Properties

Label 77.4.a.e.1.4
Level $77$
Weight $4$
Character 77.1
Self dual yes
Analytic conductor $4.543$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [77,4,Mod(1,77)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(77, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("77.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 77.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.54314707044\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(4.44399\) of defining polynomial
Character \(\chi\) \(=\) 77.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.44399 q^{2} +8.26395 q^{3} +11.7491 q^{4} -22.0150 q^{5} +36.7249 q^{6} +7.00000 q^{7} +16.6609 q^{8} +41.2928 q^{9} -97.8345 q^{10} +11.0000 q^{11} +97.0937 q^{12} -51.5769 q^{13} +31.1080 q^{14} -181.931 q^{15} -19.9519 q^{16} -26.5590 q^{17} +183.505 q^{18} +99.6432 q^{19} -258.656 q^{20} +57.8476 q^{21} +48.8839 q^{22} +28.1455 q^{23} +137.684 q^{24} +359.660 q^{25} -229.207 q^{26} +118.115 q^{27} +82.2435 q^{28} -43.9369 q^{29} -808.499 q^{30} -83.8402 q^{31} -221.953 q^{32} +90.9034 q^{33} -118.028 q^{34} -154.105 q^{35} +485.152 q^{36} +306.353 q^{37} +442.814 q^{38} -426.228 q^{39} -366.789 q^{40} +200.991 q^{41} +257.074 q^{42} -13.7546 q^{43} +129.240 q^{44} -909.062 q^{45} +125.079 q^{46} -266.533 q^{47} -164.881 q^{48} +49.0000 q^{49} +1598.33 q^{50} -219.482 q^{51} -605.980 q^{52} +308.867 q^{53} +524.903 q^{54} -242.165 q^{55} +116.626 q^{56} +823.446 q^{57} -195.255 q^{58} -622.446 q^{59} -2137.52 q^{60} -87.3303 q^{61} -372.585 q^{62} +289.050 q^{63} -826.742 q^{64} +1135.46 q^{65} +403.974 q^{66} +608.395 q^{67} -312.044 q^{68} +232.593 q^{69} -684.842 q^{70} -464.926 q^{71} +687.974 q^{72} -255.407 q^{73} +1361.43 q^{74} +2972.21 q^{75} +1170.72 q^{76} +77.0000 q^{77} -1894.16 q^{78} +261.237 q^{79} +439.240 q^{80} -138.809 q^{81} +893.204 q^{82} +953.986 q^{83} +679.656 q^{84} +584.696 q^{85} -61.1255 q^{86} -363.092 q^{87} +183.269 q^{88} -839.910 q^{89} -4039.86 q^{90} -361.038 q^{91} +330.684 q^{92} -692.851 q^{93} -1184.47 q^{94} -2193.64 q^{95} -1834.21 q^{96} -349.146 q^{97} +217.756 q^{98} +454.221 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 2 q^{3} + 45 q^{4} - 24 q^{5} + 4 q^{6} + 35 q^{7} + 57 q^{8} + 63 q^{9} - 10 q^{10} + 55 q^{11} + 24 q^{12} - 50 q^{13} + 7 q^{14} - 146 q^{15} + 433 q^{16} + 222 q^{17} + 245 q^{18} + 160 q^{19}+ \cdots + 693 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.44399 1.57119 0.785594 0.618742i \(-0.212357\pi\)
0.785594 + 0.618742i \(0.212357\pi\)
\(3\) 8.26395 1.59040 0.795199 0.606349i \(-0.207367\pi\)
0.795199 + 0.606349i \(0.207367\pi\)
\(4\) 11.7491 1.46863
\(5\) −22.0150 −1.96908 −0.984541 0.175155i \(-0.943957\pi\)
−0.984541 + 0.175155i \(0.943957\pi\)
\(6\) 36.7249 2.49881
\(7\) 7.00000 0.377964
\(8\) 16.6609 0.736313
\(9\) 41.2928 1.52936
\(10\) −97.8345 −3.09380
\(11\) 11.0000 0.301511
\(12\) 97.0937 2.33571
\(13\) −51.5769 −1.10037 −0.550186 0.835042i \(-0.685443\pi\)
−0.550186 + 0.835042i \(0.685443\pi\)
\(14\) 31.1080 0.593854
\(15\) −181.931 −3.13162
\(16\) −19.9519 −0.311748
\(17\) −26.5590 −0.378912 −0.189456 0.981889i \(-0.560672\pi\)
−0.189456 + 0.981889i \(0.560672\pi\)
\(18\) 183.505 2.40292
\(19\) 99.6432 1.20314 0.601571 0.798819i \(-0.294542\pi\)
0.601571 + 0.798819i \(0.294542\pi\)
\(20\) −258.656 −2.89186
\(21\) 57.8476 0.601114
\(22\) 48.8839 0.473731
\(23\) 28.1455 0.255163 0.127582 0.991828i \(-0.459279\pi\)
0.127582 + 0.991828i \(0.459279\pi\)
\(24\) 137.684 1.17103
\(25\) 359.660 2.87728
\(26\) −229.207 −1.72889
\(27\) 118.115 0.841899
\(28\) 82.2435 0.555092
\(29\) −43.9369 −0.281340 −0.140670 0.990057i \(-0.544926\pi\)
−0.140670 + 0.990057i \(0.544926\pi\)
\(30\) −808.499 −4.92037
\(31\) −83.8402 −0.485747 −0.242873 0.970058i \(-0.578090\pi\)
−0.242873 + 0.970058i \(0.578090\pi\)
\(32\) −221.953 −1.22613
\(33\) 90.9034 0.479523
\(34\) −118.028 −0.595342
\(35\) −154.105 −0.744243
\(36\) 485.152 2.24608
\(37\) 306.353 1.36119 0.680596 0.732659i \(-0.261721\pi\)
0.680596 + 0.732659i \(0.261721\pi\)
\(38\) 442.814 1.89036
\(39\) −426.228 −1.75003
\(40\) −366.789 −1.44986
\(41\) 200.991 0.765599 0.382800 0.923831i \(-0.374960\pi\)
0.382800 + 0.923831i \(0.374960\pi\)
\(42\) 257.074 0.944463
\(43\) −13.7546 −0.0487805 −0.0243903 0.999703i \(-0.507764\pi\)
−0.0243903 + 0.999703i \(0.507764\pi\)
\(44\) 129.240 0.442810
\(45\) −909.062 −3.01144
\(46\) 125.079 0.400909
\(47\) −266.533 −0.827189 −0.413594 0.910461i \(-0.635727\pi\)
−0.413594 + 0.910461i \(0.635727\pi\)
\(48\) −164.881 −0.495803
\(49\) 49.0000 0.142857
\(50\) 1598.33 4.52075
\(51\) −219.482 −0.602621
\(52\) −605.980 −1.61605
\(53\) 308.867 0.800493 0.400247 0.916407i \(-0.368924\pi\)
0.400247 + 0.916407i \(0.368924\pi\)
\(54\) 524.903 1.32278
\(55\) −242.165 −0.593700
\(56\) 116.626 0.278300
\(57\) 823.446 1.91348
\(58\) −195.255 −0.442039
\(59\) −622.446 −1.37348 −0.686742 0.726901i \(-0.740960\pi\)
−0.686742 + 0.726901i \(0.740960\pi\)
\(60\) −2137.52 −4.59921
\(61\) −87.3303 −0.183303 −0.0916516 0.995791i \(-0.529215\pi\)
−0.0916516 + 0.995791i \(0.529215\pi\)
