Properties

Label 770.2.i.a
Level $770$
Weight $2$
Character orbit 770.i
Analytic conductor $6.148$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} + q^{6} + ( 2 + \zeta_{6} ) q^{7} + q^{8} + 2 \zeta_{6} q^{9} +O(q^{10})\) \( q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} + q^{6} + ( 2 + \zeta_{6} ) q^{7} + q^{8} + 2 \zeta_{6} q^{9} + ( 1 - \zeta_{6} ) q^{10} + ( -1 + \zeta_{6} ) q^{11} -\zeta_{6} q^{12} - q^{13} + ( 1 - 3 \zeta_{6} ) q^{14} - q^{15} -\zeta_{6} q^{16} + ( 2 - 2 \zeta_{6} ) q^{18} -2 \zeta_{6} q^{19} - q^{20} + ( -3 + 2 \zeta_{6} ) q^{21} + q^{22} + 6 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{24} + ( -1 + \zeta_{6} ) q^{25} + \zeta_{6} q^{26} -5 q^{27} + ( -3 + 2 \zeta_{6} ) q^{28} -9 q^{29} + \zeta_{6} q^{30} + ( 4 - 4 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} -\zeta_{6} q^{33} + ( -1 + 3 \zeta_{6} ) q^{35} -2 q^{36} + 4 \zeta_{6} q^{37} + ( -2 + 2 \zeta_{6} ) q^{38} + ( 1 - \zeta_{6} ) q^{39} + \zeta_{6} q^{40} + 12 q^{41} + ( 2 + \zeta_{6} ) q^{42} -10 q^{43} -\zeta_{6} q^{44} + ( -2 + 2 \zeta_{6} ) q^{45} + ( 6 - 6 \zeta_{6} ) q^{46} + 12 \zeta_{6} q^{47} + q^{48} + ( 3 + 5 \zeta_{6} ) q^{49} + q^{50} + ( 1 - \zeta_{6} ) q^{52} + ( -6 + 6 \zeta_{6} ) q^{53} + 5 \zeta_{6} q^{54} - q^{55} + ( 2 + \zeta_{6} ) q^{56} + 2 q^{57} + 9 \zeta_{6} q^{58} + ( -3 + 3 \zeta_{6} ) q^{59} + ( 1 - \zeta_{6} ) q^{60} + 7 \zeta_{6} q^{61} -4 q^{62} + ( -2 + 6 \zeta_{6} ) q^{63} + q^{64} -\zeta_{6} q^{65} + ( -1 + \zeta_{6} ) q^{66} + ( 13 - 13 \zeta_{6} ) q^{67} -6 q^{69} + ( 3 - 2 \zeta_{6} ) q^{70} + 2 \zeta_{6} q^{72} + ( -14 + 14 \zeta_{6} ) q^{73} + ( 4 - 4 \zeta_{6} ) q^{74} -\zeta_{6} q^{75} + 2 q^{76} + ( -3 + 2 \zeta_{6} ) q^{77} - q^{78} -17 \zeta_{6} q^{79} + ( 1 - \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} -12 \zeta_{6} q^{82} + 6 q^{83} + ( 1 - 3 \zeta_{6} ) q^{84} + 10 \zeta_{6} q^{86} + ( 9 - 9 \zeta_{6} ) q^{87} + ( -1 + \zeta_{6} ) q^{88} + 6 \zeta_{6} q^{89} + 2 q^{90} + ( -2 - \zeta_{6} ) q^{91} -6 q^{92} + 4 \zeta_{6} q^{93} + ( 12 - 12 \zeta_{6} ) q^{94} + ( 2 - 2 \zeta_{6} ) q^{95} -\zeta_{6} q^{96} + 5 q^{97} + ( 5 - 8 \zeta_{6} ) q^{98} -2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} - q^{4} + q^{5} + 2 q^{6} + 5 q^{7} + 2 q^{8} + 2 q^{9} + O(q^{10}) \) \( 2 q - q^{2} - q^{3} - q^{4} + q^{5} + 2 q^{6} + 5 q^{7} + 2 q^{8} + 2 q^{9} + q^{10} - q^{11} - q^{12} - 2 q^{13} - q^{14} - 2 q^{15} - q^{16} + 2 q^{18} - 2 q^{19} - 2 q^{20} - 4 q^{21} + 2 q^{22} + 6 q^{23} - q^{24} - q^{25} + q^{26} - 10 q^{27} - 4 q^{28} - 18 q^{29} + q^{30} + 4 q^{31} - q^{32} - q^{33} + q^{35} - 4 q^{36} + 4 q^{37} - 2 q^{38} + q^{39} + q^{40} + 24 q^{41} + 5 q^{42} - 20 q^{43} - q^{44} - 2 q^{45} + 6 q^{46} + 12 q^{47} + 2 q^{48} + 11 q^{49} + 2 q^{50} + q^{52} - 6 q^{53} + 5 q^{54} - 2 q^{55} + 5 q^{56} + 4 q^{57} + 9 q^{58} - 3 q^{59} + q^{60} + 7 q^{61} - 8 q^{62} + 2 q^{63} + 2 q^{64} - q^{65} - q^{66} + 13 q^{67} - 12 q^{69} + 4 q^{70} + 2 q^{72} - 14 q^{73} + 4 q^{74} - q^{75} + 4 q^{76} - 4 q^{77} - 2 q^{78} - 17 q^{79} + q^{80} - q^{81} - 12 q^{82} + 12 q^{83} - q^{84} + 10 q^{86} + 9 q^{87} - q^{88} + 6 q^{89} + 4 q^{90} - 5 q^{91} - 12 q^{92} + 4 q^{93} + 12 q^{94} + 2 q^{95} - q^{96} + 10 q^{97} + 2 q^{98} - 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/770\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(617\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
221.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 2.50000 + 0.866025i 1.00000 1.00000 + 1.73205i 0.500000 0.866025i
331.1 −0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 1.00000 2.50000 0.866025i 1.00000 1.00000 1.73205i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 770.2.i.a 2
7.c even 3 1 inner 770.2.i.a 2
7.c even 3 1 5390.2.a.be 1
7.d odd 6 1 5390.2.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.i.a 2 1.a even 1 1 trivial
770.2.i.a 2 7.c even 3 1 inner
5390.2.a.z 1 7.d odd 6 1
5390.2.a.be 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(770, [\chi])\):

\( T_{3}^{2} + T_{3} + 1 \)
\( T_{13} + 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( 7 - 5 T + T^{2} \)
$11$ \( 1 + T + T^{2} \)
$13$ \( ( 1 + T )^{2} \)
$17$ \( T^{2} \)
$19$ \( 4 + 2 T + T^{2} \)
$23$ \( 36 - 6 T + T^{2} \)
$29$ \( ( 9 + T )^{2} \)
$31$ \( 16 - 4 T + T^{2} \)
$37$ \( 16 - 4 T + T^{2} \)
$41$ \( ( -12 + T )^{2} \)
$43$ \( ( 10 + T )^{2} \)
$47$ \( 144 - 12 T + T^{2} \)
$53$ \( 36 + 6 T + T^{2} \)
$59$ \( 9 + 3 T + T^{2} \)
$61$ \( 49 - 7 T + T^{2} \)
$67$ \( 169 - 13 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 196 + 14 T + T^{2} \)
$79$ \( 289 + 17 T + T^{2} \)
$83$ \( ( -6 + T )^{2} \)
$89$ \( 36 - 6 T + T^{2} \)
$97$ \( ( -5 + T )^{2} \)
show more
show less