Properties

Label 77.4.a.c.1.4
Level $77$
Weight $4$
Character 77.1
Self dual yes
Analytic conductor $4.543$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [77,4,Mod(1,77)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(77, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("77.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 77.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.54314707044\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.66444\) of defining polynomial
Character \(\chi\) \(=\) 77.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.76366 q^{2} -7.36360 q^{3} +6.16515 q^{4} -15.4926 q^{5} -27.7141 q^{6} -7.00000 q^{7} -6.90574 q^{8} +27.2227 q^{9} +O(q^{10})\) \(q+3.76366 q^{2} -7.36360 q^{3} +6.16515 q^{4} -15.4926 q^{5} -27.7141 q^{6} -7.00000 q^{7} -6.90574 q^{8} +27.2227 q^{9} -58.3089 q^{10} +11.0000 q^{11} -45.3978 q^{12} +49.0777 q^{13} -26.3456 q^{14} +114.081 q^{15} -75.3121 q^{16} -34.1261 q^{17} +102.457 q^{18} -144.114 q^{19} -95.5142 q^{20} +51.5452 q^{21} +41.4003 q^{22} +118.906 q^{23} +50.8511 q^{24} +115.020 q^{25} +184.712 q^{26} -1.63966 q^{27} -43.1561 q^{28} -63.6830 q^{29} +429.364 q^{30} -212.912 q^{31} -228.203 q^{32} -80.9996 q^{33} -128.439 q^{34} +108.448 q^{35} +167.832 q^{36} -200.224 q^{37} -542.396 q^{38} -361.389 q^{39} +106.988 q^{40} +451.267 q^{41} +193.999 q^{42} -130.664 q^{43} +67.8167 q^{44} -421.750 q^{45} +447.523 q^{46} -176.271 q^{47} +554.569 q^{48} +49.0000 q^{49} +432.898 q^{50} +251.291 q^{51} +302.571 q^{52} -629.988 q^{53} -6.17114 q^{54} -170.419 q^{55} +48.3402 q^{56} +1061.20 q^{57} -239.681 q^{58} -86.9318 q^{59} +703.329 q^{60} +644.248 q^{61} -801.330 q^{62} -190.559 q^{63} -256.384 q^{64} -760.340 q^{65} -304.855 q^{66} -400.974 q^{67} -210.393 q^{68} -875.578 q^{69} +408.162 q^{70} +507.611 q^{71} -187.993 q^{72} +176.392 q^{73} -753.575 q^{74} -846.965 q^{75} -888.485 q^{76} -77.0000 q^{77} -1360.14 q^{78} -701.122 q^{79} +1166.78 q^{80} -722.938 q^{81} +1698.42 q^{82} -1259.27 q^{83} +317.784 q^{84} +528.702 q^{85} -491.775 q^{86} +468.936 q^{87} -75.9631 q^{88} +788.394 q^{89} -1587.32 q^{90} -343.544 q^{91} +733.075 q^{92} +1567.80 q^{93} -663.423 q^{94} +2232.70 q^{95} +1680.40 q^{96} +185.039 q^{97} +184.419 q^{98} +299.449 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} + 2 q^{6} - 28 q^{7} - 60 q^{8} + 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} + 2 q^{6} - 28 q^{7} - 60 q^{8} + 66 q^{9} - 92 q^{10} + 44 q^{11} - 186 q^{12} - 134 q^{13} + 28 q^{14} - 62 q^{15} - 6 q^{16} - 74 q^{17} - 256 q^{18} - 164 q^{19} + 116 q^{20} + 84 q^{21} - 44 q^{22} + 194 q^{23} + 570 q^{24} + 38 q^{25} + 734 q^{26} - 510 q^{27} - 154 q^{28} - 108 q^{29} + 1252 q^{30} - 412 q^{31} - 4 q^{32} - 132 q^{33} - 346 q^{34} + 126 q^{35} + 1518 q^{36} + 286 q^{37} + 224 q^{38} - 256 q^{39} - 540 q^{40} - 18 q^{41} - 14 q^{42} - 496 q^{43} + 242 q^{44} + 580 q^{45} - 284 q^{46} + 62 q^{47} - 862 q^{48} + 196 q^{49} + 212 q^{50} - 508 q^{51} - 822 q^{52} - 828 q^{53} + 2420 q^{54} - 198 q^{55} + 420 q^{56} + 700 q^{57} + 1388 q^{58} - 1224 q^{59} - 1776 q^{60} - 350 q^{61} - 878 q^{62} - 462 q^{63} - 718 q^{64} - 396 q^{65} + 22 q^{66} - 1498 q^{67} + 1058 q^{68} - 386 q^{69} + 644 q^{70} + 2326 q^{71} - 3000 q^{72} - 1630 q^{73} - 1156 q^{74} - 1362 q^{75} - 3152 q^{76} - 308 q^{77} - 2464 q^{78} - 1020 q^{79} + 3072 q^{80} + 1128 q^{81} + 2118 q^{82} - 1920 q^{83} + 1302 q^{84} + 2008 q^{85} + 1056 q^{86} + 1640 q^{87} - 660 q^{88} + 1550 q^{89} - 5780 q^{90} + 938 q^{91} + 2592 q^{92} + 6046 q^{93} - 1042 q^{94} + 2332 q^{95} + 4082 q^{96} - 2202 q^{97} - 196 q^{98} + 726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.76366 1.33066 0.665328 0.746551i \(-0.268292\pi\)
0.665328 + 0.746551i \(0.268292\pi\)
\(3\) −7.36360 −1.41713 −0.708563 0.705647i \(-0.750656\pi\)
−0.708563 + 0.705647i \(0.750656\pi\)
\(4\) 6.16515 0.770644
\(5\) −15.4926 −1.38570 −0.692850 0.721082i \(-0.743645\pi\)
−0.692850 + 0.721082i \(0.743645\pi\)
\(6\) −27.7141 −1.88571
\(7\) −7.00000 −0.377964
\(8\) −6.90574 −0.305193
\(9\) 27.2227 1.00825
\(10\) −58.3089 −1.84389
\(11\) 11.0000 0.301511
\(12\) −45.3978 −1.09210
\(13\) 49.0777 1.04705 0.523527 0.852009i \(-0.324616\pi\)
0.523527 + 0.852009i \(0.324616\pi\)
\(14\) −26.3456 −0.502941
\(15\) 114.081 1.96371
\(16\) −75.3121 −1.17675
\(17\) −34.1261 −0.486871 −0.243435 0.969917i \(-0.578274\pi\)
−0.243435 + 0.969917i \(0.578274\pi\)
\(18\) 102.457 1.34163
\(19\) −144.114 −1.74011 −0.870053 0.492958i \(-0.835916\pi\)
−0.870053 + 0.492958i \(0.835916\pi\)
\(20\) −95.5142 −1.06788
\(21\) 51.5452 0.535623
\(22\) 41.4003 0.401208
\(23\) 118.906 1.07798 0.538992 0.842311i \(-0.318805\pi\)
0.538992 + 0.842311i \(0.318805\pi\)
\(24\) 50.8511 0.432498
\(25\) 115.020 0.920164
\(26\) 184.712 1.39327
\(27\) −1.63966 −0.0116872
\(28\) −43.1561 −0.291276
\(29\) −63.6830 −0.407780 −0.203890 0.978994i \(-0.565359\pi\)
−0.203890 + 0.978994i \(0.565359\pi\)
\(30\) 429.364 2.61302
\(31\) −212.912 −1.23355 −0.616777 0.787138i \(-0.711562\pi\)
−0.616777 + 0.787138i \(0.711562\pi\)
\(32\) −228.203 −1.26066
\(33\) −80.9996 −0.427280
\(34\) −128.439 −0.647857
\(35\) 108.448 0.523745
\(36\) 167.832 0.777000
\(37\) −200.224 −0.889638 −0.444819 0.895620i \(-0.646732\pi\)
