516730i
$$633$$ −12.0000 20.7846i −0.476957 0.826114i
$$634$$ −12.0000 20.7846i −0.476581 0.825462i
$$635$$ 0.500000 0.866025i 0.0198419 0.0343672i
$$636$$ −18.0000 −0.713746
$$637$$ 6.50000 2.59808i 0.257539 0.102940i
$$638$$ 1.00000 0.0395904
$$639$$ −30.0000 + 51.9615i −1.18678 + 2.05557i
$$640$$ 0.500000 + 0.866025i 0.0197642 + 0.0342327i
$$641$$ −18.5000 32.0429i −0.730706 1.26562i −0.956582 0.291464i $$-0.905858\pi$$
0.225876 0.974156i $$-0.427476\pi$$
$$642$$ −3.00000 + 5.19615i −0.118401 + 0.205076i
$$643$$ 47.0000 1.85350 0.926750 0.375680i $$-0.122591\pi$$
0.926750 + 0.375680i $$0.122591\pi$$
$$644$$ 2.00000 + 10.3923i 0.0788110 + 0.409514i
$$645$$ 36.0000 1.41750
$$646$$ −12.0000 + 20.7846i −0.472134 + 0.817760i
$$647$$ 11.0000 + 19.0526i 0.432455 + 0.749033i 0.997084 0.0763112i $$-0.0243142\pi$$
−0.564629 + 0.825345i $$0.690981\pi$$
$$648$$ 4.50000 + 7.79423i 0.176777 + 0.306186i
$$649$$ 7.50000 12.9904i 0.294401 0.509917i
$$650$$ 1.00000 0.0392232
$$651$$ −60.0000 20.7846i −2.35159 0.814613i
$$652$$ 15.0000 0.587445
$$653$$ 12.0000 20.7846i 0.469596 0.813365i −0.529799 0.848123i $$-0.677733\pi$$
0.999396 + 0.0347583i $$0.0110661\pi$$
$$654$$ −9.00000 15.5885i −0.351928 0.609557i
$$655$$ −4.00000 6.92820i −0.156293 0.270707i
$$656$$ 6.00000 10.3923i 0.234261 0.405751i
$$657$$ −24.0000 −0.936329
$$658$$ 12.0000 10.3923i 0.467809 0.405134i
$$659$$ −4.00000 −0.155818 −0.0779089 0.996960i $$-0.524824\pi$$
−0.0779089 + 0.996960i $$0.524824\pi$$
$$660$$ 1.50000 2.59808i 0.0583874 0.101130i
$$661$$ −1.00000 1.73205i −0.0388955 0.0673690i 0.845922 0.533306i $$-0.179051\pi$$
−0.884818 + 0.465937i $$0.845717\pi$$
$$662$$ −3.50000 6.06218i −0.136031 0.235613i
$$663$$ −9.00000 + 15.5885i −0.349531 + 0.605406i
$$664$$ −10.0000 −0.388075
$$665$$ 8.00000 6.92820i 0.310227 0.268664i
$$666$$ −48.0000 −1.85996
$$667$$ −2.00000 + 3.46410i −0.0774403 + 0.134131i
$$668$$ 3.50000 + 6.06218i 0.135419 + 0.234553i
$$669$$ 18.0000 + 31.1769i 0.695920 + 1.20537i
$$670$$ −3.50000 + 6.06218i −0.135217 + 0.234202i
$$671$$ −3.00000 −0.115814
$$672$$ 7.50000 + 2.59808i 0.289319 + 0.100223i
$$673$$ −14.0000 −0.539660 −0.269830 0.962908i $$-0.586968\pi$$
−0.269830 + 0.962908i $$0.586968\pi$$
$$674$$ −16.0000 + 27.7128i −0.616297 + 1.06746i
$$675$$ −4.50000 7.79423i −0.173205 0.300000i
$$676$$ 6.00000 + 10.3923i 0.230769 + 0.399704i
$$677$$ −13.0000 + 22.5167i −0.499631 + 0.865386i −1.00000 0.000426509i $$-0.999864\pi$$