\(62\) −372.585 −0.763200
\(63\) 289.050 0.578045
\(64\) −826.742 −1.61473
\(65\) 1135.46 2.16672
\(66\) 403.974 0.753421
\(67\) 608.395 1.10936 0.554681 0.832063i \(-0.312840\pi\)
0.554681 + 0.832063i \(0.312840\pi\)
\(68\) −312.044 −0.556483
\(69\) 232.593 0.405811
\(70\) −684.842 −1.16935
\(71\) −464.926 −0.777135 −0.388567 0.921420i \(-0.627030\pi\)
−0.388567 + 0.921420i \(0.627030\pi\)
\(72\) 687.974 1.12609
\(73\) −255.407 −0.409495 −0.204747 0.978815i \(-0.565637\pi\)
−0.204747 + 0.978815i \(0.565637\pi\)
\(74\) 1361.43 2.13869
\(75\) 2972.21 4.57602
\(76\) 1170.72 1.76698
\(77\) 77.0000 0.113961
\(78\) −1894.16 −2.74963
\(79\) 261.237 0.372043 0.186022 0.982546i \(-0.440441\pi\)
0.186022 + 0.982546i \(0.440441\pi\)
\(80\) 439.240 0.613857
\(81\) −138.809 −0.190410
\(82\) 893.204 1.20290
\(83\) 953.986 1.26161 0.630804 0.775942i \(-0.282725\pi\)
0.630804 + 0.775942i \(0.282725\pi\)
\(84\) 679.656 0.882816
\(85\) 584.696 0.746109
\(86\) −61.1255 −0.0766434
\(87\) −363.092 −0.447443
\(88\) 183.269 0.222007
\(89\) −839.910 −1.00034 −0.500170 0.865927i \(-0.666729\pi\)
−0.500170 + 0.865927i \(0.666729\pi\)
\(90\) −4039.86 −4.73154
\(91\) −361.038 −0.415902
\(92\) 330.684 0.374741
\(93\) −692.851 −0.772530
\(94\) −1184.47 −1.29967
\(95\) −2193.64 −2.36909
\(96\) −1834.21 −1.95003
\(97\) −349.146 −0.365468 −0.182734 0.983162i \(-0.558495\pi\)
−0.182734 + 0.983162i \(0.558495\pi\)
\(98\) 217.756 0.224456
\(99\) 454.221 0.461121
\(100\) 4225.68 4.22568
\(101\) 1492.44 1.47033 0.735163 0.677890i \(-0.237106\pi\)
0.735163 + 0.677890i \(0.237106\pi\)
\(102\) −975.377 −0.946831
\(103\) 558.687 0.534457 0.267228 0.963633i \(-0.413892\pi\)
0.267228 + 0.963633i \(0.413892\pi\)
\(104\) −859.314 −0.810218
\(105\) −1273.52 −1.18364
\(106\) 1372.60 1.25773
\(107\) −694.047 −0.627066 −0.313533 0.949577i \(-0.601513\pi\)
−0.313533 + 0.949577i \(0.601513\pi\)
\(108\) 1387.74 1.23644
\(109\) −341.005 −0.299654 −0.149827 0.988712i \(-0.547872\pi\)
−0.149827 + 0.988712i \(0.547872\pi\)
\(110\) −1076.18 −0.932815
\(111\) 2531.68 2.16484
\(112\) −139.663 −0.117830
\(113\) −990.910 −0.824929 −0.412464 0.910974i \(-0.635332\pi\)
−0.412464 + 0.910974i \(0.635332\pi\)
\(114\) 3659.39 3.00643
\(115\) −619.624 −0.502437
\(116\) −516.218 −0.413186
\(117\) −2129.75 −1.68287
\(118\) −2766.15 −2.15800
\(119\) −185.913 −0.143215
\(120\) −3031.12 −2.30585
\(121\) 121.000 0.0909091
\(122\) −388.095 −0.288004
\(123\) 1660.98 1.21761
\(124\) −985.045 −0.713384
\(125\) −5166.05 −3.69652
\(126\) 1284.54 0.908218
\(127\) −666.090 −0.465401 −0.232700 0.972548i \(-0.574756\pi\)
−0.232700 + 0.972548i \(0.574756\pi\)
\(128\) −1898.41 −1.31092
\(129\) −113.668 −0.0775804
\(130\) 5046.00 3.40433
\(131\) 30.4356 0.0202990 0.0101495 0.999948i \(-0.496769\pi\)
0.0101495 + 0.999948i \(0.496769\pi\)
\(132\) 1068.03 0.704244
\(133\) 697.502 0.454745
\(134\) 2703.70 1.74302
\(135\) −2600.31 −1.65777
\(136\) −442.496 −0.278998
\(137\) −2810.25 −1.75252 −0.876262 0.481836i \(-0.839970\pi\)
−0.876262 + 0.481836i \(0.839970\pi\)
\(138\) 1033.64 0.637605
\(139\) 3110.49 1.89804 0.949021 0.315212i \(-0.102076\pi\)
0.949021 + 0.315212i \(0.102076\pi\)
\(140\) −1810.59 −1.09302
\(141\) −2202.62 −1.31556
\(142\) −2066.13 −1.22103
\(143\) −567.345 −0.331775
\(144\) −823.869 −0.476776
\(145\) 967.270 0.553982
\(146\) −1135.03 −0.643394
\(147\) 404.933 0.227200
\(148\) 3599.36 1.99909
\(149\) 1916.92 1.05396 0.526979 0.849878i \(-0.323325\pi\)
0.526979 + 0.849878i \(0.323325\pi\)
\(150\) 13208.5 7.18980
\(151\) −2289.28 −1.23377 −0.616883 0.787055i \(-0.711605\pi\)
−0.616883 + 0.787055i \(0.711605\pi\)
\(152\) 1660.14 0.885889
\(153\) −1096.70 −0.579494
\(154\) 342.187 0.179054
\(155\) 1845.74 0.956475
\(156\) −5007.79 −2.57015
\(157\) 280.036 0.142352 0.0711762 0.997464i \(-0.477325\pi\)
0.0711762 + 0.997464i \(0.477325\pi\)
\(158\) 1160.93 0.584550
\(159\) 2552.46 1.27310
\(160\) 4886.29 2.41435
\(161\) 197.019 0.0964426
\(162\) −616.865 −0.299170
\(163\) −866.571 −0.416411 −0.208206 0.978085i \(-0.566762\pi\)
−0.208206 + 0.978085i \(0.566762\pi\)
\(164\) 2361.46 1.12439
\(165\) −2001.24 −0.944220
\(166\) 4239.51 1.98223
\(167\) −1965.18 −0.910600 −0.455300 0.890338i \(-0.650468\pi\)
−0.455300 + 0.890338i \(0.650468\pi\)
\(168\) 963.791 0.442608
\(169\) 463.173 0.210820
\(170\) 2598.39 1.17228
\(171\) 4114.55 1.84004
\(172\) −161.604 −0.0716407
\(173\) 3956.88 1.73894 0.869469 0.493988i \(-0.164461\pi\)
0.869469 + 0.493988i \(0.164461\pi\)
\(174\) −1613.58 −0.703018
\(175\) 2517.62 1.08751
\(176\) −219.471 −0.0939956
\(177\) −5143.86 −2.18439
\(178\) −3732.55 −1.57172
\(179\) −3143.58 −1.31264 −0.656318 0.754484i \(-0.727887\pi\)
−0.656318 + 0.754484i \(0.727887\pi\)
\(180\) −10680.6 −4.42271
\(181\) 683.772 0.280798 0.140399 0.990095i \(-0.455162\pi\)
0.140399 + 0.990095i \(0.455162\pi\)
\(182\) −1604.45 −0.653460
\(183\) −721.693 −0.291525
\(184\) 468.929 0.187880
\(185\) −6744.36 −2.68030
\(186\) −3079.03 −1.21379
\(187\) −292.149 −0.114246
\(188\) −3131.52 −1.21484
\(189\) 826.806 0.318208
\(190\) −9748.54 −3.72228
