Properties

Label 77.4.e.a
Level $77$
Weight $4$
Character orbit 77.e
Analytic conductor $4.543$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [77,4,Mod(23,77)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("77.23"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(77, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 77.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.54314707044\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 \zeta_{6} q^{2} + (3 \zeta_{6} - 3) q^{3} + (\zeta_{6} - 1) q^{4} - 2 \zeta_{6} q^{5} + 9 q^{6} + ( - 7 \zeta_{6} - 14) q^{7} - 21 q^{8} + 18 \zeta_{6} q^{9} + (6 \zeta_{6} - 6) q^{10} + (11 \zeta_{6} - 11) q^{11} + \cdots - 198 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 3 q^{3} - q^{4} - 2 q^{5} + 18 q^{6} - 35 q^{7} - 42 q^{8} + 18 q^{9} - 6 q^{10} - 11 q^{11} - 3 q^{12} - 146 q^{13} + 21 q^{14} + 12 q^{15} + 71 q^{16} - 62 q^{17} + 54 q^{18} + 84 q^{19}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/77\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
23.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.50000 + 2.59808i −1.50000 2.59808i −0.500000 0.866025i −1.00000 + 1.73205i 9.00000 −17.5000 + 6.06218i −21.0000 9.00000 15.5885i −3.00000 5.19615i
67.1 −1.50000 2.59808i −1.50000 + 2.59808i −0.500000 + 0.866025i −1.00000 1.73205i 9.00000 −17.5000 6.06218i −21.0000 9.00000 + 15.5885i −3.00000 + 5.19615i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 77.4.e.a 2
7.c even 3 1 inner 77.4.e.a 2
7.c even 3 1 539.4.a.c 1
7.d odd 6 1 539.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.4.e.a 2 1.a even 1 1 trivial
77.4.e.a 2 7.c even 3 1 inner
539.4.a.b 1 7.d odd 6 1
539.4.a.c 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 3T_{2} + 9 \) acting on \(S_{4}^{\mathrm{new}}(77, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 35T + 343 \) Copy content Toggle raw display
$11$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$13$ \( (T + 73)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 62T + 3844 \) Copy content Toggle raw display
$19$ \( T^{2} - 84T + 7056 \) Copy content Toggle raw display
$23$ \( T^{2} + 124T + 15376 \) Copy content Toggle raw display
$29$ \( (T + 203)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 224T + 50176 \) Copy content Toggle raw display
$37$ \( T^{2} + 412T + 169744 \) Copy content Toggle raw display
$41$ \( (T + 176)^{2} \) Copy content Toggle raw display
$43$ \( (T - 400)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 586T + 343396 \) Copy content Toggle raw display
$53$ \( T^{2} - 234T + 54756 \) Copy content Toggle raw display
$59$ \( T^{2} + 531T + 281961 \) Copy content Toggle raw display
$61$ \( T^{2} + 367T + 134689 \) Copy content Toggle raw display
$67$ \( T^{2} + 105T + 11025 \) Copy content Toggle raw display
$71$ \( (T + 878)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 236T + 55696 \) Copy content Toggle raw display
$79$ \( T^{2} + 351T + 123201 \) Copy content Toggle raw display
$83$ \( (T + 342)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 366T + 133956 \) Copy content Toggle raw display
$97$ \( (T + 1001)^{2} \) Copy content Toggle raw display
show more
show less