Properties

Label 77.4.a.c.1.3
Level $77$
Weight $4$
Character 77.1
Self dual yes
Analytic conductor $4.543$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [77,4,Mod(1,77)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(77, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("77.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 77.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.54314707044\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.18303\) of defining polynomial
Character \(\chi\) \(=\) 77.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.948670 q^{2} -0.163384 q^{3} -7.10002 q^{4} -5.36789 q^{5} -0.154997 q^{6} -7.00000 q^{7} -14.3249 q^{8} -26.9733 q^{9} +O(q^{10})\) \(q+0.948670 q^{2} -0.163384 q^{3} -7.10002 q^{4} -5.36789 q^{5} -0.154997 q^{6} -7.00000 q^{7} -14.3249 q^{8} -26.9733 q^{9} -5.09236 q^{10} +11.0000 q^{11} +1.16003 q^{12} -42.9580 q^{13} -6.64069 q^{14} +0.877027 q^{15} +43.2105 q^{16} -60.8725 q^{17} -25.5888 q^{18} +140.575 q^{19} +38.1121 q^{20} +1.14369 q^{21} +10.4354 q^{22} -91.3375 q^{23} +2.34047 q^{24} -96.1858 q^{25} -40.7529 q^{26} +8.81837 q^{27} +49.7002 q^{28} +260.968 q^{29} +0.832009 q^{30} -259.463 q^{31} +155.592 q^{32} -1.79722 q^{33} -57.7479 q^{34} +37.5752 q^{35} +191.511 q^{36} +359.998 q^{37} +133.359 q^{38} +7.01864 q^{39} +76.8947 q^{40} -320.038 q^{41} +1.08498 q^{42} -92.3549 q^{43} -78.1003 q^{44} +144.790 q^{45} -86.6492 q^{46} +67.4510 q^{47} -7.05991 q^{48} +49.0000 q^{49} -91.2486 q^{50} +9.94558 q^{51} +305.003 q^{52} -246.038 q^{53} +8.36573 q^{54} -59.0468 q^{55} +100.275 q^{56} -22.9677 q^{57} +247.573 q^{58} -475.095 q^{59} -6.22691 q^{60} -799.071 q^{61} -246.145 q^{62} +188.813 q^{63} -198.079 q^{64} +230.594 q^{65} -1.70497 q^{66} -725.003 q^{67} +432.196 q^{68} +14.9231 q^{69} +35.6465 q^{70} +544.359 q^{71} +386.391 q^{72} -580.179 q^{73} +341.519 q^{74} +15.7152 q^{75} -998.086 q^{76} -77.0000 q^{77} +6.65838 q^{78} -402.439 q^{79} -231.949 q^{80} +726.838 q^{81} -303.611 q^{82} -1102.37 q^{83} -8.12021 q^{84} +326.757 q^{85} -87.6143 q^{86} -42.6380 q^{87} -157.574 q^{88} +1257.27 q^{89} +137.358 q^{90} +300.706 q^{91} +648.499 q^{92} +42.3921 q^{93} +63.9888 q^{94} -754.591 q^{95} -25.4212 q^{96} -999.825 q^{97} +46.4848 q^{98} -296.706 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} + 2 q^{6} - 28 q^{7} - 60 q^{8} + 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} + 2 q^{6} - 28 q^{7} - 60 q^{8} + 66 q^{9} - 92 q^{10} + 44 q^{11} - 186 q^{12} - 134 q^{13} + 28 q^{14} - 62 q^{15} - 6 q^{16} - 74 q^{17} - 256 q^{18} - 164 q^{19} + 116 q^{20} + 84 q^{21} - 44 q^{22} + 194 q^{23} + 