\(191\) 2739.68 1.03789 0.518944 0.854809i \(-0.326325\pi\)
0.518944 + 0.854809i \(0.326325\pi\)
\(192\) −6832.15 −2.56806
\(193\) 2651.93 0.989067 0.494534 0.869159i \(-0.335339\pi\)
0.494534 + 0.869159i \(0.335339\pi\)
\(194\) −1551.60 −0.574219
\(195\) 9383.42 3.44595
\(196\) 575.705 0.209805
\(197\) −1879.52 −0.679749 −0.339874 0.940471i \(-0.610385\pi\)
−0.339874 + 0.940471i \(0.610385\pi\)
\(198\) 2018.56 0.724507
\(199\) −3119.39 −1.11119 −0.555597 0.831452i \(-0.687510\pi\)
−0.555597 + 0.831452i \(0.687510\pi\)
\(200\) 5992.25 2.11858
\(201\) 5027.75 1.76433
\(202\) 6632.37 2.31016
\(203\) −307.558 −0.106337
\(204\) −2578.71 −0.885029
\(205\) −4424.82 −1.50753
\(206\) 2482.80 0.839733
\(207\) 1162.21 0.390237
\(208\) 1029.05 0.343039
\(209\) 1096.08 0.362761
\(210\) −5659.49 −1.85972
\(211\) −520.718 −0.169894 −0.0849472 0.996385i \(-0.527072\pi\)
−0.0849472 + 0.996385i \(0.527072\pi\)
\(212\) 3628.90 1.17563
\(213\) −3842.12 −1.23595
\(214\) −3084.34 −0.985238
\(215\) 302.808 0.0960528
\(216\) 1967.90 0.619901
\(217\) −586.881 −0.183595
\(218\) −1515.42 −0.470814
\(219\) −2110.67 −0.651260
\(220\) −2845.21 −0.871929
\(221\) 1369.83 0.416944
\(222\) 11250.8 3.40137
\(223\) 2101.08 0.630935 0.315467 0.948936i \(-0.397839\pi\)
0.315467 + 0.948936i \(0.397839\pi\)
\(224\) −1553.67 −0.463433
\(225\) 14851.4 4.40041
\(226\) −4403.60 −1.29612
\(227\) −6051.96 −1.76953 −0.884764 0.466040i \(-0.845680\pi\)
−0.884764 + 0.466040i \(0.845680\pi\)
\(228\) 9674.73 2.81020
\(229\) −2995.73 −0.864470 −0.432235 0.901761i \(-0.642275\pi\)
−0.432235 + 0.901761i \(0.642275\pi\)
\(230\) −2753.61 −0.789424
\(231\) 636.324 0.181243
\(232\) −732.026 −0.207155
\(233\) −65.3656 −0.0183787 −0.00918936 0.999958i \(-0.502925\pi\)
−0.00918936 + 0.999958i \(0.502925\pi\)
\(234\) −9464.61 −2.64411
\(235\) 5867.73 1.62880
\(236\) −7313.17 −2.01715
\(237\) 2158.85 0.591697
\(238\) −826.196 −0.225018
\(239\) −1102.33 −0.298343 −0.149171 0.988811i \(-0.547661\pi\)
−0.149171 + 0.988811i \(0.547661\pi\)
\(240\) 3629.86 0.976277
\(241\) 5297.43 1.41592 0.707962 0.706250i \(-0.249615\pi\)
0.707962 + 0.706250i \(0.249615\pi\)
\(242\) 537.723 0.142835
\(243\) −4336.22 −1.14473
\(244\) −1026.05 −0.269205
\(245\) −1078.74 −0.281297
\(246\) 7381.39 1.91309
\(247\) −5139.28 −1.32391
\(248\) −1396.85 −0.357661
\(249\) 7883.69 2.00646
\(250\) −22957.9 −5.80793
\(251\) 177.964 0.0447530 0.0223765 0.999750i \(-0.492877\pi\)
0.0223765 + 0.999750i \(0.492877\pi\)
\(252\) 3396.07 0.848937
\(253\) 309.601 0.0769346
\(254\) −2960.10 −0.731232
\(255\) 4831.90 1.18661
\(256\) −1822.59 −0.444969
\(257\) 3496.69 0.848707 0.424354 0.905497i \(-0.360501\pi\)
0.424354 + 0.905497i \(0.360501\pi\)
\(258\) −505.138 −0.121893
\(259\) 2144.47 0.514482
\(260\) 13340.7 3.18212
\(261\) −1814.28 −0.430272
\(262\) 135.256 0.0318936
\(263\) 5747.94 1.34766 0.673828 0.738889i \(-0.264649\pi\)
0.673828 + 0.738889i \(0.264649\pi\)
\(264\) 1514.53 0.353079
\(265\) −6799.71 −1.57624
\(266\) 3099.70 0.714491
\(267\) −6940.97 −1.59094
\(268\) 7148.08 1.62925
\(269\) 235.217 0.0533140 0.0266570 0.999645i \(-0.491514\pi\)
0.0266570 + 0.999645i \(0.491514\pi\)
\(270\) −11555.7 −2.60467
\(271\) −1179.58 −0.264406 −0.132203 0.991223i \(-0.542205\pi\)
−0.132203 + 0.991223i \(0.542205\pi\)
\(272\) 529.902 0.118125
\(273\) −2983.60 −0.661449
\(274\) −12488.7 −2.75354
\(275\) 3956.26 0.867533
\(276\) 2732.76 0.595988
\(277\) −3638.98 −0.789331 −0.394666 0.918825i \(-0.629140\pi\)
−0.394666 + 0.918825i \(0.629140\pi\)
\(278\) 13823.0 2.98218
\(279\) −3462.00 −0.742883
\(280\) −2567.52 −0.547995
\(281\) 3236.81 0.687160 0.343580 0.939123i \(-0.388360\pi\)
0.343580 + 0.939123i \(0.388360\pi\)
\(282\) −9788.42 −2.06699
\(283\) 8303.78 1.74420 0.872100 0.489328i \(-0.162758\pi\)
0.872100 + 0.489328i \(0.162758\pi\)
\(284\) −5462.45 −1.14133
\(285\) −18128.2 −3.76779
\(286\) −2521.28 −0.521281
\(287\) 1406.94 0.289369
\(288\) −9165.06 −1.87520
\(289\) −4207.62 −0.856426
\(290\) 4298.54 0.870411
\(291\) −2885.32 −0.581239
\(292\) −3000.80 −0.601398
\(293\) −1894.16 −0.377672 −0.188836 0.982009i \(-0.560471\pi\)
−0.188836 + 0.982009i \(0.560471\pi\)
\(294\) 1799.52 0.356974
\(295\) 13703.2 2.70450
\(296\) 5104.10 1.00226
\(297\) 1299.27 0.253842
\(298\) 8518.76 1.65597
\(299\) −1451.66 −0.280775
\(300\) 34920.8 6.72050
\(301\) −96.2825 −0.0184373
\(302\) −10173.5 −1.93848
\(303\) 12333.4 2.33840
\(304\) −1988.07 −0.375077
\(305\) 1922.58 0.360939
\(306\) −4873.71 −0.910495
\(307\) 6596.30 1.22629 0.613144 0.789971i \(-0.289904\pi\)
0.613144 + 0.789971i \(0.289904\pi\)
\(308\) 904.679 0.167366
\(309\) 4616.96 0.849999
\(310\) 8202.47 1.50280
\(311\) −5242.26 −0.955824 −0.477912 0.878408i \(-0.658606\pi\)
−0.477912 + 0.878408i \(0.658606\pi\)
\(312\) −7101.33 −1.28857
\(313\) 5338.75 0.964103 0.482051 0.876143i \(-0.339892\pi\)
0.482051 + 0.876143i \(0.339892\pi\)
\(314\) 1244.48 0.223662
\(315\) −6363.43 −1.13822
\(316\) 3069.29 0.546395
\(317\) −5807.21 −1.02891 −0.514456 0.857517i \(-0.672006\pi\)
−0.514456 + 0.857517i \(0.672006\pi\)
\(318\) 11343.1 2.00028
\(319\) −483.306 −0.0848273
\(320\) 18200.7 3.17953
