Properties

Label 770.2.a
Level $770$
Weight $2$
Character orbit 770.a
Rep. character $\chi_{770}(1,\cdot)$
Character field $\Q$
Dimension $21$
Newform subspaces $13$
Sturm bound $288$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 770.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(288\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(13\), \(17\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(770))\).

Total New Old
Modular forms 152 21 131
Cusp forms 137 21 116
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(5\)\(0\)\(5\)\(5\)\(0\)\(5\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(12\)\(3\)\(9\)\(11\)\(3\)\(8\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(10\)\(2\)\(8\)\(9\)\(2\)\(7\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(10\)\(0\)\(10\)\(9\)\(0\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(13\)\(1\)\(12\)\(12\)\(1\)\(11\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(8\)\(1\)\(7\)\(7\)\(1\)\(6\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(10\)\(1\)\(9\)\(9\)\(1\)\(8\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(8\)\(2\)\(6\)\(7\)\(2\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(10\)\(2\)\(8\)\(9\)\(2\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(8\)\(0\)\(8\)\(7\)\(0\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(9\)\(1\)\(8\)\(8\)\(1\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(12\)\(2\)\(10\)\(11\)\(2\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(10\)\(0\)\(10\)\(9\)\(0\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(10\)\(3\)\(7\)\(9\)\(3\)\(6\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(9\)\(3\)\(6\)\(8\)\(3\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(8\)\(0\)\(8\)\(7\)\(0\)\(7\)\(1\)\(0\)\(1\)
Plus space\(+\)\(68\)\(3\)\(65\)\(61\)\(3\)\(58\)\(7\)\(0\)\(7\)
Minus space\(-\)\(84\)\(18\)\(66\)\(76\)\(18\)\(58\)\(8\)\(0\)\(8\)

Trace form

\( 21 q + q^{2} + 4 q^{3} + 21 q^{4} + q^{5} + 4 q^{6} + q^{7} + q^{8} + 33 q^{9} + q^{10} + q^{11} + 4 q^{12} + 14 q^{13} + q^{14} + 4 q^{15} + 21 q^{16} + 2 q^{17} + 13 q^{18} + 4 q^{19} + q^{20}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(770))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7 11
770.2.a.a 770.a 1.a $1$ $6.148$ \(\Q\) None 770.2.a.a \(-1\) \(-2\) \(-1\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}-q^{5}+2q^{6}+q^{7}+\cdots\)
770.2.a.b 770.a 1.a $1$ $6.148$ \(\Q\) None 770.2.a.b \(-1\) \(-2\) \(1\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}+q^{5}+2q^{6}-q^{7}+\cdots\)
770.2.a.c 770.a 1.a $1$ $6.148$ \(\Q\) None 770.2.a.c \(-1\) \(0\) \(1\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-3q^{9}+\cdots\)
770.2.a.d 770.a 1.a $1$ $6.148$ \(\Q\) None 770.2.a.d \(-1\) \(0\) \(1\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-3q^{9}+\cdots\)
770.2.a.e 770.a 1.a $1$ $6.148$ \(\Q\) None 770.2.a.e \(-1\) \(2\) \(-1\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}-q^{5}-2q^{6}+q^{7}+\cdots\)
770.2.a.f 770.a 1.a $1$ $6.148$ \(\Q\) None 770.2.a.f \(1\) \(-2\) \(-1\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}-q^{5}-2q^{6}+q^{7}+\cdots\)
770.2.a.g 770.a 1.a $1$ $6.148$ \(\Q\) None 770.2.a.g \(1\) \(-2\) \(1\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}+q^{5}-2q^{6}+q^{7}+\cdots\)
770.2.a.h 770.a 1.a $2$ $6.148$ \(\Q(\sqrt{3}) \) None 770.2.a.h \(-2\) \(2\) \(2\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
770.2.a.i 770.a 1.a $2$ $6.148$ \(\Q(\sqrt{2}) \) None 770.2.a.i \(2\) \(0\) \(-2\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}-q^{5}+\beta q^{6}-q^{7}+\cdots\)
770.2.a.j 770.a 1.a $2$ $6.148$ \(\Q(\sqrt{3}) \) None 770.2.a.j \(2\) \(2\) \(-2\) \(2\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta )q^{3}+q^{4}-q^{5}+(1+\beta )q^{6}+\cdots\)
770.2.a.k 770.a 1.a $2$ $6.148$ \(\Q(\sqrt{33}) \) None 770.2.a.k \(2\) \(4\) \(2\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+q^{5}+2q^{6}+q^{7}+\cdots\)
770.2.a.l 770.a 1.a $3$ $6.148$ 3.3.892.1 None 770.2.a.l \(-3\) \(0\) \(-3\) \(-3\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-q^{5}-\beta _{1}q^{6}+\cdots\)
770.2.a.m 770.a 1.a $3$ $6.148$ 3.3.316.1 None 770.2.a.m \(3\) \(2\) \(3\) \(-3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta _{2})q^{3}+q^{4}+q^{5}+(1+\beta _{2})q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(770))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(770)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(385))\)\(^{\oplus 2}\)