−0.444819 + 0.895620i \(0.646732\pi\)
\(38\) −542.396 −2.31548
\(39\) −361.389 −1.48381
\(40\) 106.988 0.422907
\(41\) 451.267 1.71893 0.859464 0.511197i \(-0.170798\pi\)
0.859464 + 0.511197i \(0.170798\pi\)
\(42\) 193.999 0.712730
\(43\) −130.664 −0.463396 −0.231698 0.972788i \(-0.574428\pi\)
−0.231698 + 0.972788i \(0.574428\pi\)
\(44\) 67.8167 0.232358
\(45\) −421.750 −1.39713
\(46\) 447.523 1.43443
\(47\) −176.271 −0.547057 −0.273529 0.961864i \(-0.588191\pi\)
−0.273529 + 0.961864i \(0.588191\pi\)
\(48\) 554.569 1.66761
\(49\) 49.0000 0.142857
\(50\) 432.898 1.22442
\(51\) 251.291 0.689957
\(52\) 302.571 0.806906
\(53\) −629.988 −1.63274 −0.816372 0.577526i \(-0.804018\pi\)
−0.816372 + 0.577526i \(0.804018\pi\)
\(54\) −6.17114 −0.0155516
\(55\) −170.419 −0.417804
\(56\) 48.3402 0.115352
\(57\) 1061.20 2.46595
\(58\) −239.681 −0.542615
\(59\) −86.9318 −0.191823 −0.0959115 0.995390i \(-0.530577\pi\)
−0.0959115 + 0.995390i \(0.530577\pi\)
\(60\) 703.329 1.51332
\(61\) 644.248 1.35225 0.676127 0.736785i \(-0.263657\pi\)
0.676127 + 0.736785i \(0.263657\pi\)
\(62\) −801.330 −1.64143
\(63\) −190.559 −0.381082
\(64\) −256.384 −0.500750
\(65\) −760.340 −1.45090
\(66\) −304.855 −0.568562
\(67\) −400.974 −0.731147 −0.365573 0.930783i \(-0.619127\pi\)
−0.365573 + 0.930783i \(0.619127\pi\)
\(68\) −210.393 −0.375204
\(69\) −875.578 −1.52764
\(70\) 408.162 0.696925
\(71\) 507.611 0.848484 0.424242 0.905549i \(-0.360541\pi\)
0.424242 + 0.905549i \(0.360541\pi\)
\(72\) −187.993 −0.307710
\(73\) 176.392 0.282811 0.141405 0.989952i \(-0.454838\pi\)
0.141405 + 0.989952i \(0.454838\pi\)
\(74\) −753.575 −1.18380
\(75\) −846.965 −1.30399
\(76\) −888.485 −1.34100
\(77\) −77.0000 −0.113961
\(78\) −1360.14 −1.97444
\(79\) −701.122 −0.998512 −0.499256 0.866455i \(-0.666393\pi\)
−0.499256 + 0.866455i \(0.666393\pi\)
\(80\) 1166.78 1.63062
\(81\) −722.938 −0.991685
\(82\) 1698.42 2.28730
\(83\) −1259.27 −1.66534 −0.832670 0.553770i \(-0.813189\pi\)
−0.832670 + 0.553770i \(0.813189\pi\)
\(84\) 317.784 0.412775
\(85\) 528.702 0.674656
\(86\) −491.775 −0.616621
\(87\) 468.936 0.577876
\(88\) −75.9631 −0.0920193
\(89\) 788.394 0.938984 0.469492 0.882937i \(-0.344437\pi\)
0.469492 + 0.882937i \(0.344437\pi\)
\(90\) −1587.32 −1.85910
\(91\) −343.544 −0.395749
\(92\) 733.075 0.830743
\(93\) 1567.80 1.74810
\(94\) −663.423 −0.727945
\(95\) 2232.70 2.41126
\(96\) 1680.40 1.78651
\(97\) 185.039 0.193689 0.0968446 0.995300i \(-0.469125\pi\)
0.0968446 + 0.995300i \(0.469125\pi\)
\(98\) 184.419 0.190094
\(99\) 299.449 0.303998
\(100\) 709.119 0.709119
\(101\) 1243.55 1.22513 0.612565 0.790420i \(-0.290138\pi\)
0.612565 + 0.790420i \(0.290138\pi\)
\(102\) 945.775 0.918095
\(103\) −1555.21 −1.48776 −0.743879 0.668315i \(-0.767016\pi\)
−0.743879 + 0.668315i \(0.767016\pi\)
\(104\) −338.918 −0.319554
\(105\) −798.569 −0.742213
\(106\) −2371.06 −2.17262
\(107\) −247.062 −0.223218 −0.111609 0.993752i \(-0.535600\pi\)
−0.111609 + 0.993752i \(0.535600\pi\)
\(108\) −10.1088 −0.00900665
\(109\) 1160.58 1.01985 0.509923 0.860220i \(-0.329674\pi\)
0.509923 + 0.860220i \(0.329674\pi\)
\(110\) −641.398 −0.555953
\(111\) 1474.37 1.26073
\(112\) 527.185 0.444770
\(113\) 1738.50 1.44729 0.723646 0.690171i \(-0.242465\pi\)
0.723646 + 0.690171i \(0.242465\pi\)
\(114\) 3993.99 3.28133
\(115\) −1842.16 −1.49376
\(116\) −392.615 −0.314254
\(117\) 1336.03 1.05569
\(118\) −327.182 −0.255250
\(119\) 238.883 0.184020
\(120\) −787.816 −0.599312
\(121\) 121.000 0.0909091
\(122\) 2424.73 1.79938
\(123\) −3322.95 −2.43594
\(124\) −1312.64 −0.950631
\(125\) 154.609 0.110629
\(126\) −717.199 −0.507088
\(127\) −1507.65 −1.05340 −0.526701 0.850051i \(-0.676571\pi\)
−0.526701 + 0.850051i \(0.676571\pi\)
\(128\) 860.685 0.594333
\(129\) 962.157 0.656691
\(130\) −2861.66 −1.93065
\(131\) 1327.55 0.885408 0.442704 0.896668i \(-0.354019\pi\)
0.442704 + 0.896668i \(0.354019\pi\)
\(132\) −499.375 −0.329281
\(133\) 1008.80 0.657698
\(134\) −1509.13 −0.972904
\(135\) 25.4026 0.0161949
\(136\) 235.666 0.148590
\(137\) −441.531 −0.275347 −0.137674 0.990478i \(-0.543962\pi\)
−0.137674 + 0.990478i \(0.543962\pi\)
\(138\) −3295.38 −2.03276
\(139\) 179.162 0.109326 0.0546631 0.998505i \(-0.482592\pi\)
0.0546631 + 0.998505i \(0.482592\pi\)
\(140\) 668.600 0.403621
\(141\) 1297.99 0.775250
\(142\) 1910.48 1.12904
\(143\) 539.854 0.315698
\(144\) −2050.20 −1.18646
\(145\) 986.615 0.565061
\(146\) 663.882 0.376324
\(147\) −360.817 −0.202447
\(148\) −1234.41 −0.685594
\(149\) −1147.07 −0.630680 −0.315340 0.948979i \(-0.602118\pi\)
−0.315340 + 0.948979i \(0.602118\pi\)
\(150\) −3187.69 −1.73516
\(151\) 1873.03 1.00944 0.504719 0.863284i \(-0.331596\pi\)
0.504719 + 0.863284i \(0.331596\pi\)
\(152\) 995.214 0.531069
\(153\) −929.004 −0.490886
\(154\) −289.802 −0.151642
\(155\) 3298.56 1.70933
\(156\) −2228.02 −1.14349
\(157\) −643.927 −0.327331 −0.163665 0.986516i \(-0.552332\pi\)
−0.163665 + 0.986516i \(0.552332\pi\)
\(158\) −2638.79 −1.32868
\(159\) 4638.98 2.31381
\(160\) 3535.46 1.74689
\(161\) −832.343 −0.407440
\(162\) −2720.90 −1.31959
\(163\) −3044.47 −1.46295 −0.731477 0.681866i \(-0.761169\pi\)
−0.731477 + 0.681866i \(0.761169\pi\)
\(164\) 2782.13 1.32468
\(165\) 1254.89 0.592081
\(166\) −4739.48 −2.21599