\(321\) −5735.56 −0.997283
\(322\) 875.550 0.151530
\(323\) −2646.42 −0.455885
\(324\) −1630.87 −0.279642
\(325\) −18550.1 −3.16608
\(326\) −3851.03 −0.654261
\(327\) −2818.04 −0.476570
\(328\) 3348.69 0.563720
\(329\) −1865.73 −0.312648
\(330\) −8893.49 −1.48355
\(331\) −1366.51 −0.226919 −0.113460 0.993543i \(-0.536193\pi\)
−0.113460 + 0.993543i \(0.536193\pi\)
\(332\) 11208.4 1.85284
\(333\) 12650.2 2.08176
\(334\) −8733.25 −1.43072
\(335\) −13393.8 −2.18443
\(336\) −1154.17 −0.187396
\(337\) −3363.75 −0.543724 −0.271862 0.962336i \(-0.587639\pi\)
−0.271862 + 0.962336i \(0.587639\pi\)
\(338\) 2058.34 0.331239
\(339\) −8188.83 −1.31196
\(340\) 6869.64 1.09576
\(341\) −922.242 −0.146458
\(342\) 18285.0 2.89106
\(343\) 343.000 0.0539949
\(344\) −229.164 −0.0359177
\(345\) −5120.54 −0.799075
\(346\) 17584.4 2.73220
\(347\) 2984.97 0.461791 0.230896 0.972979i \(-0.425834\pi\)
0.230896 + 0.972979i \(0.425834\pi\)
\(348\) −4265.99 −0.657130
\(349\) 1286.08 0.197255 0.0986276 0.995124i \(-0.468555\pi\)
0.0986276 + 0.995124i \(0.468555\pi\)
\(350\) 11188.3 1.70868
\(351\) −6092.01 −0.926403
\(352\) −2441.48 −0.369691
\(353\) 8417.60 1.26919 0.634594 0.772846i \(-0.281167\pi\)
0.634594 + 0.772846i \(0.281167\pi\)
\(354\) −22859.3 −3.43208
\(355\) 10235.3 1.53024
\(356\) −9868.16 −1.46913
\(357\) −1536.38 −0.227769
\(358\) −13970.0 −2.06240
\(359\) 7483.47 1.10017 0.550087 0.835108i \(-0.314595\pi\)
0.550087 + 0.835108i \(0.314595\pi\)
\(360\) −15145.7 −2.21736
\(361\) 3069.76 0.447553
\(362\) 3038.68 0.441186
\(363\) 999.938 0.144582
\(364\) −4241.86 −0.610808
\(365\) 5622.79 0.806329
\(366\) −3207.20 −0.458041
\(367\) 8588.73 1.22160 0.610801 0.791784i \(-0.290847\pi\)
0.610801 + 0.791784i \(0.290847\pi\)
\(368\) −561.556 −0.0795466
\(369\) 8299.50 1.17088
\(370\) −29971.9 −4.21125
\(371\) 2162.07 0.302558
\(372\) −8140.36 −1.13456
\(373\) 11833.0 1.64260 0.821298 0.570500i \(-0.193251\pi\)
0.821298 + 0.570500i \(0.193251\pi\)
\(374\) −1298.31 −0.179502
\(375\) −42691.9 −5.87894
\(376\) −4440.67 −0.609070
\(377\) 2266.13 0.309579
\(378\) 3674.32 0.499965
\(379\) 5056.39 0.685301 0.342651 0.939463i \(-0.388675\pi\)
0.342651 + 0.939463i \(0.388675\pi\)
\(380\) −25773.3 −3.47932
\(381\) −5504.53 −0.740172
\(382\) 12175.1 1.63072
\(383\) 6457.09 0.861467 0.430733 0.902479i \(-0.358255\pi\)
0.430733 + 0.902479i \(0.358255\pi\)
\(384\) −15688.4 −2.08488
\(385\) −1695.16 −0.224398
\(386\) 11785.1 1.55401
\(387\) −567.968 −0.0746032
\(388\) −4102.14 −0.536739
\(389\) 12444.5 1.62201 0.811004 0.585040i \(-0.198921\pi\)
0.811004 + 0.585040i \(0.198921\pi\)
\(390\) 41699.9 5.41424
\(391\) −747.518 −0.0966844
\(392\) 816.382 0.105188
\(393\) 251.518 0.0322835
\(394\) −8352.59 −1.06801
\(395\) −5751.12 −0.732584
\(396\) 5336.68 0.677217
\(397\) −619.207 −0.0782799 −0.0391400 0.999234i \(-0.512462\pi\)
−0.0391400 + 0.999234i \(0.512462\pi\)
\(398\) −13862.5 −1.74589
\(399\) 5764.12 0.723226
\(400\) −7175.90 −0.896987
\(401\) 9731.89 1.21194 0.605969 0.795488i \(-0.292785\pi\)
0.605969 + 0.795488i \(0.292785\pi\)
\(402\) 22343.3 2.77209
\(403\) 4324.22 0.534502
\(404\) 17534.7 2.15937
\(405\) 3055.87 0.374932
\(406\) −1366.79 −0.167075
\(407\) 3369.88 0.410415
\(408\) −3656.76 −0.443717
\(409\) 4621.43 0.558717 0.279358 0.960187i \(-0.409878\pi\)
0.279358 + 0.960187i \(0.409878\pi\)
\(410\) −19663.9 −2.36861
\(411\) −23223.7 −2.78721
\(412\) 6564.05 0.784922
\(413\) −4357.12 −0.519128
\(414\) 5164.85 0.613137
\(415\) −21002.0 −2.48421
\(416\) 11447.6 1.34920
\(417\) 25704.9 3.01864
\(418\) 4870.95 0.569966
\(419\) 186.428 0.0217365 0.0108682 0.999941i \(-0.496540\pi\)
0.0108682 + 0.999941i \(0.496540\pi\)
\(420\) −14962.6 −1.73834
\(421\) 2670.29 0.309126 0.154563 0.987983i \(-0.450603\pi\)
0.154563 + 0.987983i \(0.450603\pi\)
\(422\) −2314.07 −0.266936
\(423\) −11005.9 −1.26507
\(424\) 5145.99 0.589413
\(425\) −9552.22 −1.09024
\(426\) −17074.4 −1.94192
\(427\) −611.312 −0.0692821
\(428\) −8154.40 −0.920930
\(429\) −4688.51 −0.527654
\(430\) 1345.68 0.150917
\(431\) −12514.9 −1.39866 −0.699328 0.714801i \(-0.746517\pi\)
−0.699328 + 0.714801i \(0.746517\pi\)
\(432\) −2356.62 −0.262460
\(433\) −16651.2 −1.84805 −0.924025 0.382332i \(-0.875121\pi\)
−0.924025 + 0.382332i \(0.875121\pi\)
\(434\) −2608.10 −0.288462
\(435\) 7993.47 0.881052
\(436\) −4006.49 −0.440083
\(437\) 2804.51 0.306998
\(438\) −9379.80 −1.02325
\(439\) 6033.38 0.655940 0.327970 0.944688i \(-0.393636\pi\)
0.327970 + 0.944688i \(0.393636\pi\)
\(440\) −4034.68 −0.437149
\(441\) 2023.35 0.218481
\(442\) 6087.51 0.655098
\(443\) 6320.03 0.677819 0.338910 0.940819i \(-0.389942\pi\)
0.338910 + 0.940819i \(0.389942\pi\)
\(444\) 29744.9 3.17935
\(445\) 18490.6 1.96975
\(446\) 9337.17 0.991318
\(447\) 15841.3 1.67621
\(448\) −5787.19 −0.610311
\(449\) −17893.6 −1.88074 −0.940368 0.340159i \(-0.889519\pi\)
−0.940368 + 0.340159i \(0.889519\pi\)
\(450\) 65999.5 6.91388
\(451\) 2210.90 0.230837
\(452\) −11642.3 −1.21152
\(453\) −18918.5 −1.96218
\(454\) −26894.9 −2.78026
\(455\) 7948.25 0.818945
\(456\) 13719.3 1.40892
\(457\) 6208.00 0.635444 0.317722 0.948184i \(-0.397082\pi\)