570 q^{24} + 38 q^{25} + 734 q^{26} - 510 q^{27} - 154 q^{28} - 108 q^{29} + 1252 q^{30} - 412 q^{31} - 4 q^{32} - 132 q^{33} - 346 q^{34} + 126 q^{35} + 1518 q^{36} + 286 q^{37} + 224 q^{38} - 256 q^{39} - 540 q^{40} - 18 q^{41} - 14 q^{42} - 496 q^{43} + 242 q^{44} + 580 q^{45} - 284 q^{46} + 62 q^{47} - 862 q^{48} + 196 q^{49} + 212 q^{50} - 508 q^{51} - 822 q^{52} - 828 q^{53} + 2420 q^{54} - 198 q^{55} + 420 q^{56} + 700 q^{57} + 1388 q^{58} - 1224 q^{59} - 1776 q^{60} - 350 q^{61} - 878 q^{62} - 462 q^{63} - 718 q^{64} - 396 q^{65} + 22 q^{66} - 1498 q^{67} + 1058 q^{68} - 386 q^{69} + 644 q^{70} + 2326 q^{71} - 3000 q^{72} - 1630 q^{73} - 1156 q^{74} - 1362 q^{75} - 3152 q^{76} - 308 q^{77} - 2464 q^{78} - 1020 q^{79} + 3072 q^{80} + 1128 q^{81} + 2118 q^{82} - 1920 q^{83} + 1302 q^{84} + 2008 q^{85} + 1056 q^{86} + 1640 q^{87} - 660 q^{88} + 1550 q^{89} - 5780 q^{90} + 938 q^{91} + 2592 q^{92} + 6046 q^{93} - 1042 q^{94} + 2332 q^{95} + 4082 q^{96} - 2202 q^{97} - 196 q^{98} + 726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.948670 0.335406 0.167703 0.985838i \(-0.446365\pi\)
0.167703 + 0.985838i \(0.446365\pi\)
\(3\) −0.163384 −0.0314432 −0.0157216 0.999876i \(-0.505005\pi\)
−0.0157216 + 0.999876i \(0.505005\pi\)
\(4\) −7.10002 −0.887503
\(5\) −5.36789 −0.480119 −0.240059 0.970758i \(-0.577167\pi\)
−0.240059 + 0.970758i \(0.577167\pi\)
\(6\) −0.154997 −0.0105462
\(7\) −7.00000 −0.377964
\(8\) −14.3249 −0.633079
\(9\) −26.9733 −0.999011
\(10\) −5.09236 −0.161034
\(11\) 11.0000 0.301511
\(12\) 1.16003 0.0279060
\(13\) −42.9580 −0.916492 −0.458246 0.888825i \(-0.651522\pi\)
−0.458246 + 0.888825i \(0.651522\pi\)
\(14\) −6.64069 −0.126771
\(15\) 0.877027 0.0150965
\(16\) 43.2105 0.675165
\(17\) −60.8725 −0.868455 −0.434228 0.900803i \(-0.642979\pi\)
−0.434228 + 0.900803i \(0.642979\pi\)
\(18\) −25.5888 −0.335074
\(19\) 140.575 1.69737 0.848687 0.528895i \(-0.177393\pi\)
0.848687 + 0.528895i \(0.177393\pi\)
\(20\) 38.1121 0.426107
\(21\) 1.14369 0.0118844
\(22\) 10.4354 0.101129
\(23\) −91.3375 −0.828052 −0.414026 0.910265i \(-0.635878\pi\)
−0.414026 + 0.910265i \(0.635878\pi\)
\(24\) 2.34047 0.0199061
\(25\) −96.1858 −0.769486
\(26\) −40.7529 −0.307397
\(27\) 8.81837 0.0628554
\(28\) 49.7002 0.335445
\(29\) 260.968 1.67105 0.835527 0.549449i \(-0.185162\pi\)
0.835527 + 0.549449i \(0.185162\pi\)
\(30\) 0.832009 0.00506345
\(31\) −259.463 −1.50326 −0.751629 0.659586i \(-0.770731\pi\)
−0.751629 + 0.659586i \(0.770731\pi\)
\(32\) 155.592 0.859533
\(33\) −1.79722 −0.00948049
\(34\) −57.7479 −0.291285
\(35\) 37.5752 0.181468
\(36\) 191.511 0.886626
\(37\) 359.998 1.59955 0.799774 0.600301i \(-0.204952\pi\)
