Properties

Label 770.2.a.m
Level $770$
Weight $2$
Character orbit 770.a
Self dual yes
Analytic conductor $6.148$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Defining polynomial: \(x^{3} - x^{2} - 4 x + 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( 1 + \beta_{2} ) q^{3} + q^{4} + q^{5} + ( 1 + \beta_{2} ) q^{6} - q^{7} + q^{8} + ( 3 - \beta_{1} + \beta_{2} ) q^{9} +O(q^{10})\) \( q + q^{2} + ( 1 + \beta_{2} ) q^{3} + q^{4} + q^{5} + ( 1 + \beta_{2} ) q^{6} - q^{7} + q^{8} + ( 3 - \beta_{1} + \beta_{2} ) q^{9} + q^{10} + q^{11} + ( 1 + \beta_{2} ) q^{12} + ( \beta_{1} - \beta_{2} ) q^{13} - q^{14} + ( 1 + \beta_{2} ) q^{15} + q^{16} -2 \beta_{2} q^{17} + ( 3 - \beta_{1} + \beta_{2} ) q^{18} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{19} + q^{20} + ( -1 - \beta_{2} ) q^{21} + q^{22} + ( 3 - \beta_{2} ) q^{23} + ( 1 + \beta_{2} ) q^{24} + q^{25} + ( \beta_{1} - \beta_{2} ) q^{26} + ( 4 - 2 \beta_{1} + 2 \beta_{2} ) q^{27} - q^{28} + ( -1 - 3 \beta_{2} ) q^{29} + ( 1 + \beta_{2} ) q^{30} + ( -4 + \beta_{1} + \beta_{2} ) q^{31} + q^{32} + ( 1 + \beta_{2} ) q^{33} -2 \beta_{2} q^{34} - q^{35} + ( 3 - \beta_{1} + \beta_{2} ) q^{36} + ( 1 - \beta_{2} ) q^{37} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{38} + ( -4 + 2 \beta_{1} - 2 \beta_{2} ) q^{39} + q^{40} + ( 3 - 2 \beta_{1} + 3 \beta_{2} ) q^{41} + ( -1 - \beta_{2} ) q^{42} + ( 4 - 3 \beta_{1} + \beta_{2} ) q^{43} + q^{44} + ( 3 - \beta_{1} + \beta_{2} ) q^{45} + ( 3 - \beta_{2} ) q^{46} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{47} + ( 1 + \beta_{2} ) q^{48} + q^{49} + q^{50} + ( -10 + 2 \beta_{1} ) q^{51} + ( \beta_{1} - \beta_{2} ) q^{52} + ( 5 + 3 \beta_{2} ) q^{53} + ( 4 - 2 \beta_{1} + 2 \beta_{2} ) q^{54} + q^{55} - q^{56} + ( -6 + 3 \beta_{1} - 7 \beta_{2} ) q^{57} + ( -1 - 3 \beta_{2} ) q^{58} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{59} + ( 1 + \beta_{2} ) q^{60} + ( -2 - 2 \beta_{1} - 2 \beta_{2} ) q^{61} + ( -4 + \beta_{1} + \beta_{2} ) q^{62} + ( -3 + \beta_{1} - \beta_{2} ) q^{63} + q^{64} + ( \beta_{1} - \beta_{2} ) q^{65} + ( 1 + \beta_{2} ) q^{66} -4 \beta_{2} q^{67} -2 \beta_{2} q^{68} + ( -2 + \beta_{1} + 3 \beta_{2} ) q^{69} - q^{70} + ( -10 + 2 \beta_{1} ) q^{71} + ( 3 - \beta_{1} + \beta_{2} ) q^{72} + ( -4 + 2 \beta_{2} ) q^{73} + ( 1 - \beta_{2} ) q^{74} + ( 1 + \beta_{2} ) q^{75} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{76} - q^{77} + ( -4 + 2 \beta_{1} - 2 \beta_{2} ) q^{78} + ( 7 - 2 \beta_{1} + \beta_{2} ) q^{79} + q^{80} + ( 3 - \beta_{1} + 5 \beta_{2} ) q^{81} + ( 3 - 2 \beta_{1} + 3 \beta_{2} ) q^{82} + ( -2 + 2 \beta_{2} ) q^{83} + ( -1 - \beta_{2} ) q^{84} -2 \beta_{2} q^{85} + ( 4 - 3 \beta_{1} + \beta_{2} ) q^{86} + ( -16 + 3 \beta_{1} - \beta_{2} ) q^{87} + q^{88} + ( 4 + 2 \beta_{1} - 4 \beta_{2} ) q^{89} + ( 3 - \beta_{1} + \beta_{2} ) q^{90} + ( -\beta_{1} + \beta_{2} ) q^{91} + ( 3 - \beta_{2} ) q^{92} + ( 2 - 6 \beta_{2} ) q^{93} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{94} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{95} + ( 1 + \beta_{2} ) q^{96} + ( -1 + 2 \beta_{1} + 3 \beta_{2} ) q^{97} + q^{98} + ( 3 - \beta_{1} + \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{2} + 2q^{3} + 3q^{4} + 3q^{5} + 2q^{6} - 3q^{7} + 3q^{8} + 