0.317722 + 0.948184i \(0.397082\pi\)
\(458\) −13313.0 −1.35825
\(459\) −3137.02 −0.319006
\(460\) −7280.01 −0.737896
\(461\) 7981.28 0.806346 0.403173 0.915124i \(-0.367907\pi\)
0.403173 + 0.915124i \(0.367907\pi\)
\(462\) 2827.82 0.284766
\(463\) −7495.19 −0.752334 −0.376167 0.926552i \(-0.622758\pi\)
−0.376167 + 0.926552i \(0.622758\pi\)
\(464\) 876.623 0.0877073
\(465\) 15253.1 1.52118
\(466\) −290.484 −0.0288765
\(467\) 1519.39 0.150555 0.0752773 0.997163i \(-0.476016\pi\)
0.0752773 + 0.997163i \(0.476016\pi\)
\(468\) −25022.6 −2.47152
\(469\) 4258.77 0.419300
\(470\) 26076.2 2.55916
\(471\) 2314.20 0.226397
\(472\) −10370.5 −1.01131
\(473\) −151.301 −0.0147079
\(474\) 9593.90 0.929667
\(475\) 35837.7 3.46178
\(476\) −2184.31 −0.210331
\(477\) 12754.0 1.22425
\(478\) −4898.75 −0.468753
\(479\) −16394.2 −1.56382 −0.781909 0.623393i \(-0.785754\pi\)
−0.781909 + 0.623393i \(0.785754\pi\)
\(480\) 40380.1 3.83977
\(481\) −15800.7 −1.49782
\(482\) 23541.8 2.22468
\(483\) 1628.15 0.153382
\(484\) 1421.64 0.133512
\(485\) 7686.45 0.719636
\(486\) −19270.1 −1.79858
\(487\) 2275.01 0.211685 0.105843 0.994383i \(-0.466246\pi\)
0.105843 + 0.994383i \(0.466246\pi\)
\(488\) −1455.00 −0.134968
\(489\) −7161.29 −0.662259
\(490\) −4793.89 −0.441971
\(491\) −14629.2 −1.34462 −0.672308 0.740272i \(-0.734697\pi\)
−0.672308 + 0.740272i \(0.734697\pi\)
\(492\) 19515.0 1.78822
\(493\) 1166.92 0.106603
\(494\) −22838.9 −2.08011
\(495\) −9999.68 −0.907984
\(496\) 1672.77 0.151431
\(497\) −3254.48 −0.293729
\(498\) 35035.1 3.15253
\(499\) 3534.01 0.317042 0.158521 0.987356i \(-0.449327\pi\)
0.158521 + 0.987356i \(0.449327\pi\)
\(500\) −60696.3 −5.42884
\(501\) −16240.1 −1.44822
\(502\) 790.872 0.0703155
\(503\) −9233.35 −0.818479 −0.409239 0.912427i \(-0.634206\pi\)
−0.409239 + 0.912427i \(0.634206\pi\)
\(504\) 4815.82 0.425622
\(505\) −32856.0 −2.89519
\(506\) 1375.86 0.120879
\(507\) 3827.63 0.335288
\(508\) −7825.93 −0.683503
\(509\) 11565.3 1.00712 0.503560 0.863960i \(-0.332023\pi\)
0.503560 + 0.863960i \(0.332023\pi\)
\(510\) 21472.9 1.86439
\(511\) −1787.85 −0.154775
\(512\) 7087.70 0.611787
\(513\) 11769.4 1.01292
\(514\) 15539.3 1.33348
\(515\) −12299.5 −1.05239
\(516\) −1335.49 −0.113937
\(517\) −2931.87 −0.249407
\(518\) 9530.01 0.808349
\(519\) 32699.5 2.76560
\(520\) 18917.8 1.59539
\(521\) −2440.24 −0.205200 −0.102600 0.994723i \(-0.532716\pi\)
−0.102600 + 0.994723i \(0.532716\pi\)
\(522\) −8062.64 −0.676038
\(523\) −911.213 −0.0761847 −0.0380923 0.999274i \(-0.512128\pi\)
−0.0380923 + 0.999274i \(0.512128\pi\)
\(524\) 357.590 0.0298119
\(525\) 20805.5 1.72957
\(526\) 25543.8 2.11742
\(527\) 2226.71 0.184055
\(528\) −1813.69 −0.149490
\(529\) −11374.8 −0.934892
\(530\) −30217.9 −2.47657
\(531\) −25702.6 −2.10056
\(532\) 8195.01 0.667854
\(533\) −10366.5 −0.842445
\(534\) −30845.6 −2.49966
\(535\) 15279.4 1.23474
\(536\) 10136.4 0.816838
\(537\) −25978.3 −2.08761
\(538\) 1045.30 0.0837663
\(539\) 539.000 0.0430730
\(540\) −30551.2 −2.43465
\(541\) 12277.5 0.975692 0.487846 0.872930i \(-0.337783\pi\)
0.487846 + 0.872930i \(0.337783\pi\)
\(542\) −5242.02 −0.415432
\(543\) 5650.65 0.446580
\(544\) 5894.84 0.464594
\(545\) 7507.22 0.590044
\(546\) −13259.1 −1.03926
\(547\) −12539.2 −0.980141 −0.490071 0.871683i \(-0.663029\pi\)
−0.490071 + 0.871683i \(0.663029\pi\)
\(548\) −33017.8 −2.57382
\(549\) −3606.11 −0.280337
\(550\) 17581.6 1.36306
\(551\) −4378.01 −0.338493
\(552\) 3875.20 0.298804
\(553\) 1828.66 0.140619
\(554\) −16171.6 −1.24019
\(555\) −55735.0 −4.26274
\(556\) 36545.3 2.78753
\(557\) −14212.8 −1.08118 −0.540588 0.841287i \(-0.681798\pi\)
−0.540588 + 0.841287i \(0.681798\pi\)
\(558\) −15385.1 −1.16721
\(559\) 709.421 0.0536768
\(560\) 3074.68 0.232016
\(561\) −2414.30 −0.181697
\(562\) 14384.4 1.07966
\(563\) 4446.83 0.332880 0.166440 0.986052i \(-0.446773\pi\)
0.166440 + 0.986052i \(0.446773\pi\)
\(564\) −25878.7 −1.93207
\(565\) 21814.9 1.62435
\(566\) 36901.9 2.74047
\(567\) −971.661 −0.0719681
\(568\) −7746.07 −0.572214
\(569\) 11258.8 0.829511 0.414756 0.909933i \(-0.363867\pi\)
0.414756 + 0.909933i \(0.363867\pi\)
\(570\) −80561.4 −5.91991
\(571\) −16450.6 −1.20567 −0.602835 0.797866i \(-0.705962\pi\)
−0.602835 + 0.797866i \(0.705962\pi\)
\(572\) −6665.78 −0.487256
\(573\) 22640.6 1.65065
\(574\) 6252.43 0.454654
\(575\) 10122.8 0.734176
\(576\) −34138.5 −2.46951
\(577\) 10175.6 0.734173 0.367086 0.930187i \(-0.380355\pi\)
0.367086 + 0.930187i \(0.380355\pi\)
\(578\) −18698.6 −1.34561
\(579\) 21915.4 1.57301
\(580\) 11364.5 0.813597
\(581\) 6677.90 0.476843
\(582\) −12822.4 −0.913237
\(583\) 3397.54 0.241358
\(584\) −4255.30 −0.301516
\(585\) 46886.5 3.31371
\(586\) −8417.62 −0.593394
\(587\) −5123.98 −0.360289 −0.180144 0.983640i \(-0.557656\pi\)
−0.180144 + 0.983640i \(0.557656\pi\)
\(588\) 4757.59 0.333673
\(589\) −8354.11 −0.584423
\(590\) 60896.7 4.24929
\(591\) −15532.3 −1.08107
\(592\) −6112.31 −0.424349
\(593\) −23816.7 −1.64930 −0.824650 0.565643i \(-0.808628\pi\)
−0.824650 + 0.565643i \(0.808628\pi\)
\(594\) 5773.93 0.398834
\(595\) 4092.88 0.282003