0.500369 + 0.865812i $$0.333198\pi$$
$$678$$ 45.0000 1.72821
$$679$$ −2.50000 12.9904i −0.0959412 0.498525i
$$680$$ 6.00000 0.230089
$$681$$ −27.0000 + 46.7654i −1.03464 + 1.79205i
$$682$$ −4.00000 6.92820i −0.153168 0.265295i
$$683$$ 1.50000 + 2.59808i 0.0573959 + 0.0994126i 0.893296 0.449469i $$-0.148387\pi$$
−0.835900 + 0.548882i $$0.815054\pi$$
$$684$$ −12.0000 + 20.7846i −0.458831 + 0.794719i
$$685$$ 7.00000 0.267456
$$686$$ −18.5000 + 0.866025i −0.706333 + 0.0330650i
$$687$$ −12.0000 −0.457829
$$688$$ −6.00000 + 10.3923i −0.228748 + 0.396203i
$$689$$ −3.00000 5.19615i −0.114291 0.197958i
$$690$$ 6.00000 + 10.3923i 0.228416 + 0.395628i
$$691$$ −18.5000 + 32.0429i −0.703773 + 1.21897i 0.263359 + 0.964698i $$0.415170\pi$$
−0.967132 + 0.254273i $$0.918164\pi$$
$$692$$ −1.00000 −0.0380143
$$693$$ −3.00000 15.5885i −0.113961 0.592157i
$$694$$ −30.0000 −1.13878
$$695$$ −8.00000 + 13.8564i −0.303457 + 0.525603i
$$696$$ 1.50000 + 2.59808i 0.0568574 + 0.0984798i
$$697$$ −36.0000 62.3538i −1.36360 2.36182i
$$698$$ −17.0000 + 29.4449i −0.643459 + 1.11450i
$$699$$ −48.0000 −1.81553
$$700$$ −2.50000 0.866025i −0.0944911 0.0327327i
$$701$$ 15.0000 0.566542 0.283271 0.959040i $$-0.408580\pi$$
0.283271 + 0.959040i $$0.408580\pi$$
$$702$$ −4.50000 + 7.79423i −0.169842 + 0.294174i
$$703$$ −16.0000 27.7128i −0.603451 1.04521i
$$704$$ 0.500000 + 0.866025i 0.0188445 + 0.0326396i
$$705$$ 9.00000 15.5885i 0.338960 0.587095i
$$706$$ 18.0000 0.677439
$$707$$ −6.00000 + 5.19615i −0.225653 + 0.195421i
$$708$$ 45.0000 1.69120
$$709$$ −22.0000 + 38.1051i −0.826227 + 1.43107i 0.0747503 + 0.997202i $$0.476184\pi$$
−0.900978 + 0.433865i $$0.857149\pi$$
$$710$$ 5.00000 + 8.66025i 0.187647 + 0.325014i
$$711$$ −45.0000 77.9423i −1.68763 2.92306i
$$712$$ 3.00000 5.19615i 0.112430 0.194734i
$$713$$ 32.0000 1.19841
$$714$$ 36.0000 31.1769i 1.34727 1.16677i
$$715$$ 1.00000 0.0373979
$$716$$ −3.50000 + 6.06218i −0.130801 + 0.226554i
$$717$$ 16.5000 + 28.5788i 0.616204 + 1.06730i
$$718$$ 1.50000 + 2.59808i 0.0559795 + 0.0969593i
$$719$$ −25.0000 + 43.3013i −0.932343 + 1.61486i −0.153037 + 0.988220i $$0.548906\pi$$
−0.779305 + 0.626644i $$0.784428\pi$$
$$720$$ 6.00000 0.223607
$$721$$ −15.0000 5.19615i −0.558629 0.193515i
$$722$$ 3.00000 0.111648
$$723$$ 24.0000 41.5692i 0.892570 1.54598i
$$724$$ −1.00000 1.73205i −0.0371647 0.0643712i
$$725$$ −0.500000 0.866025i −0.0185695 0.0321634i
$$726$$ 1.50000 2.59808i 0.0556702 0.0964237i
$$727$$ −26.0000 −0.964287 −0.482143 0.876092i $$-0.660142\pi$$