0.799774 + 0.600301i \(0.204952\pi\)
\(38\) 133.359 0.569309
\(39\) 7.01864 0.0288175
\(40\) 76.8947 0.303953
\(41\) −320.038 −1.21906 −0.609531 0.792762i \(-0.708642\pi\)
−0.609531 + 0.792762i \(0.708642\pi\)
\(42\) 1.08498 0.00398610
\(43\) −92.3549 −0.327535 −0.163767 0.986499i \(-0.552365\pi\)
−0.163767 + 0.986499i \(0.552365\pi\)
\(44\) −78.1003 −0.267592
\(45\) 144.790 0.479644
\(46\) −86.6492 −0.277733
\(47\) 67.4510 0.209335 0.104667 0.994507i \(-0.466622\pi\)
0.104667 + 0.994507i \(0.466622\pi\)
\(48\) −7.05991 −0.0212294
\(49\) 49.0000 0.142857
\(50\) −91.2486 −0.258090
\(51\) 9.94558 0.0273071
\(52\) 305.003 0.813389
\(53\) −246.038 −0.637659 −0.318830 0.947812i \(-0.603290\pi\)
−0.318830 + 0.947812i \(0.603290\pi\)
\(54\) 8.36573 0.0210821
\(55\) −59.0468 −0.144761
\(56\) 100.275 0.239281
\(57\) −22.9677 −0.0533710
\(58\) 247.573 0.560481
\(59\) −475.095 −1.04834 −0.524170 0.851613i \(-0.675625\pi\)
−0.524170 + 0.851613i \(0.675625\pi\)
\(60\) −6.22691 −0.0133982
\(61\) −799.071 −1.67722 −0.838611 0.544731i \(-0.816632\pi\)
−0.838611 + 0.544731i \(0.816632\pi\)
\(62\) −246.145 −0.504201
\(63\) 188.813 0.377591
\(64\) −198.079 −0.386872
\(65\) 230.594 0.440025
\(66\) −1.70497 −0.00317981
\(67\) −725.003 −1.32199 −0.660994 0.750391i \(-0.729865\pi\)
−0.660994 + 0.750391i \(0.729865\pi\)
\(68\) 432.196 0.770757
\(69\) 14.9231 0.0260366
\(70\) 35.6465 0.0608653
\(71\) 544.359 0.909909 0.454954 0.890515i \(-0.349656\pi\)
0.454954 + 0.890515i \(0.349656\pi\)
\(72\) 386.391 0.632453
\(73\) −580.179 −0.930202 −0.465101 0.885258i \(-0.653982\pi\)
−0.465101 + 0.885258i \(0.653982\pi\)
\(74\) 341.519 0.536498
\(75\) 15.7152 0.0241951
\(76\) −998.086 −1.50643
\(77\) −77.0000 −0.113961
\(78\) 6.65838 0.00966555
\(79\) −402.439 −0.573139 −0.286569 0.958059i \(-0.592515\pi\)
−0.286569 + 0.958059i \(0.592515\pi\)
\(80\) −231.949 −0.324159
\(81\) 726.838 0.997035
\(82\) −303.611 −0.408880
\(83\) −1102.37 −1.45784 −0.728919 0.684600i \(-0.759977\pi\)
−0.728919 + 0.684600i \(0.759977\pi\)
\(84\) −8.12021 −0.0105475
\(85\) 326.757 0.416962
\(86\) −87.6143 −0.109857
\(87\) −42.6380 −0.0525434
\(88\) −157.574 −0.190881
\(89\) 1257.27 1.49742 0.748710 0.662898i \(-0.230674\pi\)
0.748710 + 0.662898i \(0.230674\pi\)
\(90\) 137.358 0.160875
\(91\) 300.706 0.346401
\(92\) 648.499 0.734898
\(93\) 42.3921 0.0472673
\(94\) 63.9888 0.0702121
\(95\) −754.591 −0.814941
\(96\) −25.4212 −0.0270265
\(97\) −999.825 −1.04657 −0.523283 0.852159i \(-0.675293\pi\)
−0.523283 + 0.852159i \(0.675293\pi\)
\(98\) 46.4848 0.0479151
\(99\) −296.706 −0.301213
\(100\) 682.921 0.682921