\(596\) 22522.0 1.54788
\(597\) −25778.4 −1.76724
\(598\) −6451.16 −0.441150
\(599\) 11801.0 0.804965 0.402482 0.915428i \(-0.368147\pi\)
0.402482 + 0.915428i \(0.368147\pi\)
\(600\) 49519.6 3.36938
\(601\) −10944.5 −0.742820 −0.371410 0.928469i \(-0.621125\pi\)
−0.371410 + 0.928469i \(0.621125\pi\)
\(602\) −427.879 −0.0289685
\(603\) 25122.4 1.69662
\(604\) −26896.9 −1.81195
\(605\) −2663.82 −0.179007
\(606\) 54809.6 3.67407
\(607\) −1280.36 −0.0856150 −0.0428075 0.999083i \(-0.513630\pi\)
−0.0428075 + 0.999083i \(0.513630\pi\)
\(608\) −22116.1 −1.47521
\(609\) −2541.64 −0.169118
\(610\) 8543.91 0.567103
\(611\) 13747.0 0.910216
\(612\) −12885.2 −0.851065
\(613\) −11029.9 −0.726744 −0.363372 0.931644i \(-0.618375\pi\)
−0.363372 + 0.931644i \(0.618375\pi\)
\(614\) 29313.9 1.92673
\(615\) −36566.5 −2.39757
\(616\) 1282.89 0.0839106
\(617\) −20861.3 −1.36117 −0.680586 0.732668i \(-0.738275\pi\)
−0.680586 + 0.732668i \(0.738275\pi\)
\(618\) 20517.7 1.33551
\(619\) −16877.9 −1.09593 −0.547966 0.836501i \(-0.684598\pi\)
−0.547966 + 0.836501i \(0.684598\pi\)
\(620\) 21685.8 1.40471
\(621\) 3324.42 0.214822
\(622\) −23296.6 −1.50178
\(623\) −5879.37 −0.378093
\(624\) 8504.06 0.545568
\(625\) 68773.0 4.40147
\(626\) 23725.4 1.51479
\(627\) 9057.91 0.576935
\(628\) 3290.17 0.209064
\(629\) −8136.43 −0.515772
\(630\) −28279.0 −1.78836
\(631\) −1332.58 −0.0840719 −0.0420359 0.999116i \(-0.513384\pi\)
−0.0420359 + 0.999116i \(0.513384\pi\)
\(632\) 4352.42 0.273940
\(633\) −4303.19 −0.270200
\(634\) −25807.2 −1.61662
\(635\) 14664.0 0.916412
\(636\) 29989.0 1.86972
\(637\) −2527.27 −0.157196
\(638\) −2147.81 −0.133280
\(639\) −19198.1 −1.18852
\(640\) 41793.5 2.58130
\(641\) 20472.2 1.26147 0.630736 0.775998i \(-0.282753\pi\)
0.630736 + 0.775998i \(0.282753\pi\)
\(642\) −25488.8 −1.56692
\(643\) 27140.3 1.66455 0.832276 0.554361i \(-0.187037\pi\)
0.832276 + 0.554361i \(0.187037\pi\)
\(644\) 2314.79 0.141639
\(645\) 2502.39 0.152762
\(646\) −11760.7 −0.716282
\(647\) 13662.1 0.830159 0.415079 0.909785i \(-0.363754\pi\)
0.415079 + 0.909785i \(0.363754\pi\)
\(648\) −2312.67 −0.140201
\(649\) −6846.91 −0.414121
\(650\) −82436.7 −4.97451
\(651\) −4849.96 −0.291989
\(652\) −10181.4 −0.611556
\(653\) 1607.56 0.0963379 0.0481689 0.998839i \(-0.484661\pi\)
0.0481689 + 0.998839i \(0.484661\pi\)
\(654\) −12523.4 −0.748781
\(655\) −670.040 −0.0399705
\(656\) −4010.15 −0.238674
\(657\) −10546.5 −0.626267
\(658\) −8291.30 −0.491229
\(659\) 27361.6 1.61738 0.808692 0.588233i \(-0.200176\pi\)
0.808692 + 0.588233i \(0.200176\pi\)
\(660\) −23512.7 −1.38671
\(661\) −5117.29 −0.301119 −0.150559 0.988601i \(-0.548107\pi\)
−0.150559 + 0.988601i \(0.548107\pi\)
\(662\) −6072.76 −0.356533
\(663\) 11320.2 0.663107
\(664\) 15894.2 0.928939
\(665\) −15355.5 −0.895431
\(666\) 56217.3 3.27083
\(667\) −1236.63 −0.0717877
\(668\) −23089.0 −1.33734
\(669\) 17363.2 1.00344
\(670\) −59522.1 −3.43215
\(671\) −960.633 −0.0552680
\(672\) −12839.4 −0.737042
\(673\) 11605.6 0.664729 0.332365 0.943151i \(-0.392154\pi\)
0.332365 + 0.943151i \(0.392154\pi\)
\(674\) −14948.5 −0.854292
\(675\) 42481.3 2.42238
\(676\) 5441.85 0.309618
\(677\) 32514.6 1.84584 0.922922 0.384986i \(-0.125794\pi\)
0.922922 + 0.384986i \(0.125794\pi\)
\(678\) −36391.1 −2.06134
\(679\) −2444.02 −0.138134
\(680\) 9741.54 0.549369
\(681\) −50013.1 −2.81425
\(682\) −4098.44 −0.230113
\(683\) 7201.06 0.403427 0.201714 0.979445i \(-0.435349\pi\)
0.201714 + 0.979445i \(0.435349\pi\)
\(684\) 48342.1 2.70235
\(685\) 61867.6 3.45086
\(686\) 1524.29 0.0848362
\(687\) −24756.6 −1.37485
\(688\) 274.431 0.0152072
\(689\) −15930.4 −0.880841
\(690\) −22755.7 −1.25550
\(691\) −32357.7 −1.78140 −0.890698 0.454596i \(-0.849784\pi\)
−0.890698 + 0.454596i \(0.849784\pi\)
\(692\) 46489.7 2.55386
\(693\) 3179.55 0.174287
\(694\) 13265.2 0.725562
\(695\) −68477.3 −3.73740
\(696\) −6049.42 −0.329458
\(697\) −5338.13 −0.290095
\(698\) 5715.31 0.309925
\(699\) −540.178 −0.0292295
\(700\) 29579.7 1.59716
\(701\) 11077.3 0.596838 0.298419 0.954435i \(-0.403541\pi\)
0.298419 + 0.954435i \(0.403541\pi\)
\(702\) −27072.8 −1.45555
\(703\) 30526.0 1.63771
\(704\) −9094.16 −0.486859
\(705\) 48490.6 2.59044
\(706\) 37407.7 1.99413
\(707\) 10447.1 0.555731
\(708\) −60435.6 −3.20806
\(709\) −28594.0 −1.51463 −0.757314 0.653051i \(-0.773489\pi\)
−0.757314 + 0.653051i \(0.773489\pi\)
\(710\) 45485.8 2.40430
\(711\) 10787.2 0.568990
\(712\) −13993.6 −0.736563
\(713\) −2359.73 −0.123945
\(714\) −6827.64 −0.357868
\(715\) 12490.1 0.653292
\(716\) −36934.1 −1.92778
\(717\) −9109.61 −0.474483
\(718\) 33256.5 1.72858
\(719\) 18240.5 0.946114 0.473057 0.881032i \(-0.343150\pi\)
0.473057 + 0.881032i \(0.343150\pi\)
\(720\) 18137.5 0.938811
\(721\) 3910.81 0.202006
\(722\) 13642.0 0.703190
\(723\) 43777.7 2.25188
\(724\) 8033.68 0.412389
\(725\) −15802.4 −0.809496
\(726\) 4443.72 0.227165
\(727\) −9792.53 −0.499566 −0.249783 0.968302i \(-0.580359\pi\)
−0.249783 + 0.968302i \(0.580359\pi\)
\(728\) −6015.20 −0.306234
\(729\) −32086.4 −1.63016
\(730\) 24987.6 1.26690
\(731\) 365.309 0.0184835
\(732\) −8479.22 −0.428143