\(167\) −337.038 −0.156172 −0.0780861 0.996947i \(-0.524881\pi\)
−0.0780861 + 0.996947i \(0.524881\pi\)
\(168\) −355.958 −0.163469
\(169\) 211.617 0.0963209
\(170\) 1989.86 0.897735
\(171\) −3923.17 −1.75446
\(172\) −805.563 −0.357114
\(173\) −3504.80 −1.54026 −0.770131 0.637886i \(-0.779809\pi\)
−0.770131 + 0.637886i \(0.779809\pi\)
\(174\) 1764.92 0.768955
\(175\) −805.143 −0.347789
\(176\) −828.433 −0.354804
\(177\) 640.132 0.271837
\(178\) 2967.25 1.24946
\(179\) 221.078 0.0923135 0.0461568 0.998934i \(-0.485303\pi\)
0.0461568 + 0.998934i \(0.485303\pi\)
\(180\) −2600.15 −1.07669
\(181\) −4561.63 −1.87328 −0.936640 0.350295i \(-0.886081\pi\)
−0.936640 + 0.350295i \(0.886081\pi\)
\(182\) −1292.98 −0.526606
\(183\) −4743.99 −1.91631
\(184\) −821.135 −0.328994
\(185\) 3101.99 1.23277
\(186\) 5900.67 2.32612
\(187\) −375.387 −0.146797
\(188\) −1086.74 −0.421587
\(189\) 11.4776 0.00441733
\(190\) 8403.13 3.20856
\(191\) 4180.40 1.58368 0.791841 0.610727i \(-0.209123\pi\)
0.791841 + 0.610727i \(0.209123\pi\)
\(192\) 1887.91 0.709625
\(193\) −1942.59 −0.724510 −0.362255 0.932079i \(-0.617993\pi\)
−0.362255 + 0.932079i \(0.617993\pi\)
\(194\) 696.424 0.257734
\(195\) 5598.85 2.05611
\(196\) 302.093 0.110092
\(197\) 3775.15 1.36532 0.682660 0.730736i \(-0.260823\pi\)
0.682660 + 0.730736i \(0.260823\pi\)
\(198\) 1127.03 0.404517
\(199\) −993.760 −0.353999 −0.176999 0.984211i \(-0.556639\pi\)
−0.176999 + 0.984211i \(0.556639\pi\)
\(200\) −794.302 −0.280828
\(201\) 2952.62 1.03613
\(202\) 4680.31 1.63023
\(203\) 445.781 0.154127
\(204\) 1549.25 0.531712
\(205\) −6991.29 −2.38192
\(206\) −5853.27 −1.97969
\(207\) 3236.94 1.08687
\(208\) −3696.14 −1.23212
\(209\) −1585.25 −0.524662
\(210\) −3005.55 −0.987630
\(211\) −2912.24 −0.950176 −0.475088 0.879938i \(-0.657584\pi\)
−0.475088 + 0.879938i \(0.657584\pi\)
\(212\) −3883.97 −1.25827
\(213\) −3737.85 −1.20241
\(214\) −929.856 −0.297026
\(215\) 2024.32 0.642128
\(216\) 11.3231 0.00356685
\(217\) 1490.39 0.466239
\(218\) 4368.02 1.35706
\(219\) −1298.88 −0.400778
\(220\) −1050.66 −0.321978
\(221\) −1674.83 −0.509780
\(222\) 5549.03 1.67760
\(223\) 5069.26 1.52225 0.761127 0.648603i \(-0.224647\pi\)
0.761127 + 0.648603i \(0.224647\pi\)
\(224\) 1597.42 0.476484
\(225\) 3131.16 0.927753
\(226\) 6543.12 1.92585
\(227\) −5653.25 −1.65295 −0.826475 0.562974i \(-0.809657\pi\)
−0.826475 + 0.562974i \(0.809657\pi\)
\(228\) 6542.45 1.90037
\(229\) −5141.63 −1.48371 −0.741853 0.670563i \(-0.766053\pi\)
−0.741853 + 0.670563i \(0.766053\pi\)
\(230\) −6933.29 −1.98768
\(231\) 566.998 0.161497
\(232\) 439.778 0.124452
\(233\) 312.296 0.0878077 0.0439039 0.999036i \(-0.486020\pi\)
0.0439039 + 0.999036i \(0.486020\pi\)
\(234\) 5028.35 1.40476
\(235\) 2730.89 0.758057
\(236\) −535.948 −0.147827
\(237\) 5162.79 1.41502
\(238\) 899.074 0.244867
\(239\) −4012.12 −1.08587 −0.542935 0.839775i \(-0.682687\pi\)
−0.542935 + 0.839775i \(0.682687\pi\)
\(240\) −8591.71 −2.31080
\(241\) 499.662 0.133552 0.0667761 0.997768i \(-0.478729\pi\)
0.0667761 + 0.997768i \(0.478729\pi\)
\(242\) 455.403 0.120969
\(243\) 5367.70 1.41703
\(244\) 3971.89 1.04211
\(245\) −759.137 −0.197957
\(246\) −12506.5 −3.24139
\(247\) −7072.78 −1.82198
\(248\) 1470.32 0.376472
\(249\) 9272.79 2.36000
\(250\) 581.895 0.147209
\(251\) −6112.34 −1.53708 −0.768541 0.639801i \(-0.779017\pi\)
−0.768541 + 0.639801i \(0.779017\pi\)
\(252\) −1174.82 −0.293678
\(253\) 1307.97 0.325025
\(254\) −5674.28 −1.40172
\(255\) −3893.15 −0.956073
\(256\) 5290.40 1.29160
\(257\) −1910.22 −0.463642 −0.231821 0.972758i \(-0.574468\pi\)
−0.231821 + 0.972758i \(0.574468\pi\)
\(258\) 3621.23 0.873830
\(259\) 1401.57 0.336252
\(260\) −4687.62 −1.11813
\(261\) −1733.62 −0.411143
\(262\) 4996.44 1.17817
\(263\) 1749.49 0.410184 0.205092 0.978743i \(-0.434251\pi\)
0.205092 + 0.978743i \(0.434251\pi\)
\(264\) 559.363 0.130403
\(265\) 9760.14 2.26249
\(266\) 3796.77 0.875170
\(267\) −5805.42 −1.33066
\(268\) −2472.07 −0.563454
\(269\) −2884.89 −0.653883 −0.326942 0.945045i \(-0.606018\pi\)
−0.326942 + 0.945045i \(0.606018\pi\)
\(270\) 95.6070 0.0215498
\(271\) 6065.04 1.35950 0.679751 0.733443i \(-0.262088\pi\)
0.679751 + 0.733443i \(0.262088\pi\)
\(272\) 2570.11 0.572926
\(273\) 2529.72 0.560826
\(274\) −1661.77 −0.366392
\(275\) 1265.23 0.277440
\(276\) −5398.07 −1.17727
\(277\) −3331.31 −0.722595 −0.361297 0.932451i \(-0.617666\pi\)
−0.361297 + 0.932451i \(0.617666\pi\)
\(278\) 674.307 0.145476
\(279\) −5796.04 −1.24373
\(280\) −748.915 −0.159844
\(281\) −384.608 −0.0816505 −0.0408252 0.999166i \(-0.512999\pi\)
−0.0408252 + 0.999166i \(0.512999\pi\)
\(282\) 4885.18 1.03159
\(283\) 1768.02 0.371371 0.185685 0.982609i \(-0.440549\pi\)
0.185685 + 0.982609i \(0.440549\pi\)
\(284\) 3129.50 0.653879
\(285\) −16440.7 −3.41707
\(286\) 2031.83 0.420086
\(287\) −3158.87 −0.649693
\(288\) −6212.31 −1.27105
\(289\) −3748.41 −0.762957
\(290\) 3713.28 0.751902
\(291\) −1362.55 −0.274482
\(292\) 1087.49 0.217946
\(293\) 3801.87 0.758047 0.379023 0.925387i \(-0.376260\pi\)
0.379023 + 0.925387i \(0.376260\pi\)
\(294\) −1357.99 −0.269387
\(295\) 1346.80 0.265809
\(296\) 1382.69 0.271512
\(297\) −18.0363 −0.00352381
\(298\) −4317.17 −0.839217
\(299\) 5835.64 1.12871
\(300\) −5221.67 −1.00491
\(301\) 914.647 0.175147
\(302\) 7049.46 1.34321