\(101\) 658.047 0.648298 0.324149 0.946006i \(-0.394922\pi\)
0.324149 + 0.946006i \(0.394922\pi\)
\(102\) 9.43508 0.00915894
\(103\) 367.182 0.351258 0.175629 0.984456i \(-0.443804\pi\)
0.175629 + 0.984456i \(0.443804\pi\)
\(104\) 615.371 0.580212
\(105\) −6.13919 −0.00570594
\(106\) −233.409 −0.213875
\(107\) 2004.27 1.81084 0.905422 0.424513i \(-0.139555\pi\)
0.905422 + 0.424513i \(0.139555\pi\)
\(108\) −62.6106 −0.0557844
\(109\) 58.2798 0.0512128 0.0256064 0.999672i \(-0.491848\pi\)
0.0256064 + 0.999672i \(0.491848\pi\)
\(110\) −56.0159 −0.0485537
\(111\) −58.8179 −0.0502950
\(112\) −302.474 −0.255188
\(113\) 1784.84 1.48588 0.742938 0.669360i \(-0.233432\pi\)
0.742938 + 0.669360i \(0.233432\pi\)
\(114\) −21.7888 −0.0179009
\(115\) 490.290 0.397563
\(116\) −1852.88 −1.48307
\(117\) 1158.72 0.915586
\(118\) −450.709 −0.351619
\(119\) 426.107 0.328245
\(120\) −12.5634 −0.00955727
\(121\) 121.000 0.0909091
\(122\) −758.055 −0.562550
\(123\) 52.2891 0.0383313
\(124\) 1842.20 1.33415
\(125\) 1187.30 0.849563
\(126\) 179.121 0.126646
\(127\) −371.954 −0.259887 −0.129943 0.991521i \(-0.541480\pi\)
−0.129943 + 0.991521i \(0.541480\pi\)
\(128\) −1432.65 −0.989292
\(129\) 15.0893 0.0102987
\(130\) 218.757 0.147587
\(131\) 72.8070 0.0485586 0.0242793 0.999705i \(-0.492271\pi\)
0.0242793 + 0.999705i \(0.492271\pi\)
\(132\) 12.7603 0.00841397
\(133\) −984.025 −0.641547
\(134\) −687.789 −0.443402
\(135\) −47.3360 −0.0301780
\(136\) 871.995 0.549801
\(137\) 1282.01 0.799483 0.399742 0.916628i \(-0.369100\pi\)
0.399742 + 0.916628i \(0.369100\pi\)
\(138\) 14.1571 0.00873283
\(139\) −1372.26 −0.837367 −0.418683 0.908132i \(-0.637508\pi\)
−0.418683 + 0.908132i \(0.637508\pi\)
\(140\) −266.785 −0.161053
\(141\) −11.0204 −0.00658217
\(142\) 516.417 0.305189
\(143\) −472.538 −0.276333
\(144\) −1165.53 −0.674497
\(145\) −1400.85 −0.802304
\(146\) −550.398 −0.311995
\(147\) −8.00581 −0.00449189
\(148\) −2555.99 −1.41960
\(149\) −248.458 −0.136607 −0.0683036 0.997665i \(-0.521759\pi\)
−0.0683036 + 0.997665i \(0.521759\pi\)
\(150\) 14.9085 0.00811519
\(151\) −1247.52 −0.672327 −0.336164 0.941804i \(-0.609130\pi\)
−0.336164 + 0.941804i \(0.609130\pi\)
\(152\) −2013.73 −1.07457
\(153\) 1641.93 0.867597
\(154\) −73.0476 −0.0382230
\(155\) 1392.77 0.721742
\(156\) −49.8325 −0.0255756
\(157\) 845.901 0.430002 0.215001 0.976614i \(-0.431025\pi\)
0.215001 + 0.976614i \(0.431025\pi\)
\(158\) −381.782 −0.192234
\(159\) 40.1987 0.0200501
\(160\) −835.201 −0.412678
\(161\) 639.363 0.312974
\(162\) 689.530 0.334411
\(163\) −3266.85 −1.56981 −0.784906 0.619615i \(-0.787289\pi\)
−0.784906 + 0.619615i \(0.787289\pi\)
\(164\) 2272.28 1.08192