\(733\) −22723.8 −1.14505 −0.572525 0.819887i \(-0.694036\pi\)
−0.572525 + 0.819887i \(0.694036\pi\)
\(734\) 38168.3 1.91937
\(735\) −8914.61 −0.447375
\(736\) −6246.98 −0.312863
\(737\) 6692.35 0.334485
\(738\) 36882.9 1.83967
\(739\) −24063.6 −1.19783 −0.598913 0.800814i \(-0.704401\pi\)
−0.598913 + 0.800814i \(0.704401\pi\)
\(740\) −79240.0 −3.93638
\(741\) −42470.8 −2.10554
\(742\) 9608.22 0.475376
\(743\) −29211.6 −1.44235 −0.721177 0.692751i \(-0.756399\pi\)
−0.721177 + 0.692751i \(0.756399\pi\)
\(744\) −11543.5 −0.568824
\(745\) −42200.9 −2.07533
\(746\) 52585.6 2.58083
\(747\) 39392.8 1.92946
\(748\) −3432.48 −0.167786
\(749\) −4858.33 −0.237008
\(750\) −189723. −9.23692
\(751\) 1880.93 0.0913931 0.0456965 0.998955i \(-0.485449\pi\)
0.0456965 + 0.998955i \(0.485449\pi\)
\(752\) 5317.84 0.257874
\(753\) 1470.69 0.0711751
\(754\) 10070.6 0.486408
\(755\) 50398.4 2.42939
\(756\) 9714.21 0.467331
\(757\) −36218.7 −1.73896 −0.869480 0.493968i \(-0.835546\pi\)
−0.869480 + 0.493968i \(0.835546\pi\)
\(758\) 22470.5 1.07674
\(759\) 2558.53 0.122357
\(760\) −36548.0 −1.74439
\(761\) 36966.4 1.76088 0.880441 0.474156i \(-0.157247\pi\)
0.880441 + 0.474156i \(0.157247\pi\)
\(762\) −24462.1 −1.16295
\(763\) −2387.03 −0.113259
\(764\) 32188.7 1.52428
\(765\) 24143.8 1.14107
\(766\) 28695.2 1.35353
\(767\) 32103.8 1.51135
\(768\) −15061.8 −0.707678
\(769\) −38975.5 −1.82769 −0.913845 0.406062i \(-0.866902\pi\)
−0.913845 + 0.406062i \(0.866902\pi\)
\(770\) −7533.26 −0.352571
\(771\) 28896.5 1.34978
\(772\) 31157.7 1.45258
\(773\) 27341.9 1.27221 0.636105 0.771603i \(-0.280545\pi\)
0.636105 + 0.771603i \(0.280545\pi\)
\(774\) −2524.05 −0.117216
\(775\) −30154.0 −1.39763
\(776\) −5817.07 −0.269099
\(777\) 17721.8 0.818231
\(778\) 55303.3 2.54848
\(779\) 20027.4 0.921125
\(780\) 110246. 5.06084
\(781\) −5114.19 −0.234315
\(782\) −3321.96 −0.151909
\(783\) −5189.61 −0.236860
\(784\) −977.642 −0.0445354
\(785\) −6165.00 −0.280303
\(786\) 1117.75 0.0507235
\(787\) −18268.5 −0.827446 −0.413723 0.910403i \(-0.635772\pi\)
−0.413723 + 0.910403i \(0.635772\pi\)
\(788\) −22082.7 −0.998302
\(789\) 47500.7 2.14331
\(790\) −25558.0 −1.15103
\(791\) −6936.37 −0.311794
\(792\) 7567.71 0.339529
\(793\) 4504.22 0.201702
\(794\) −2751.75 −0.122993
\(795\) −56192.4 −2.50684
\(796\) −36649.9 −1.63194
\(797\) 12717.6 0.565219 0.282610 0.959235i \(-0.408800\pi\)
0.282610 + 0.959235i \(0.408800\pi\)
\(798\) 25615.7 1.13632
\(799\) 7078.86 0.313432
\(800\) −79827.6 −3.52792
\(801\) −34682.2 −1.52988
\(802\) 43248.4 1.90418
\(803\) −2809.48 −0.123467
\(804\) 59071.4 2.59115
\(805\) −4337.37 −0.189903
\(806\) 19216.8 0.839804
\(807\) 1943.82 0.0847904
\(808\) 24865.3 1.08262
\(809\) 12502.0 0.543322 0.271661 0.962393i \(-0.412427\pi\)
0.271661 + 0.962393i \(0.412427\pi\)
\(810\) 13580.3 0.589090
\(811\) −23431.3 −1.01453 −0.507264 0.861791i \(-0.669343\pi\)
−0.507264 + 0.861791i \(0.669343\pi\)
\(812\) −3613.52 −0.156170
\(813\) −9747.95 −0.420511
\(814\) 14975.7 0.644839
\(815\) 19077.6 0.819948
\(816\) 4379.08 0.187866
\(817\) −1370.56 −0.0586899
\(818\) 20537.6 0.877850
\(819\) −14908.3 −0.636065
\(820\) −51987.6 −2.21401
\(821\) 33116.5 1.40776 0.703881 0.710317i \(-0.251449\pi\)
0.703881 + 0.710317i \(0.251449\pi\)
\(822\) −103206. −4.37923
\(823\) −6383.39 −0.270366 −0.135183 0.990821i \(-0.543162\pi\)
−0.135183 + 0.990821i \(0.543162\pi\)
\(824\) 9308.20 0.393527
\(825\) 32694.4 1.37972
\(826\) −19363.0 −0.815649
\(827\) −27701.3 −1.16477 −0.582386 0.812912i \(-0.697881\pi\)
−0.582386 + 0.812912i \(0.697881\pi\)
\(828\) 13654.9 0.573116
\(829\) −13160.2 −0.551353 −0.275676 0.961251i \(-0.588902\pi\)
−0.275676 + 0.961251i \(0.588902\pi\)
\(830\) −93332.7 −3.90316
\(831\) −30072.3 −1.25535
\(832\) 42640.7 1.77680
\(833\) −1301.39 −0.0541303
\(834\) 114232. 4.74286
\(835\) 43263.4 1.79305
\(836\) 12877.9 0.532763
\(837\) −9902.80 −0.408950
\(838\) 828.483 0.0341521
\(839\) −24842.9 −1.02226 −0.511128 0.859505i \(-0.670772\pi\)
−0.511128 + 0.859505i \(0.670772\pi\)
\(840\) −21217.9 −0.871531
\(841\) −22458.6 −0.920848
\(842\) 11866.8 0.485696
\(843\) 26748.8 1.09286
\(844\) −6117.95 −0.249513
\(845\) −10196.7 −0.415123
\(846\) −48910.2 −1.98767
\(847\) 847.000 0.0343604
\(848\) −6162.48 −0.249552
\(849\) 68622.0 2.77397
\(850\) −42450.0 −1.71297
\(851\) 8622.47 0.347326
\(852\) −45141.4 −1.81516
\(853\) −10131.6 −0.406681 −0.203340 0.979108i \(-0.565180\pi\)
−0.203340 + 0.979108i \(0.565180\pi\)
\(854\) −2716.67 −0.108855
\(855\) −90581.8 −3.62320
\(856\) −11563.4 −0.461716
\(857\) 10115.6 0.403199 0.201599 0.979468i \(-0.435386\pi\)
0.201599 + 0.979468i \(0.435386\pi\)
\(858\) −20835.7 −0.829044
\(859\) −27491.4 −1.09196 −0.545980 0.837798i \(-0.683843\pi\)
−0.545980 + 0.837798i \(0.683843\pi\)
\(860\) 3557.72 0.141066
\(861\) 11626.9 0.460212
\(862\) −55616.1 −2.19755
\(863\) −117.276 −0.00462588 −0.00231294 0.999997i \(-0.500736\pi\)
−0.00231294 + 0.999997i \(0.500736\pi\)
\(864\) −26216.0 −1.03228
\(865\) −87110.8 −3.42411
\(866\) −73997.8 −2.90364
\(867\) −34771.5 −1.36206
\(868\) −6895.31 −0.269634
\(869\) 2873.60 0.112175
