Properties

Label 770.2.a.m
Level $770$
Weight $2$
Character orbit 770.a
Self dual yes
Analytic conductor $6.148$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [770,2,Mod(1,770)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("770.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(770, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,2,3,3,2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.14848095564\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_{2} + 1) q^{3} + q^{4} + q^{5} + (\beta_{2} + 1) q^{6} - q^{7} + q^{8} + (\beta_{2} - \beta_1 + 3) q^{9} + q^{10} + q^{11} + (\beta_{2} + 1) q^{12} + ( - \beta_{2} + \beta_1) q^{13}+ \cdots + (\beta_{2} - \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 2 q^{3} + 3 q^{4} + 3 q^{5} + 2 q^{6} - 3 q^{7} + 3 q^{8} + 7 q^{9} + 3 q^{10} + 3 q^{11} + 2 q^{12} + 2 q^{13} - 3 q^{14} + 2 q^{15} + 3 q^{16} + 2 q^{17} + 7 q^{18} - 6 q^{19} + 3 q^{20}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.470683
2.34292
−1.81361
1.00000 −2.24914 1.00000 1.00000 −2.24914 −1.00000 1.00000 2.05863 1.00000
1.2 1.00000 1.14637 1.00000 1.00000 1.14637 −1.00000 1.00000 −1.68585 1.00000
1.3 1.00000 3.10278 1.00000 1.00000 3.10278 −1.00000 1.00000 6.62721 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 770.2.a.m 3
3.b odd 2 1 6930.2.a.ce 3
4.b odd 2 1 6160.2.a.bf 3
5.b even 2 1 3850.2.a.bt 3
5.c odd 4 2 3850.2.c.ba 6
7.b odd 2 1 5390.2.a.ca 3
11.b odd 2 1 8470.2.a.ci 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.a.m 3 1.a even 1 1 trivial
3850.2.a.bt 3 5.b even 2 1
3850.2.c.ba 6 5.c odd 4 2
5390.2.a.ca 3 7.b odd 2 1
6160.2.a.bf 3 4.b odd 2 1
6930.2.a.ce 3 3.b odd 2 1
8470.2.a.ci 3 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(770))\):

\( T_{3}^{3} - 2T_{3}^{2} - 6T_{3} + 8 \) Copy content Toggle raw display
\( T_{13}^{3} - 2T_{13}^{2} - 16T_{13} + 16 \) Copy content Toggle raw display
\( T_{17}^{3} - 2T_{17}^{2} - 28T_{17} - 8 \) Copy content Toggle raw display
\( T_{19}^{3} + 6T_{19}^{2} - 46T_{19} - 232 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( (T - 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$19$ \( T^{3} + 6 T^{2} + \cdots - 232 \) Copy content Toggle raw display
$23$ \( T^{3} - 10 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$29$ \( T^{3} - 66T - 92 \) Copy content Toggle raw display
$31$ \( T^{3} + 12 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$37$ \( T^{3} - 4 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$41$ \( T^{3} - 4 T^{2} + \cdots - 164 \) Copy content Toggle raw display
$43$ \( T^{3} - 8 T^{2} + \cdots + 848 \) Copy content Toggle raw display
$47$ \( T^{3} - 112T - 128 \) Copy content Toggle raw display
$53$ \( T^{3} - 12 T^{2} + \cdots + 292 \) Copy content Toggle raw display
$59$ \( T^{3} + 4 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$67$ \( T^{3} - 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$71$ \( T^{3} + 28 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$73$ \( T^{3} + 14 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$79$ \( T^{3} - 18 T^{2} + \cdots + 256 \) Copy content Toggle raw display
$83$ \( T^{3} + 8 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$89$ \( T^{3} - 18 T^{2} + \cdots + 1208 \) Copy content Toggle raw display
$97$ \( T^{3} + 4 T^{2} + \cdots + 316 \) Copy content Toggle raw display
show more
show less