\(165\) 9.64729 0.00455176
\(166\) −1045.78 −0.488967
\(167\) −527.799 −0.244565 −0.122282 0.992495i \(-0.539021\pi\)
−0.122282 + 0.992495i \(0.539021\pi\)
\(168\) −16.3833 −0.00752378
\(169\) −351.613 −0.160043
\(170\) 309.984 0.139851
\(171\) −3791.77 −1.69570
\(172\) 655.722 0.290688
\(173\) 27.8340 0.0122322 0.00611612 0.999981i \(-0.498053\pi\)
0.00611612 + 0.999981i \(0.498053\pi\)
\(174\) −40.4494 −0.0176233
\(175\) 673.300 0.290838
\(176\) 475.316 0.203570
\(177\) 77.6229 0.0329632
\(178\) 1192.73 0.502243
\(179\) 1622.80 0.677620 0.338810 0.940855i \(-0.389976\pi\)
0.338810 + 0.940855i \(0.389976\pi\)
\(180\) −1028.01 −0.425685
\(181\) 4440.94 1.82372 0.911859 0.410504i \(-0.134647\pi\)
0.911859 + 0.410504i \(0.134647\pi\)
\(182\) 285.271 0.116185
\(183\) 130.555 0.0527373
\(184\) 1308.40 0.524222
\(185\) −1932.43 −0.767973
\(186\) 40.2161 0.0158537
\(187\) −669.597 −0.261849
\(188\) −478.904 −0.185785
\(189\) −61.7286 −0.0237571
\(190\) −715.858 −0.273336
\(191\) −1118.93 −0.423889 −0.211945 0.977282i \(-0.567980\pi\)
−0.211945 + 0.977282i \(0.567980\pi\)
\(192\) 32.3629 0.0121645
\(193\) 321.905 0.120058 0.0600291 0.998197i \(-0.480881\pi\)
0.0600291 + 0.998197i \(0.480881\pi\)
\(194\) −948.504 −0.351024
\(195\) −37.6753 −0.0138358
\(196\) −347.901 −0.126786
\(197\) −2409.72 −0.871498 −0.435749 0.900068i \(-0.643517\pi\)
−0.435749 + 0.900068i \(0.643517\pi\)
\(198\) −281.477 −0.101029
\(199\) 1702.46 0.606454 0.303227 0.952918i \(-0.401936\pi\)
0.303227 + 0.952918i \(0.401936\pi\)
\(200\) 1377.86 0.487146
\(201\) 118.454 0.0415676
\(202\) 624.270 0.217443
\(203\) −1826.78 −0.631599
\(204\) −70.6139 −0.0242351
\(205\) 1717.93 0.585295
\(206\) 348.335 0.117814
\(207\) 2463.67 0.827233
\(208\) −1856.24 −0.618783
\(209\) 1546.33 0.511778
\(210\) −5.82406 −0.00191380
\(211\) −2319.86 −0.756899 −0.378449 0.925622i \(-0.623543\pi\)
−0.378449 + 0.925622i \(0.623543\pi\)
\(212\) 1746.88 0.565925
\(213\) −88.9395 −0.0286105
\(214\) 1901.39 0.607367
\(215\) 495.751 0.157255
\(216\) −126.323 −0.0397924
\(217\) 1816.24 0.568178
\(218\) 55.2883 0.0171770
\(219\) 94.7918 0.0292486
\(220\) 419.234 0.128476
\(221\) 2614.96 0.795932
\(222\) −55.7988 −0.0168692
\(223\) 791.377 0.237644 0.118822 0.992916i \(-0.462088\pi\)
0.118822 + 0.992916i \(0.462088\pi\)
\(224\) −1089.14 −0.324873
\(225\) 2594.45 0.768725
\(226\) 1693.23 0.498371
\(227\) −1345.34 −0.393363 −0.196681 0.980467i \(-0.563016\pi\)
−0.196681 + 0.980467i \(0.563016\pi\)
\(228\) 163.071 0.0473669
\(229\) 1209.53 0.349030 0.174515 0.984655i \(-0.444164\pi\)
0.174515 + 0.984655i \(0.444164\pi\)
\(230\) 465.123 0.133345