\(870\) 35522.9 1.38430
\(871\) −31379.1 −1.22071
\(872\) −5681.43 −0.220639
\(873\) −14417.2 −0.558933
\(874\) 12463.2 0.482351
\(875\) −36162.3 −1.39715
\(876\) −24798.4 −0.956462
\(877\) 11597.4 0.446543 0.223271 0.974756i \(-0.428326\pi\)
0.223271 + 0.974756i \(0.428326\pi\)
\(878\) 26812.3 1.03061
\(879\) −15653.2 −0.600648
\(880\) 4831.65 0.185085
\(881\) 7524.18 0.287737 0.143868 0.989597i \(-0.454046\pi\)
0.143868 + 0.989597i \(0.454046\pi\)
\(882\) 8991.75 0.343274
\(883\) 13467.4 0.513266 0.256633 0.966509i \(-0.417387\pi\)
0.256633 + 0.966509i \(0.417387\pi\)
\(884\) 16094.2 0.612339
\(885\) 113242. 4.30124
\(886\) 28086.2 1.06498
\(887\) −12955.7 −0.490427 −0.245214 0.969469i \(-0.578858\pi\)
−0.245214 + 0.969469i \(0.578858\pi\)
\(888\) 42180.0 1.59400
\(889\) −4662.63 −0.175905
\(890\) 82172.1 3.09485
\(891\) −1526.90 −0.0574107
\(892\) 24685.7 0.926612
\(893\) −26558.2 −0.995226
\(894\) 70398.6 2.63365
\(895\) 69205.8 2.58469
\(896\) −13288.9 −0.495480
\(897\) −11996.4 −0.446543
\(898\) −79518.9 −2.95499
\(899\) 3683.68 0.136660
\(900\) 174490. 6.46260
\(901\) −8203.20 −0.303317
\(902\) 9825.25 0.362688
\(903\) −795.673 −0.0293226
\(904\) −16509.4 −0.607405
\(905\) −15053.2 −0.552913
\(906\) −84073.5 −3.08295
\(907\) 47843.5 1.75151 0.875753 0.482759i \(-0.160365\pi\)
0.875753 + 0.482759i \(0.160365\pi\)
\(908\) −71104.9 −2.59879
\(909\) 61626.9 2.24866
\(910\) 35322.0 1.28672
\(911\) 16969.8 0.617162 0.308581 0.951198i \(-0.400146\pi\)
0.308581 + 0.951198i \(0.400146\pi\)
\(912\) −16429.3 −0.596522
\(913\) 10493.8 0.380389
\(914\) 27588.3 0.998402
\(915\) 15888.1 0.574036
\(916\) −35197.1 −1.26959
\(917\) 213.049 0.00767231
\(918\) −13940.9 −0.501218
\(919\) 12095.2 0.434149 0.217075 0.976155i \(-0.430348\pi\)
0.217075 + 0.976155i \(0.430348\pi\)
\(920\) −10323.5 −0.369951
\(921\) 54511.4 1.95029
\(922\) 35468.8 1.26692
\(923\) 23979.4 0.855138
\(924\) 7476.22 0.266179
\(925\) 110183. 3.91653
\(926\) −33308.6 −1.18206
\(927\) 23069.8 0.817379
\(928\) 9751.91 0.344959
\(929\) −44544.3 −1.57314 −0.786571 0.617499i \(-0.788146\pi\)
−0.786571 + 0.617499i \(0.788146\pi\)
\(930\) 67784.8 2.39005
\(931\) 4882.52 0.171878
\(932\) −767.985 −0.0269916
\(933\) −43321.8 −1.52014
\(934\) 6752.16 0.236550
\(935\) 6431.66 0.224960
\(936\) −35483.5 −1.23912
\(937\) −49265.8 −1.71766 −0.858828 0.512264i \(-0.828807\pi\)
−0.858828 + 0.512264i \(0.828807\pi\)
\(938\) 18925.9 0.658799
\(939\) 44119.2 1.53331
\(940\) 68940.4 2.39211
\(941\) −18403.1 −0.637538 −0.318769 0.947832i \(-0.603269\pi\)
−0.318769 + 0.947832i \(0.603269\pi\)
\(942\) 10284.3 0.355712
\(943\) 5657.01 0.195353
\(944\) 12419.0 0.428181
\(945\) −18202.1 −0.626577
\(946\) −672.381 −0.0231089
\(947\) 17689.3 0.606996 0.303498 0.952832i \(-0.401845\pi\)
0.303498 + 0.952832i \(0.401845\pi\)
\(948\) 25364.4 0.868986
\(949\) 13173.1 0.450597
\(950\) 159262. 5.43911
\(951\) −47990.5 −1.63638
\(952\) −3097.47 −0.105451
\(953\) −5298.19 −0.180090 −0.0900448 0.995938i \(-0.528701\pi\)
−0.0900448 + 0.995938i \(0.528701\pi\)
\(954\) 56678.7 1.92352
\(955\) −60314.1 −2.04368
\(956\) −12951.4 −0.438156
\(957\) −3994.01 −0.134909
\(958\) −72855.6 −2.45705
\(959\) −19671.7 −0.662392
\(960\) 150410. 5.05672
\(961\) −22761.8 −0.764050
\(962\) −70218.3 −2.35336
\(963\) −28659.1 −0.959011
\(964\) 62239.9 2.07947
\(965\) −58382.2 −1.94755
\(966\) 7235.50 0.240992
\(967\) 33990.6 1.13037 0.565184 0.824965i \(-0.308805\pi\)
0.565184 + 0.824965i \(0.308805\pi\)
\(968\) 2015.96 0.0669375
\(969\) −21869.9 −0.725039
\(970\) 34158.5 1.13068
\(971\) 41991.0 1.38780 0.693900 0.720071i \(-0.255891\pi\)
0.693900 + 0.720071i \(0.255891\pi\)
\(972\) −50946.5 −1.68118
\(973\) 21773.4 0.717393
\(974\) 10110.1 0.332597
\(975\) −153297. −5.03533
\(976\) 1742.40 0.0571444
\(977\) −31233.4 −1.02277 −0.511384 0.859352i \(-0.670867\pi\)
−0.511384 + 0.859352i \(0.670867\pi\)
\(978\) −31824.7 −1.04053
\(979\) −9239.00 −0.301614
\(980\) −12674.1 −0.413123
\(981\) −14081.0 −0.458281
\(982\) −65012.0 −2.11264
\(983\) −45702.5 −1.48289 −0.741447 0.671012i \(-0.765860\pi\)
−0.741447 + 0.671012i \(0.765860\pi\)
\(984\) 27673.4 0.896540
\(985\) 41377.7 1.33848
\(986\) 5185.78 0.167494
\(987\) −15418.3 −0.497235
\(988\) −60381.8 −1.94433
\(989\) −387.132 −0.0124470
\(990\) −44438.5 −1.42661
\(991\) −4310.72 −0.138178 −0.0690890 0.997611i \(-0.522009\pi\)
−0.0690890 + 0.997611i \(0.522009\pi\)
\(992\) 18608.6 0.595587
\(993\) −11292.8 −0.360892
\(994\) −14462.9 −0.461504
\(995\) 68673.3 2.18803
\(996\) 92626.0 2.94675
\(997\) −6103.28 −0.193875 −0.0969373 0.995290i \(-0.530905\pi\)
−0.0969373 + 0.995290i \(0.530905\pi\)
\(998\) 15705.1 0.498133
\(999\) 36184.9 1.14599
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 77.4.a.e.1.4 5
3.2 odd 2 693.4.a.o.1.2 5
4.3 odd 2 1232.4.a.y.1.1 5
5.4 even 2 1925.4.a.r.1.2 5
7.6 odd 2 539.4.a.h.1.4 5
11.10 odd 2 847.4.a.f.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.e.1.4 5 1.1 even 1 trivial
539.4.a.h.1.4 5 7.6 odd 2
693.4.a.o.1.2 5 3.2 odd 2
847.4.a.f.1.2 5 11.10 odd 2
1232.4.a.y.1.1 5 4.3 odd 2
1925.4.a.r.1.2 5 5.4 even 2