\(303\) −9157.03 −1.73616
\(304\) 10853.5 2.04767
\(305\) −9981.07 −1.87382
\(306\) −3496.46 −0.653200
\(307\) −687.619 −0.127832 −0.0639161 0.997955i \(-0.520359\pi\)
−0.0639161 + 0.997955i \(0.520359\pi\)
\(308\) −474.717 −0.0878231
\(309\) 11451.9 2.10834
\(310\) 12414.7 2.27454
\(311\) −2517.73 −0.459059 −0.229530 0.973302i \(-0.573719\pi\)
−0.229530 + 0.973302i \(0.573719\pi\)
\(312\) 2495.66 0.452848
\(313\) −4725.03 −0.853274 −0.426637 0.904423i \(-0.640302\pi\)
−0.426637 + 0.904423i \(0.640302\pi\)
\(314\) −2423.52 −0.435565
\(315\) 2952.25 0.528065
\(316\) −4322.53 −0.769497
\(317\) 2870.09 0.508519 0.254259 0.967136i \(-0.418168\pi\)
0.254259 + 0.967136i \(0.418168\pi\)
\(318\) 17459.6 3.07888
\(319\) −700.513 −0.122950
\(320\) 3972.05 0.693888
\(321\) 1819.26 0.316328
\(322\) −3132.66 −0.542162
\(323\) 4918.05 0.847207
\(324\) −4457.03 −0.764236
\(325\) 5644.94 0.963461
\(326\) −11458.4 −1.94669
\(327\) −8546.03 −1.44525
\(328\) −3116.33 −0.524605
\(329\) 1233.89 0.206768
\(330\) 4723.00 0.787856
\(331\) 365.467 0.0606885 0.0303443 0.999540i \(-0.490340\pi\)
0.0303443 + 0.999540i \(0.490340\pi\)
\(332\) −7763.61 −1.28338
\(333\) −5450.63 −0.896975
\(334\) −1268.50 −0.207811
\(335\) 6212.13 1.01315
\(336\) −3881.98 −0.630296
\(337\) −4292.33 −0.693822 −0.346911 0.937898i \(-0.612769\pi\)
−0.346911 + 0.937898i \(0.612769\pi\)
\(338\) 796.455 0.128170
\(339\) −12801.6 −2.05100
\(340\) 3259.53 0.519920
\(341\) −2342.03 −0.371930
\(342\) −14765.5 −2.33458
\(343\) −343.000 −0.0539949
\(344\) 902.330 0.141426
\(345\) 13565.0 2.11685
\(346\) −13190.9 −2.04956
\(347\) −6090.40 −0.942218 −0.471109 0.882075i \(-0.656146\pi\)
−0.471109 + 0.882075i \(0.656146\pi\)
\(348\) 2891.06 0.445337
\(349\) 6338.89 0.972244 0.486122 0.873891i \(-0.338411\pi\)
0.486122 + 0.873891i \(0.338411\pi\)
\(350\) −3030.29 −0.462788
\(351\) −80.4709 −0.0122371
\(352\) −2510.24 −0.380103
\(353\) 5754.44 0.867643 0.433821 0.900999i \(-0.357165\pi\)
0.433821 + 0.900999i \(0.357165\pi\)
\(354\) 2409.24 0.361722
\(355\) −7864.21 −1.17574
\(356\) 4860.57 0.723622
\(357\) −1759.04 −0.260779
\(358\) 832.062 0.122838
\(359\) 7396.98 1.08746 0.543729 0.839261i \(-0.317012\pi\)
0.543729 + 0.839261i \(0.317012\pi\)
\(360\) 2912.49 0.426394
\(361\) 13909.8 2.02797
\(362\) −17168.4 −2.49269
\(363\) −890.996 −0.128830
\(364\) −2118.00 −0.304982
\(365\) −2732.78 −0.391891
\(366\) −17854.8 −2.54996
\(367\) −4613.59 −0.656205 −0.328102 0.944642i \(-0.606409\pi\)
−0.328102 + 0.944642i \(0.606409\pi\)
\(368\) −8955.07 −1.26852
\(369\) 12284.7 1.73310
\(370\) 11674.8 1.64039
\(371\) 4409.91 0.617119
\(372\) 9665.73 1.34716
\(373\) 4603.15 0.638986 0.319493 0.947589i \(-0.396487\pi\)
0.319493 + 0.947589i \(0.396487\pi\)
\(374\) −1412.83 −0.195336
\(375\) −1138.48 −0.156775
\(376\) 1217.28 0.166958
\(377\) −3125.41 −0.426968
\(378\) 43.1980 0.00587795
\(379\) 6982.50 0.946350 0.473175 0.880968i \(-0.343108\pi\)
0.473175 + 0.880968i \(0.343108\pi\)
\(380\) 13764.9 1.85823
\(381\) 11101.7 1.49280
\(382\) 15733.6 2.10734
\(383\) 12743.5 1.70016 0.850079 0.526655i \(-0.176554\pi\)
0.850079 + 0.526655i \(0.176554\pi\)
\(384\) −6337.75 −0.842244
\(385\) 1192.93 0.157915
\(386\) −7311.24 −0.964073
\(387\) −3557.02 −0.467218
\(388\) 1140.79 0.149265
\(389\) 1568.76 0.204471 0.102235 0.994760i \(-0.467400\pi\)
0.102235 + 0.994760i \(0.467400\pi\)
\(390\) 21072.2 2.73598
\(391\) −4057.81 −0.524839
\(392\) −338.381 −0.0435991
\(393\) −9775.54 −1.25474
\(394\) 14208.4 1.81677
\(395\) 10862.2 1.38364
\(396\) 1846.15 0.234274
\(397\) 9841.87 1.24420 0.622102 0.782936i \(-0.286279\pi\)
0.622102 + 0.782936i \(0.286279\pi\)
\(398\) −3740.18 −0.471050
\(399\) −7428.39 −0.932042
\(400\) −8662.43 −1.08280
\(401\) 5128.60 0.638679 0.319339 0.947640i \(-0.396539\pi\)
0.319339 + 0.947640i \(0.396539\pi\)
\(402\) 11112.7 1.37873
\(403\) −10449.2 −1.29160
\(404\) 7666.69 0.944139
\(405\) 11200.2 1.37418
\(406\) 1677.77 0.205089
\(407\) −2202.46 −0.268236
\(408\) −1735.35 −0.210570
\(409\) −87.6006 −0.0105906 −0.00529532 0.999986i \(-0.501686\pi\)
−0.00529532 + 0.999986i \(0.501686\pi\)
\(410\) −26312.9 −3.16951
\(411\) 3251.26 0.390202
\(412\) −9588.08 −1.14653
\(413\) 608.523 0.0725023
\(414\) 12182.8 1.44626
\(415\) 19509.4 2.30766
\(416\) −11199.7 −1.31998
\(417\) −1319.28 −0.154929
\(418\) −5966.36 −0.698144
\(419\) −7130.86 −0.831420 −0.415710 0.909497i \(-0.636467\pi\)
−0.415710 + 0.909497i \(0.636467\pi\)
\(420\) −4923.30 −0.571982
\(421\) 6159.77 0.713085 0.356543 0.934279i \(-0.383955\pi\)
0.356543 + 0.934279i \(0.383955\pi\)
\(422\) −10960.7 −1.26436
\(423\) −4798.55 −0.551569
\(424\) 4350.53 0.498303
\(425\) −3925.20 −0.448001
\(426\) −14068.0 −1.59999
\(427\) −4509.74 −0.511104
\(428\) −1523.17 −0.172022
\(429\) −3975.27 −0.447385
\(430\) 7618.86 0.854452
\(431\) 12044.1 1.34604 0.673019 0.739625i \(-0.264997\pi\)
0.673019 + 0.739625i \(0.264997\pi\)
\(432\) 123.487 0.0137529
\(433\) −9609.67 −1.06654 −0.533270 0.845945i \(-0.679037\pi\)
−0.533270 + 0.845945i \(0.679037\pi\)
\(434\) 5609.31 0.620404
\(435\) −7265.04 −0.800763
\(436\) 7155.14 0.785938
\(437\) −17136.0 −1.87581
\(438\) −4888.56 −0.533298
\(439\) −3122.62 −0.339486 −0.169743 0.985488i \(-0.554294\pi\)
−0.169743 + 0.985488i \(0.554294\pi\)