7q^{9} + O(q^{10}) \) \( 3q + 3q^{2} + 2q^{3} + 3q^{4} + 3q^{5} + 2q^{6} - 3q^{7} + 3q^{8} + 7q^{9} + 3q^{10} + 3q^{11} + 2q^{12} + 2q^{13} - 3q^{14} + 2q^{15} + 3q^{16} + 2q^{17} + 7q^{18} - 6q^{19} + 3q^{20} - 2q^{21} + 3q^{22} + 10q^{23} + 2q^{24} + 3q^{25} + 2q^{26} + 8q^{27} - 3q^{28} + 2q^{30} - 12q^{31} + 3q^{32} + 2q^{33} + 2q^{34} - 3q^{35} + 7q^{36} + 4q^{37} - 6q^{38} - 8q^{39} + 3q^{40} + 4q^{41} - 2q^{42} + 8q^{43} + 3q^{44} + 7q^{45} + 10q^{46} + 2q^{48} + 3q^{49} + 3q^{50} - 28q^{51} + 2q^{52} + 12q^{53} + 8q^{54} + 3q^{55} - 3q^{56} - 8q^{57} - 4q^{59} + 2q^{60} - 6q^{61} - 12q^{62} - 7q^{63} + 3q^{64} + 2q^{65} + 2q^{66} + 4q^{67} + 2q^{68} - 8q^{69} - 3q^{70} - 28q^{71} + 7q^{72} - 14q^{73} + 4q^{74} + 2q^{75} - 6q^{76} - 3q^{77} - 8q^{78} + 18q^{79} + 3q^{80} + 3q^{81} + 4q^{82} - 8q^{83} - 2q^{84} + 2q^{85} + 8q^{86} - 44q^{87} + 3q^{88} + 18q^{89} + 7q^{90} - 2q^{91} + 10q^{92} + 12q^{93} - 6q^{95} + 2q^{96} - 4q^{97} + 3q^{98} + 7q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 4 x + 2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} + \nu - 3 \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{2} + \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{2} + \beta_{1} + 6\)\()/2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.470683
2.34292
−1.81361
1.00000 −2.24914 1.00000 1.00000 −2.24914 −1.00000 1.00000 2.05863 1.00000
1.2 1.00000 1.14637 1.00000 1.00000 1.14637 −1.00000 1.00000 −1.68585 1.00000
1.3 1.00000 3.10278 1.00000 1.00000 3.10278 −1.00000 1.00000 6.62721 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(7\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 770.2.a.m 3
3.b odd 2 1 6930.2.a.ce 3
4.b odd 2 1 6160.2.a.bf 3
5.b even 2 1 3850.2.a.bt 3
5.c odd 4 2 3850.2.c.ba 6
7.b odd 2 1 5390.2.a.ca 3
11.b odd 2 1 8470.2.a.ci 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.a.m 3 1.a even 1 1 trivial
3850.2.a.bt 3 5.b even 2 1
3850.2.c.ba 6 5.c odd 4 2
5390.2.a.ca 3 7.b odd 2 1
6160.2.a.bf 3 4.b odd 2 1
6930.2.a.ce 3 3.b odd 2 1
8470.2.a.ci 3 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(770))\):

\( T_{3}^{3} - 2 T_{3}^{2} - 6 T_{3} + 8 \)
\( T_{13}^{3} - 2 T_{13}^{2} - 16 T_{13} + 16 \)
\( T_{17}^{3} - 2 T_{17}^{2} - 28 T_{17} - 8 \)
\( T_{19}^{3} + 6 T_{19}^{2} - 46 T_{19} - 232 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{3} \)
$3$ \( 8 - 6 T - 2 T^{2} + T^{3} \)
$5$ \( ( -1 + T )^{3} \)
$7$ \( ( 1 + T )^{3} \)
$11$ \( ( -1 + T )^{3} \)
$13$ \( 16 - 16 T - 2 T^{2} + T^{3} \)
$17$ \( -8 - 28 T - 2 T^{2} + T^{3} \)
$19$ \( -232 - 46 T + 6 T^{2} + T^{3} \)
$23$ \( -16 + 26 T - 10 T^{2} + T^{3} \)
$29$ \( -92 - 66 T + T^{3} \)
$31$ \( -32 + 20 T + 12 T^{2} + T^{3} \)
$37$ \( 4 - 2 T - 4 T^{2} + T^{3} \)
$41$ \( -164 - 90 T - 4 T^{2} + T^{3} \)
$43$ \( 848 - 108 T - 8 T^{2} + T^{3} \)
$47$ \( -128 - 112 T + T^{3} \)
$53$ \( 292 - 18 T - 12 T^{2} + T^{3} \)
$59$ \( -128 - 64 T + 4 T^{2} + T^{3} \)
$61$ \( -344 - 100 T + 6 T^{2} + T^{3} \)
$67$ \( -64 - 112 T - 4 T^{2} + T^{3} \)
$71$ \( 64 + 200 T + 28 T^{2} + T^{3} \)
$73$ \( -8 + 36 T + 14 T^{2} + T^{3} \)
$79$ \( 256 + 50 T - 18 T^{2} + T^{3} \)
$83$ \( -32 - 8 T + 8 T^{2} + T^{3} \)
$89$ \( 1208 - 28 T - 18 T^{2} + T^{3} \)
$97$ \( 316 - 154 T + 4 T^{2} + T^{3} \)
show more
show less