\(231\) 12.5806 0.00358329
\(232\) −3738.36 −1.05791
\(233\) −5101.45 −1.43436 −0.717182 0.696886i \(-0.754569\pi\)
−0.717182 + 0.696886i \(0.754569\pi\)
\(234\) 1099.24 0.307093
\(235\) −362.070 −0.100506
\(236\) 3373.19 0.930406
\(237\) 65.7521 0.0180213
\(238\) 404.235 0.110095
\(239\) 2072.93 0.561032 0.280516 0.959849i \(-0.409494\pi\)
0.280516 + 0.959849i \(0.409494\pi\)
\(240\) 37.8968 0.0101926
\(241\) 2896.10 0.774085 0.387042 0.922062i \(-0.373497\pi\)
0.387042 + 0.922062i \(0.373497\pi\)
\(242\) 114.789 0.0304914
\(243\) −356.850 −0.0942054
\(244\) 5673.42 1.48854
\(245\) −263.027 −0.0685884
\(246\) 49.6051 0.0128565
\(247\) −6038.82 −1.55563
\(248\) 3716.80 0.951681
\(249\) 180.109 0.0458392
\(250\) 1126.36 0.284948
\(251\) 4226.07 1.06274 0.531369 0.847140i \(-0.321678\pi\)
0.531369 + 0.847140i \(0.321678\pi\)
\(252\) −1340.58 −0.335113
\(253\) −1004.71 −0.249667
\(254\) −352.862 −0.0871674
\(255\) −53.3868 −0.0131106
\(256\) 225.518 0.0550582
\(257\) −5075.41 −1.23189 −0.615945 0.787789i \(-0.711225\pi\)
−0.615945 + 0.787789i \(0.711225\pi\)
\(258\) 14.3148 0.00345426
\(259\) −2519.99 −0.604573
\(260\) −1637.22 −0.390523
\(261\) −7039.18 −1.66940
\(262\) 69.0699 0.0162868
\(263\) −123.204 −0.0288861 −0.0144431 0.999896i \(-0.504598\pi\)
−0.0144431 + 0.999896i \(0.504598\pi\)
\(264\) 25.7451 0.00600190
\(265\) 1320.71 0.306152
\(266\) −933.516 −0.215179
\(267\) −205.418 −0.0470837
\(268\) 5147.54 1.17327
\(269\) −3938.48 −0.892688 −0.446344 0.894861i \(-0.647274\pi\)
−0.446344 + 0.894861i \(0.647274\pi\)
\(270\) −44.9063 −0.0101219
\(271\) −2882.96 −0.646227 −0.323113 0.946360i \(-0.604730\pi\)
−0.323113 + 0.946360i \(0.604730\pi\)
\(272\) −2630.33 −0.586350
\(273\) −49.1305 −0.0108920
\(274\) 1216.20 0.268151
\(275\) −1058.04 −0.232009
\(276\) −105.954 −0.0231076
\(277\) 1414.61 0.306843 0.153422 0.988161i \(-0.450971\pi\)
0.153422 + 0.988161i \(0.450971\pi\)
\(278\) −1301.83 −0.280858
\(279\) 6998.58 1.50177
\(280\) −538.263 −0.114883
\(281\) 2053.20 0.435886 0.217943 0.975962i \(-0.430065\pi\)
0.217943 + 0.975962i \(0.430065\pi\)
\(282\) −10.4547 −0.00220770
\(283\) −7989.40 −1.67816 −0.839082 0.544005i \(-0.816907\pi\)
−0.839082 + 0.544005i \(0.816907\pi\)
\(284\) −3864.96 −0.807547
\(285\) 123.288 0.0256244
\(286\) −448.282 −0.0926836
\(287\) 2240.27 0.460762
\(288\) −4196.83 −0.858683
\(289\) −1207.54 −0.245785
\(290\) −1328.94 −0.269097
\(291\) 163.355 0.0329074
\(292\) 4119.28 0.825557
\(293\) 493.055 0.0983092 0.0491546 0.998791i \(-0.484347\pi\)
0.0491546 + 0.998791i \(0.484347\pi\)
\(294\) −7.59488 −0.00150661
\(295\) 2550.26 0.503328
\(296\) −5156.95 −1.01264
\(297\) 97.0021 0.0189516