\(440\) 1176.87 0.127511
\(441\) 1333.91 0.144035
\(442\) −6303.50 −0.678341
\(443\) 9381.76 1.00619 0.503093 0.864232i \(-0.332195\pi\)
0.503093 + 0.864232i \(0.332195\pi\)
\(444\) 9089.72 0.971574
\(445\) −12214.3 −1.30115
\(446\) 19079.0 2.02559
\(447\) 8446.54 0.893753
\(448\) 1794.69 0.189266
\(449\) 3407.36 0.358136 0.179068 0.983837i \(-0.442692\pi\)
0.179068 + 0.983837i \(0.442692\pi\)
\(450\) 11784.6 1.23452
\(451\) 4963.93 0.518276
\(452\) 10718.1 1.11535
\(453\) −13792.3 −1.43050
\(454\) −21276.9 −2.19951
\(455\) 5322.38 0.548389
\(456\) −7328.36 −0.752592
\(457\) −13714.0 −1.40375 −0.701876 0.712299i \(-0.747654\pi\)
−0.701876 + 0.712299i \(0.747654\pi\)
\(458\) −19351.4 −1.97430
\(459\) 55.9554 0.00569014
\(460\) −11357.2 −1.15116
\(461\) −8864.54 −0.895581 −0.447790 0.894139i \(-0.647789\pi\)
−0.447790 + 0.894139i \(0.647789\pi\)
\(462\) 2133.99 0.214896
\(463\) −14753.3 −1.48087 −0.740437 0.672126i \(-0.765381\pi\)
−0.740437 + 0.672126i \(0.765381\pi\)
\(464\) 4796.10 0.479856
\(465\) −24289.3 −2.42234
\(466\) 1175.38 0.116842
\(467\) 488.428 0.0483977 0.0241989 0.999707i \(-0.492297\pi\)
0.0241989 + 0.999707i \(0.492297\pi\)
\(468\) 8236.80 0.813560
\(469\) 2806.82 0.276347
\(470\) 10278.1 1.00871
\(471\) 4741.62 0.463869
\(472\) 600.329 0.0585431
\(473\) −1437.30 −0.139719
\(474\) 19431.0 1.88290
\(475\) −16576.1 −1.60118
\(476\) 1472.75 0.141814
\(477\) −17149.9 −1.64621
\(478\) −15100.3 −1.44492
\(479\) −1233.56 −0.117668 −0.0588338 0.998268i \(-0.518738\pi\)
−0.0588338 + 0.998268i \(0.518738\pi\)
\(480\) −26033.8 −2.47557
\(481\) −9826.52 −0.931499
\(482\) 1880.56 0.177712
\(483\) 6129.04 0.577394
\(484\) 745.984 0.0700586
\(485\) −2866.73 −0.268395
\(486\) 20202.2 1.88558
\(487\) 16700.6 1.55395 0.776977 0.629529i \(-0.216752\pi\)
0.776977 + 0.629529i \(0.216752\pi\)
\(488\) −4449.01 −0.412699
\(489\) 22418.3 2.07319
\(490\) −2857.14 −0.263413
\(491\) −2127.96 −0.195587 −0.0977937 0.995207i \(-0.531179\pi\)
−0.0977937 + 0.995207i \(0.531179\pi\)
\(492\) −20486.5 −1.87724
\(493\) 2173.25 0.198536
\(494\) −26619.5 −2.42443
\(495\) −4639.25 −0.421250
\(496\) 16034.9 1.45159
\(497\) −3553.28 −0.320697
\(498\) 34899.7 3.14034
\(499\) 12341.5 1.10718 0.553590 0.832789i \(-0.313258\pi\)
0.553590 + 0.832789i \(0.313258\pi\)
\(500\) 953.186 0.0852556
\(501\) 2481.81 0.221316
\(502\) −23004.8 −2.04533
\(503\) −3433.67 −0.304374 −0.152187 0.988352i \(-0.548632\pi\)
−0.152187 + 0.988352i \(0.548632\pi\)
\(504\) 1315.95 0.116304
\(505\) −19265.9 −1.69766
\(506\) 4922.75 0.432496
\(507\) −1558.26 −0.136499
\(508\) −9294.88 −0.811798
\(509\) −1842.48 −0.160445 −0.0802223 0.996777i \(-0.525563\pi\)
−0.0802223 + 0.996777i \(0.525563\pi\)
\(510\) −14652.5 −1.27220
\(511\) −1234.75 −0.106892
\(512\) 13025.8 1.12434
\(513\) 236.298 0.0203369
\(514\) −7189.41 −0.616948
\(515\) 24094.2 2.06158
\(516\) 5931.84 0.506075
\(517\) −1938.98 −0.164944
\(518\) 5275.03 0.447435
\(519\) 25808.0 2.18275
\(520\) 5250.71 0.442806
\(521\) 3532.65 0.297060 0.148530 0.988908i \(-0.452546\pi\)
0.148530 + 0.988908i \(0.452546\pi\)
\(522\) −6524.76 −0.547090
\(523\) −4497.20 −0.376001 −0.188001 0.982169i \(-0.560201\pi\)
−0.188001 + 0.982169i \(0.560201\pi\)
\(524\) 8184.54 0.682335
\(525\) 5928.76 0.492861
\(526\) 6584.50 0.545814
\(527\) 7265.87 0.600581
\(528\) 6100.25 0.502802
\(529\) 1971.67 0.162050
\(530\) 36733.9 3.01060
\(531\) −2366.52 −0.193405
\(532\) 6219.39 0.506851
\(533\) 22147.1 1.79981
\(534\) −21849.6 −1.77065
\(535\) 3827.62 0.309313
\(536\) 2769.02 0.223141
\(537\) −1627.93 −0.130820
\(538\) −10857.7 −0.870093
\(539\) 539.000 0.0430730
\(540\) 156.611 0.0124805
\(541\) −11426.0 −0.908023 −0.454011 0.890996i \(-0.650007\pi\)
−0.454011 + 0.890996i \(0.650007\pi\)
\(542\) 22826.8 1.80903
\(543\) 33590.1 2.65467
\(544\) 7787.70 0.613777
\(545\) −17980.4 −1.41320
\(546\) 9521.01 0.746267
\(547\) 17875.3 1.39725 0.698623 0.715490i \(-0.253796\pi\)
0.698623 + 0.715490i \(0.253796\pi\)
\(548\) −2722.11 −0.212195
\(549\) 17538.2 1.36341
\(550\) 4761.88 0.369177
\(551\) 9177.61 0.709581
\(552\) 6046.51 0.466226
\(553\) 4907.86 0.377402
\(554\) −12537.9 −0.961525
\(555\) −22841.8 −1.74699
\(556\) 1104.56 0.0842517
\(557\) 25343.4 1.92789 0.963946 0.266097i \(-0.0857341\pi\)
0.963946 + 0.266097i \(0.0857341\pi\)
\(558\) −21814.3 −1.65497
\(559\) −6412.68 −0.485201
\(560\) −8167.46 −0.616318
\(561\) 2764.20 0.208030
\(562\) −1447.53 −0.108649
\(563\) −1597.92 −0.119617 −0.0598084 0.998210i \(-0.519049\pi\)
−0.0598084 + 0.998210i \(0.519049\pi\)
\(564\) 8002.29 0.597442
\(565\) −26933.8 −2.00551
\(566\) 6654.23 0.494166
\(567\) 5060.57 0.374822
\(568\) −3505.43 −0.258952
\(569\) −11487.7 −0.846377 −0.423188 0.906042i \(-0.639089\pi\)
−0.423188 + 0.906042i \(0.639089\pi\)
\(570\) −61877.3 −4.54694
\(571\) 17027.0 1.24791 0.623957 0.781459i \(-0.285524\pi\)
0.623957 + 0.781459i \(0.285524\pi\)
\(572\) 3328.28 0.243291
\(573\) −30782.8 −2.24428
\(574\) −11888.9 −0.864518
\(575\) 13676.6 0.991922
\(576\) −6979.45 −0.504879
\(577\) 19368.0 1.39740 0.698701 0.715414i \(-0.253762\pi\)
0.698701 + 0.715414i \(0.253762\pi\)
\(578\) −14107.7 −1.01523
\(579\) 14304.4 1.02672
\(580\) 6082.63 0.435461
\(581\) 8814.91 0.629439
\(582\) −5128.19 −0.365241
\(583\) −6929.86 −0.492291