−0.482143 + 0.876092i $$0.660142\pi$$
$$728$$ 0.500000 + 2.59808i 0.0185312 + 0.0962911i
$$729$$ −27.0000 −1.00000
$$730$$ −2.00000 + 3.46410i −0.0740233 + 0.128212i
$$731$$ 36.0000 + 62.3538i 1.33151 + 2.30624i
$$732$$ −4.50000 7.79423i −0.166325 0.288083i
$$733$$ 6.50000 11.2583i 0.240083 0.415836i −0.720655 0.693294i $$-0.756159\pi$$
0.960738 + 0.277458i $$0.0894920\pi$$
$$734$$ 24.0000 0.885856
$$735$$ −19.5000 + 7.79423i −0.719268 + 0.287494i
$$736$$ −4.00000 −0.147442
$$737$$ −3.50000 + 6.06218i −0.128924 + 0.223303i
$$738$$ −36.0000 62.3538i −1.32518 2.29528i
$$739$$ −15.0000 25.9808i −0.551784 0.955718i −0.998146 0.0608653i $$-0.980614\pi$$
0.446362 0.894852i $$-0.352719\pi$$
$$740$$ −4.00000 + 6.92820i −0.147043 + 0.254686i
$$741$$ −12.0000 −0.440831
$$742$$ 3.00000 + 15.5885i 0.110133 + 0.572270i
$$743$$ −20.0000 −0.733729 −0.366864 0.930274i $$-0.619569\pi$$
−0.366864 + 0.930274i $$0.619569\pi$$
$$744$$ 12.0000 20.7846i 0.439941 0.762001i
$$745$$ 3.00000 + 5.19615i 0.109911 + 0.190372i
$$746$$ −1.50000 2.59808i −0.0549189 0.0951223i
$$747$$ −30.0000 + 51.9615i −1.09764 + 1.90117i
$$748$$ 6.00000 0.219382
$$749$$ 5.00000 + 1.73205i 0.182696 + 0.0632878i
$$750$$ −3.00000 −0.109545
$$751$$ 10.0000 17.3205i 0.364905 0.632034i −0.623856 0.781540i $$-0.714435\pi$$
0.988761 + 0.149505i $$0.0477681\pi$$
$$752$$ 3.00000 + 5.19615i 0.109399 + 0.189484i
$$753$$ 0 0
$$754$$ −0.500000 + 0.866025i −0.0182089 + 0.0315388i
$$755$$ −5.00000 −0.181969
$$756$$ 18.0000 15.5885i 0.654654 0.566947i
$$757$$ −2.00000 −0.0726912 −0.0363456 0.999339i $$-0.511572\pi$$
−0.0363456 + 0.999339i $$0.511572\pi$$
$$758$$ 6.50000 11.2583i 0.236091 0.408921i
$$759$$ 6.00000 + 10.3923i 0.217786 + 0.377217i
$$760$$ 2.00000 + 3.46410i 0.0725476 + 0.125656i
$$761$$ 11.0000 19.0526i 0.398750 0.690655i −0.594822 0.803857i $$-0.702778\pi$$
0.993572 + 0.113203i $$0.0361109\pi$$
$$762$$ 3.00000 0.108679
$$763$$ −12.0000 + 10.3923i −0.434429 + 0.376227i
$$764$$ −18.0000 −0.651217
$$765$$ 18.0000 31.1769i 0.650791 1.12720i
$$766$$ −7.00000 12.1244i −0.252920 0.438071i
$$767$$ 7.50000 + 12.9904i 0.270809 + 0.469055i
$$768$$ −1.50000 + 2.59808i −0.0541266 + 0.0937500i
$$769$$ −2.00000 −0.0721218 −0.0360609 0.999350i $$-0.511481\pi$$
−0.0360609 + 0.999350i $$0.511481\pi$$
$$770$$ −2.50000 0.866025i −0.0900937 0.0312094i
$$771$$ 45.0000 1.62064
$$772$$ −2.00000 + 3.46410i −0.0719816 + 0.124676i
$$773$$ 18.0000 + 31.1769i 0.647415 +