\(298\) −235.705 −0.0458188
\(299\) 3923.67 0.758903
\(300\) −111.578 −0.0214733
\(301\) 646.484 0.123796
\(302\) −1183.48 −0.225502
\(303\) −107.514 −0.0203846
\(304\) 6074.32 1.14601
\(305\) 4289.32 0.805265
\(306\) 1557.65 0.290997
\(307\) −4869.60 −0.905287 −0.452643 0.891692i \(-0.649519\pi\)
−0.452643 + 0.891692i \(0.649519\pi\)
\(308\) 546.702 0.101140
\(309\) −59.9917 −0.0110447
\(310\) 1321.28 0.242076
\(311\) −9618.02 −1.75366 −0.876830 0.480801i \(-0.840346\pi\)
−0.876830 + 0.480801i \(0.840346\pi\)
\(312\) −100.542 −0.0182437
\(313\) −6938.34 −1.25296 −0.626482 0.779436i \(-0.715506\pi\)
−0.626482 + 0.779436i \(0.715506\pi\)
\(314\) 802.481 0.144225
\(315\) −1013.53 −0.181288
\(316\) 2857.33 0.508663
\(317\) 2353.16 0.416929 0.208464 0.978030i \(-0.433153\pi\)
0.208464 + 0.978030i \(0.433153\pi\)
\(318\) 38.1353 0.00672491
\(319\) 2870.65 0.503842
\(320\) 1063.26 0.185745
\(321\) −327.466 −0.0569388
\(322\) 606.544 0.104973
\(323\) −8557.15 −1.47409
\(324\) −5160.57 −0.884872
\(325\) 4131.94 0.705228
\(326\) −3099.16 −0.526524
\(327\) −9.52198 −0.00161030
\(328\) 4584.53 0.771763
\(329\) −472.157 −0.0791212
\(330\) 9.15210 0.00152669
\(331\) 1512.04 0.251086 0.125543 0.992088i \(-0.459933\pi\)
0.125543 + 0.992088i \(0.459933\pi\)
\(332\) 7826.84 1.29384
\(333\) −9710.34 −1.59797
\(334\) −500.707 −0.0820284
\(335\) 3891.74 0.634711
\(336\) 49.4193 0.00802395
\(337\) 2506.25 0.405116 0.202558 0.979270i \(-0.435074\pi\)
0.202558 + 0.979270i \(0.435074\pi\)
\(338\) −333.565 −0.0536792
\(339\) −291.615 −0.0467208
\(340\) −2319.98 −0.370055
\(341\) −2854.10 −0.453249
\(342\) −3597.14 −0.568746
\(343\) −343.000 −0.0539949
\(344\) 1322.98 0.207355
\(345\) −80.1054 −0.0125007
\(346\) 26.4053 0.00410276
\(347\) −6737.01 −1.04225 −0.521126 0.853479i \(-0.674488\pi\)
−0.521126 + 0.853479i \(0.674488\pi\)
\(348\) 302.731 0.0466324
\(349\) 1832.13 0.281008 0.140504 0.990080i \(-0.455128\pi\)
0.140504 + 0.990080i \(0.455128\pi\)
\(350\) 638.740 0.0975488
\(351\) −378.819 −0.0576065
\(352\) 1711.51 0.259159
\(353\) 3946.57 0.595056 0.297528 0.954713i \(-0.403838\pi\)
0.297528 + 0.954713i \(0.403838\pi\)
\(354\) 73.6385 0.0110561
\(355\) −2922.06 −0.436864
\(356\) −8926.65 −1.32896
\(357\) −69.6191 −0.0103211
\(358\) 1539.50 0.227277
\(359\) 5598.84 0.823108 0.411554 0.911385i \(-0.364986\pi\)
0.411554 + 0.911385i \(0.364986\pi\)
\(360\) −2074.10 −0.303653
\(361\) 12902.3 1.88108
\(362\) 4212.99 0.611685
\(363\) −19.7695 −0.00285848
\(364\) −2135.02 −0.307432
\(365\) 3114.33 0.446607
\(366\) 123.854 0.0176884
\(367\) 8179.50 1.16340 0.581698 0.813405i \(-0.302388\pi\)