\(584\) −1218.12 −0.0863120
\(585\) −20698.5 −1.46287
\(586\) 14309.0 1.00870
\(587\) −27035.0 −1.90094 −0.950472 0.310809i \(-0.899400\pi\)
−0.950472 + 0.310809i \(0.899400\pi\)
\(588\) −2224.49 −0.156014
\(589\) 30683.6 2.14651
\(590\) 5068.90 0.353700
\(591\) −27798.7 −1.93483
\(592\) 15079.3 1.04688
\(593\) −9717.62 −0.672943 −0.336471 0.941694i \(-0.609234\pi\)
−0.336471 + 0.941694i \(0.609234\pi\)
\(594\) −67.8825 −0.00468898
\(595\) −3700.92 −0.254996
\(596\) −7071.83 −0.486030
\(597\) 7317.65 0.501661
\(598\) 21963.4 1.50192
\(599\) −18386.6 −1.25418 −0.627092 0.778945i \(-0.715755\pi\)
−0.627092 + 0.778945i \(0.715755\pi\)
\(600\) 5848.92 0.397969
\(601\) −3288.31 −0.223183 −0.111591 0.993754i \(-0.535595\pi\)
−0.111591 + 0.993754i \(0.535595\pi\)
\(602\) 3442.42 0.233061
\(603\) −10915.6 −0.737176
\(604\) 11547.5 0.777918
\(605\) −1874.60 −0.125973
\(606\) −34464.0 −2.31024
\(607\) −27356.2 −1.82925 −0.914623 0.404307i \(-0.867513\pi\)
−0.914623 + 0.404307i \(0.867513\pi\)
\(608\) 32887.3 2.19368
\(609\) −3282.55 −0.218417
\(610\) −37565.4 −2.49341
\(611\) −8650.95 −0.572798
\(612\) −5727.45 −0.378298
\(613\) −9573.59 −0.630789 −0.315395 0.948961i \(-0.602137\pi\)
−0.315395 + 0.948961i \(0.602137\pi\)
\(614\) −2587.97 −0.170101
\(615\) 51481.1 3.37548
\(616\) 531.742 0.0347800
\(617\) −7506.76 −0.489807 −0.244903 0.969547i \(-0.578756\pi\)
−0.244903 + 0.969547i \(0.578756\pi\)
\(618\) 43101.2 2.80547
\(619\) −9294.64 −0.603527 −0.301763 0.953383i \(-0.597575\pi\)
−0.301763 + 0.953383i \(0.597575\pi\)
\(620\) 20336.1 1.31729
\(621\) −194.966 −0.0125986
\(622\) −9475.89 −0.610850
\(623\) −5518.75 −0.354902
\(624\) 27216.9 1.74607
\(625\) −16772.8 −1.07346
\(626\) −17783.4 −1.13541
\(627\) 11673.2 0.743512
\(628\) −3969.91 −0.252256
\(629\) 6832.87 0.433139
\(630\) 11111.3 0.702672
\(631\) 4254.20 0.268395 0.134197 0.990955i \(-0.457154\pi\)
0.134197 + 0.990955i \(0.457154\pi\)
\(632\) 4841.77 0.304739
\(633\) 21444.6 1.34652
\(634\) 10802.1 0.676663
\(635\) 23357.4 1.45970
\(636\) 28600.0 1.78312
\(637\) 2404.81 0.149579
\(638\) −2636.49 −0.163605
\(639\) 13818.5 0.855482
\(640\) −13334.3 −0.823566
\(641\) 5112.91 0.315051 0.157526 0.987515i \(-0.449648\pi\)
0.157526 + 0.987515i \(0.449648\pi\)
\(642\) 6847.09 0.420924
\(643\) 7296.68 0.447516 0.223758 0.974645i \(-0.428167\pi\)
0.223758 + 0.974645i \(0.428167\pi\)
\(644\) −5131.52 −0.313991
\(645\) −14906.3 −0.909977
\(646\) 18509.9 1.12734
\(647\) 15612.1 0.948649 0.474324 0.880350i \(-0.342692\pi\)
0.474324 + 0.880350i \(0.342692\pi\)
\(648\) 4992.42 0.302656
\(649\) −956.250 −0.0578368
\(650\) 21245.6 1.28203
\(651\) −10974.6 −0.660720
\(652\) −18769.6 −1.12742
\(653\) −23160.6 −1.38797 −0.693986 0.719988i \(-0.744147\pi\)
−0.693986 + 0.719988i \(0.744147\pi\)
\(654\) −32164.4 −1.92313
\(655\) −20567.2 −1.22691
\(656\) −33985.8 −2.02275
\(657\) 4801.87 0.285143
\(658\) 4643.96 0.275137
\(659\) −5707.65 −0.337388 −0.168694 0.985668i \(-0.553955\pi\)
−0.168694 + 0.985668i \(0.553955\pi\)
\(660\) 7736.62 0.456284
\(661\) −16202.5 −0.953411 −0.476706 0.879063i \(-0.658169\pi\)
−0.476706 + 0.879063i \(0.658169\pi\)
\(662\) 1375.50 0.0807555
\(663\) 12332.8 0.722422
\(664\) 8696.21 0.508251
\(665\) −15628.9 −0.911372
\(666\) −20514.3 −1.19356
\(667\) −7572.30 −0.439581
\(668\) −2077.89 −0.120353
\(669\) −37328.0 −2.15723
\(670\) 23380.4 1.34815
\(671\) 7086.73 0.407720
\(672\) −11762.8 −0.675238
\(673\) −16956.2 −0.971192 −0.485596 0.874183i \(-0.661397\pi\)
−0.485596 + 0.874183i \(0.661397\pi\)
\(674\) −16154.9 −0.923239
\(675\) −188.595 −0.0107541
\(676\) 1304.65 0.0742292
\(677\) 21259.0 1.20687 0.603433 0.797414i \(-0.293799\pi\)
0.603433 + 0.797414i \(0.293799\pi\)
\(678\) −48180.9 −2.72917
\(679\) −1295.27 −0.0732076
\(680\) −3651.08 −0.205901
\(681\) 41628.3 2.34244
\(682\) −8814.62 −0.494911
\(683\) 5867.98 0.328744 0.164372 0.986398i \(-0.447440\pi\)
0.164372 + 0.986398i \(0.447440\pi\)
\(684\) −24186.9 −1.35206
\(685\) 6840.46 0.381548
\(686\) −1290.94 −0.0718486
\(687\) 37860.9 2.10260
\(688\) 9840.57 0.545303
\(689\) −30918.3 −1.70957
\(690\) 51054.0 2.81680
\(691\) 15583.0 0.857892 0.428946 0.903330i \(-0.358885\pi\)
0.428946 + 0.903330i \(0.358885\pi\)
\(692\) −21607.7 −1.18699
\(693\) −2096.15 −0.114900
\(694\) −22922.2 −1.25377
\(695\) −2775.69 −0.151493
\(696\) −3238.35 −0.176364
\(697\) −15400.0 −0.836895
\(698\) 23857.4 1.29372
\(699\) −2299.63 −0.124435
\(700\) −4963.83 −0.268022
\(701\) −19210.5 −1.03505 −0.517525 0.855668i \(-0.673147\pi\)
−0.517525 + 0.855668i \(0.673147\pi\)
\(702\) −302.865 −0.0162833
\(703\) 28855.1 1.54806
\(704\) −2820.22 −0.150982
\(705\) −20109.2 −1.07426
\(706\) 21657.8 1.15453
\(707\) −8704.87 −0.463055
\(708\) 3946.51 0.209490
\(709\) −1760.77 −0.0932683 −0.0466342 0.998912i \(-0.514850\pi\)
−0.0466342 + 0.998912i \(0.514850\pi\)
\(710\) −29598.2 −1.56451
\(711\) −19086.4 −1.00675
\(712\) −5444.44 −0.286572
\(713\) −25316.6 −1.32975
\(714\) −6620.43 −0.347007
\(715\) −8363.74 −0.437463
\(716\) 1362.98 0.0711409
\(717\) 29543.7 1.53881
\(718\) 27839.7 1.44703
\(719\) 10517.7 0.545541 0.272770 0.962079i \(-0.412060\pi\)
0.272770 + 0.962079i \(0.412060\pi\)
\(720\) 31762.9 1.64407
\(721\) 10886.4 0.562319
\(722\) 52352.0 2.69853
\(723\) −3679.31 −0.189260
\(724\) −28123.2 −1.44363
\(725\) −7324.85 −0.375225
\(726\) −3353.41 −0.171428
\(727\) −10483.4 −0.534814 −0.267407 0.963584i \(-0.586167\pi\)
−0.267407 + 0.963584i \(0.586167\pi\)
\(728\) 2372.42 0.120780
\(729\) −20006.3 −1.01643
\(730\) −10285.2 −0.521471
\(731\) 4459.05 0.225614
\(732\) −29247.4 −1.47680
\(733\) −8568.83 −0.431783 −0.215892 0.976417i \(-0.569266\pi\)
−0.215892 + 0.976417i \(0.569266\pi\)
\(734\) −17364.0 −0.873183
\(735\) 5589.99 0.280530
\(736\) −27134.8 −1.35897
\(737\) −4410.72 −0.220449
\(738\) 46235.4 2.30616
\(739\) −3089.07 −0.153766 −0.0768832 0.997040i \(-0.524497\pi\)
−0.0768832 + 0.997040i \(0.524497\pi\)
\(740\) 19124.2 0.950028
\(741\) 52081.1 2.58198
\(742\) 16597.4 0.821173
\(743\) −28558.8 −1.41012 −0.705060 0.709148i \(-0.749080\pi\)
−0.705060 + 0.709148i \(0.749080\pi\)
\(744\) −10826.8 −0.533509
\(745\) 17771.0 0.873933
\(746\) 17324.7 0.850270
\(747\) −34280.8 −1.67907
\(748\) −2314.32 −0.113128
\(749\) 1729.43 0.0843685
\(750\) −4284.84 −0.208614
\(751\) −2062.51 −0.100216 −0.0501078 0.998744i \(-0.515956\pi\)
−0.0501078 + 0.998744i \(0.515956\pi\)
\(752\) 13275.3 0.643751
\(753\) 45008.9 2.17824
\(754\) −11763.0 −0.568147
\(755\) −29018.1 −1.39878
\(756\) 70.7615 0.00340419
\(757\) 39089.1 1.87678 0.938388 0.345584i \(-0.112319\pi\)
0.938388 + 0.345584i \(0.112319\pi\)
\(758\) 26279.8 1.25927
\(759\) −9631.35 −0.460601
\(760\) −15418.4 −0.735902
\(761\) −13820.5 −0.658337 −0.329169 0.944271i \(-0.606768\pi\)
−0.329169 + 0.944271i \(0.606768\pi\)
\(762\) 41783.1 1.98641
\(763\) −8124.04 −0.385465
\(764\) 25772.8 1.22046
\(765\) 14392.7 0.680220
\(766\) 47962.1 2.26233
\(767\) −4266.41 −0.200849
\(768\) −38956.4 −1.83036
\(769\) −28495.1 −1.33623 −0.668115 0.744058i \(-0.732899\pi\)
−0.668115 + 0.744058i \(0.732899\pi\)
\(770\) 4489.78 0.210131
\(771\) 14066.1 0.657040
\(772\) −11976.3 −0.558339
\(773\) 1874.14 0.0872032 0.0436016 0.999049i \(-0.486117\pi\)
0.0436016 + 0.999049i \(0.486117\pi\)
\(774\) −13387.4 −0.621706
\(775\) −24489.3 −1.13507
\(776\) −1277.83 −0.0591127
\(777\) −10320.6 −0.476511
\(778\) 5904.28 0.272080
\(779\) −65033.8 −2.99112
\(780\) 34517.7 1.58453
\(781\) 5583.72 0.255828
\(782\) −15272.2 −0.698380
\(783\) 104.419 0.00476580
\(784\) −3690.29 −0.168107
\(785\) 9976.10 0.453582
\(786\) −36791.8 −1.66962
\(787\) 16614.9 0.752551 0.376275 0.926508i \(-0.377205\pi\)
0.376275 + 0.926508i \(0.377205\pi\)
\(788\) 23274.4 1.05218
\(789\) −12882.6 −0.581282
\(790\) 40881.7 1.84114
\(791\) −12169.5 −0.547025
\(792\) −2067.92 −0.0927782
\(793\) 31618.2 1.41588
\(794\) 37041.5 1.65561
\(795\) −71869.8 −3.20624
\(796\) −6126.68 −0.272807
\(797\) 19323.7 0.858823 0.429411 0.903109i \(-0.358721\pi\)
0.429411 + 0.903109i \(0.358721\pi\)
\(798\) −27957.9 −1.24023
\(799\) 6015.43 0.266346
\(800\) −26248.1 −1.16001
\(801\) 21462.2 0.946728
\(802\) 19302.3 0.849861
\(803\) 1940.32 0.0852706
\(804\) 18203.3 0.798485
\(805\) 12895.2 0.564589
\(806\) −39327.4 −1.71867
\(807\) 21243.2 0.926635
\(808\) −8587.65 −0.373902
\(809\) −15363.0 −0.667657 −0.333829 0.942634i \(-0.608341\pi\)
−0.333829 + 0.942634i \(0.608341\pi\)
\(810\) 42153.7 1.82856
\(811\) 11404.0 0.493771 0.246886 0.969045i \(-0.420593\pi\)
0.246886 + 0.969045i \(0.420593\pi\)
\(812\) 2748.31 0.118777
\(813\) −44660.6 −1.92659
\(814\) −8289.33 −0.356930
\(815\) 47166.8 2.02722
\(816\) −18925.3 −0.811908
\(817\) 18830.5 0.806359
\(818\) −329.699 −0.0140925
\(819\) −9352.18 −0.399013
\(820\) −43102.4 −1.83561
\(821\) 5529.00 0.235035 0.117517 0.993071i \(-0.462506\pi\)
0.117517 + 0.993071i \(0.462506\pi\)
\(822\) 12236.6 0.519224
\(823\) −12216.1 −0.517407 −0.258704 0.965957i \(-0.583295\pi\)
−0.258704 + 0.965957i \(0.583295\pi\)
\(824\) 10739.8 0.454054
\(825\) −9316.62 −0.393167
\(826\) 2290.27 0.0964756
\(827\) −29123.0 −1.22455 −0.612277 0.790643i \(-0.709746\pi\)
−0.612277 + 0.790643i \(0.709746\pi\)
\(828\) 19956.2 0.837594
\(829\) 25679.6 1.07586 0.537930 0.842990i \(-0.319207\pi\)
0.537930 + 0.842990i \(0.319207\pi\)
\(830\) 73426.8 3.07070
\(831\) 24530.4 1.02401
\(832\) −12582.7 −0.524312
\(833\) −1672.18 −0.0695529
\(834\) −4965.33 −0.206157
\(835\) 5221.59 0.216408
\(836\) −9773.33 −0.404328
\(837\) 349.104 0.0144167
\(838\) −26838.1 −1.10633
\(839\) −7009.97 −0.288452 −0.144226 0.989545i \(-0.546069\pi\)
−0.144226 + 0.989545i \(0.546069\pi\)
\(840\) 5514.71 0.226519
\(841\) −20333.5 −0.833715
\(842\) 23183.3 0.948871
\(843\) 2832.10 0.115709
\(844\) −17954.4 −0.732247
\(845\) −3278.50 −0.133472
\(846\) −18060.1 −0.733948
\(847\) −847.000 −0.0343604
\(848\) 47445.7 1.92133
\(849\) −13019.0 −0.526279
\(850\) −14773.1 −0.596135
\(851\) −23807.9 −0.959016
\(852\) −23044.4 −0.926630
\(853\) 7430.54 0.298261 0.149131 0.988818i \(-0.452353\pi\)
0.149131 + 0.988818i \(0.452353\pi\)
\(854\) −16973.1 −0.680103
\(855\) 60780.0 2.43115
\(856\) 1706.14 0.0681247
\(857\) −16112.3 −0.642225 −0.321113 0.947041i \(-0.604057\pi\)
−0.321113 + 0.947041i \(0.604057\pi\)
\(858\) −14961.6 −0.595315
\(859\) 46836.9 1.86037 0.930183 0.367097i \(-0.119648\pi\)
0.930183 + 0.367097i \(0.119648\pi\)
\(860\) 12480.3 0.494853
\(861\) 23260.6 0.920698
\(862\) 45329.8 1.79111
\(863\) −2453.00 −0.0967568 −0.0483784 0.998829i \(-0.515405\pi\)
−0.0483784 + 0.998829i \(0.515405\pi\)
\(864\) 374.177 0.0147335
\(865\) 54298.5 2.13434
\(866\) −36167.6 −1.41920
\(867\) 27601.8 1.08121
\(868\) 9188.45 0.359305
\(869\) −7712.34 −0.301063
\(870\) −27343.2 −1.06554
\(871\) −19678.9 −0.765549
\(872\) −8014.65 −0.311250
\(873\) 5037.25 0.195287
\(874\) −64494.3 −2.49605
\(875\) −1082.26 −0.0418138
\(876\) −8007.82 −0.308858
\(877\) 23733.6 0.913829 0.456914 0.889511i \(-0.348955\pi\)
0.456914 + 0.889511i \(0.348955\pi\)
\(878\) −11752.5 −0.451740
\(879\) −27995.5 −1.07425
\(880\) 12834.6 0.491652
\(881\) 10868.6 0.415634 0.207817 0.978168i \(-0.433364\pi\)
0.207817 + 0.978168i \(0.433364\pi\)
\(882\) 5020.39 0.191661
\(883\) −43075.4 −1.64168 −0.820840 0.571158i \(-0.806495\pi\)
−0.820840 + 0.571158i \(0.806495\pi\)
\(884\) −10325.6 −0.392859
\(885\) −9917.30 −0.376685
\(886\) 35309.8 1.33889
\(887\) −16224.0 −0.614149 −0.307075 0.951685i \(-0.599350\pi\)
−0.307075 + 0.951685i \(0.599350\pi\)
\(888\) −10181.6 −0.384766
\(889\) 10553.5 0.398149
\(890\) −45970.4 −1.73138
\(891\) −7952.32 −0.299004
\(892\) 31252.7 1.17312
\(893\) 25403.1 0.951938
\(894\) 31789.9 1.18928
\(895\) −3425.07 −0.127919
\(896\) −6024.80 −0.224637
\(897\) −42971.3 −1.59952
\(898\) 12824.1 0.476556
\(899\) 13558.9 0.503019
\(900\) 19304.1 0.714967
\(901\) 21499.0 0.794935
\(902\) 18682.6 0.689647
\(903\) −6735.10 −0.248206
\(904\) −12005.6 −0.441704
\(905\) 70671.5 2.59580
\(906\) −51909.4 −1.90351
\(907\) 39985.6 1.46384 0.731918 0.681392i \(-0.238625\pi\)
0.731918 + 0.681392i \(0.238625\pi\)
\(908\) −34853.2 −1.27384
\(909\) 33852.8 1.23523
\(910\) 20031.7 0.729717
\(911\) 20330.9 0.739398 0.369699 0.929152i \(-0.379461\pi\)
0.369699 + 0.929152i \(0.379461\pi\)
\(912\) −79921.1 −2.90181
\(913\) −13852.0 −0.502119
\(914\) −51614.9 −1.86791
\(915\) 73496.7 2.65544
\(916\) −31699.0 −1.14341
\(917\) −9292.84 −0.334653
\(918\) 210.597 0.00757161
\(919\) −3734.71 −0.134055 −0.0670275 0.997751i \(-0.521352\pi\)
−0.0670275 + 0.997751i \(0.521352\pi\)
\(920\) 12721.5 0.455887
\(921\) 5063.36 0.181154
\(922\) −33363.1 −1.19171
\(923\) 24912.4 0.888408
\(924\) 3495.63 0.124456
\(925\) −23029.9 −0.818613
\(926\) −55526.5 −1.97053
\(927\) −42336.9 −1.50003
\(928\) 14532.7 0.514072
\(929\) 30122.2 1.06381 0.531904 0.846805i \(-0.321477\pi\)
0.531904 + 0.846805i \(0.321477\pi\)
\(930\) −91416.7 −3.22330
\(931\) −7061.59 −0.248587
\(932\) 1925.35 0.0676685
\(933\) 18539.6 0.650545
\(934\) 1838.28 0.0644007
\(935\) 5815.72 0.203417
\(936\) −9226.24 −0.322189
\(937\) −33701.9 −1.17502 −0.587509 0.809217i \(-0.699891\pi\)
−0.587509 + 0.809217i \(0.699891\pi\)
\(938\) 10563.9 0.367723
\(939\) 34793.3 1.20920
\(940\) 16836.3 0.584193
\(941\) 20897.3 0.723944 0.361972 0.932189i \(-0.382104\pi\)
0.361972 + 0.932189i \(0.382104\pi\)
\(942\) 17845.9 0.617250
\(943\) 53658.4 1.85298
\(944\) 6547.02 0.225728
\(945\) −177.819 −0.00612110
\(946\) −5409.52 −0.185918
\(947\) −43378.9 −1.48852 −0.744258 0.667892i \(-0.767197\pi\)
−0.744258 + 0.667892i \(0.767197\pi\)
\(948\) 31829.4 1.09047
\(949\) 8656.93 0.296118
\(950\) −62386.7 −2.13062
\(951\) −21134.2 −0.720635
\(952\) −1649.66 −0.0561616
\(953\) −36362.5 −1.23599 −0.617994 0.786183i \(-0.712054\pi\)
−0.617994 + 0.786183i \(0.712054\pi\)
\(954\) −64546.6 −2.19054
\(955\) −64765.3 −2.19451
\(956\) −24735.4 −0.836819
\(957\) 5158.30 0.174236
\(958\) −4642.70 −0.156575
\(959\) 3090.72 0.104071
\(960\) −29248.6 −0.983328
\(961\) 15540.6 0.521654
\(962\) −36983.7 −1.23950
\(963\) −6725.67 −0.225059
\(964\) 3080.49 0.102921
\(965\) 30095.7 1.00395
\(966\) 23067.7 0.768312
\(967\) 23769.2 0.790451 0.395225 0.918584i \(-0.370667\pi\)
0.395225 + 0.918584i \(0.370667\pi\)
\(968\) −835.595 −0.0277449
\(969\) −36214.6 −1.20060
\(970\) −10789.4 −0.357141
\(971\) −27125.4 −0.896494 −0.448247 0.893910i \(-0.647952\pi\)
−0.448247 + 0.893910i \(0.647952\pi\)
\(972\) 33092.7 1.09203
\(973\) −1254.14 −0.0413214
\(974\) 62855.3 2.06778
\(975\) −41567.1 −1.36535
\(976\) −48519.7 −1.59127
\(977\) −30145.5 −0.987146 −0.493573 0.869704i \(-0.664309\pi\)
−0.493573 + 0.869704i \(0.664309\pi\)
\(978\) 84374.9 2.75870
\(979\) 8672.33 0.283114
\(980\) −4680.20 −0.152555
\(981\) 31594.0 1.02826
\(982\) −8008.92 −0.260259
\(983\) 23037.5 0.747489 0.373745 0.927532i \(-0.378074\pi\)
0.373745 + 0.927532i \(0.378074\pi\)
\(984\) 22947.4 0.743432
\(985\) −58486.8 −1.89192
\(986\) 8179.39 0.264183
\(987\) −9085.91 −0.293017
\(988\) −43604.8 −1.40410
\(989\) −15536.7 −0.499534
\(990\) −17460.6 −0.560538
\(991\) 13580.1 0.435303 0.217651 0.976027i \(-0.430160\pi\)
0.217651 + 0.976027i \(0.430160\pi\)
\(992\) 48587.3 1.55509
\(993\) −2691.16 −0.0860033
\(994\) −13373.3 −0.426737
\(995\) 15395.9 0.490536
\(996\) 57168.2 1.81872
\(997\) −26627.3 −0.845832 −0.422916 0.906169i \(-0.638993\pi\)
−0.422916 + 0.906169i \(0.638993\pi\)
\(998\) 46449.3 1.47327
\(999\) 328.300 0.0103973
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 77.4.a.c.1.4 4
3.2 odd 2 693.4.a.m.1.1 4
4.3 odd 2 1232.4.a.w.1.3 4
5.4 even 2 1925.4.a.q.1.1 4
7.6 odd 2 539.4.a.f.1.4 4
11.10 odd 2 847.4.a.e.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.4 4 1.1 even 1 trivial
539.4.a.f.1.4 4 7.6 odd 2
693.4.a.m.1.1 4 3.2 odd 2
847.4.a.e.1.1 4 11.10 odd 2
1232.4.a.w.1.3 4 4.3 odd 2
1925.4.a.q.1.1 4 5.4 even 2