0.581698 + 0.813405i \(0.302388\pi\)
\(368\) −3946.74 −0.559071
\(369\) 8632.49 1.21786
\(370\) −1833.24 −0.257583
\(371\) 1722.27 0.241013
\(372\) −300.985 −0.0419499
\(373\) 11627.3 1.61405 0.807025 0.590518i \(-0.201076\pi\)
0.807025 + 0.590518i \(0.201076\pi\)
\(374\) −635.227 −0.0878257
\(375\) −193.986 −0.0267130
\(376\) −966.232 −0.132526
\(377\) −11210.7 −1.53151
\(378\) −58.5601 −0.00796827
\(379\) 1588.59 0.215305 0.107653 0.994189i \(-0.465667\pi\)
0.107653 + 0.994189i \(0.465667\pi\)
\(380\) 5357.62 0.723263
\(381\) 60.7713 0.00817168
\(382\) −1061.49 −0.142175
\(383\) −40.4622 −0.00539823 −0.00269912 0.999996i \(-0.500859\pi\)
−0.00269912 + 0.999996i \(0.500859\pi\)
\(384\) 234.072 0.0311066
\(385\) 413.327 0.0547146
\(386\) 305.382 0.0402682
\(387\) 2491.12 0.327211
\(388\) 7098.78 0.928830
\(389\) 6230.86 0.812126 0.406063 0.913845i \(-0.366901\pi\)
0.406063 + 0.913845i \(0.366901\pi\)
\(390\) −35.7414 −0.00464061
\(391\) 5559.94 0.719126
\(392\) −701.922 −0.0904399
\(393\) −11.8955 −0.00152684
\(394\) −2286.03 −0.292305
\(395\) 2160.25 0.275175
\(396\) 2106.62 0.267328
\(397\) −3686.24 −0.466013 −0.233007 0.972475i \(-0.574856\pi\)
−0.233007 + 0.972475i \(0.574856\pi\)
\(398\) 1615.08 0.203408
\(399\) 160.774 0.0201723
\(400\) −4156.24 −0.519530
\(401\) 438.764 0.0546405 0.0273202 0.999627i \(-0.491303\pi\)
0.0273202 + 0.999627i \(0.491303\pi\)
\(402\) 112.374 0.0139420
\(403\) 11146.0 1.37772
\(404\) −4672.15 −0.575367
\(405\) −3901.59 −0.478695
\(406\) −1733.01 −0.211842
\(407\) 3959.98 0.482282
\(408\) −142.470 −0.0172875
\(409\) −6813.22 −0.823697 −0.411848 0.911252i \(-0.635117\pi\)
−0.411848 + 0.911252i \(0.635117\pi\)
\(410\) 1629.75 0.196311
\(411\) −209.459 −0.0251384
\(412\) −2607.00 −0.311742
\(413\) 3325.67 0.396236
\(414\) 2337.22 0.277459
\(415\) 5917.39 0.699935
\(416\) −6683.92 −0.787755
\(417\) 224.206 0.0263295
\(418\) 1466.95 0.171653
\(419\) 4789.84 0.558471 0.279235 0.960223i \(-0.409919\pi\)
0.279235 + 0.960223i \(0.409919\pi\)
\(420\) 43.5884 0.00506404
\(421\) −5912.30 −0.684436 −0.342218 0.939621i \(-0.611178\pi\)
−0.342218 + 0.939621i \(0.611178\pi\)
\(422\) −2200.78 −0.253868
\(423\) −1819.38 −0.209128
\(424\) 3524.48 0.403689
\(425\) 5855.06 0.668264
\(426\) −84.3742 −0.00959612
\(427\) 5593.49 0.633930
\(428\) −14230.4 −1.60713
\(429\) 77.2050 0.00868880
\(430\) 470.304 0.0527444
\(431\) −13228.6 −1.47842 −0.739208 0.673477i \(-0.764800\pi\)
−0.739208 + 0.673477i \(0.764800\pi\)
\(432\) 381.047 0.0424378
\(433\) −13817.8 −1.53359 −0.766793 0.641895i \(-0.778149\pi\)
−0.766793 + 0.641895i \(0.778149\pi\)
\(434\) 1723.02 0.190570
\(435\) 228.876 0.0252271
\(436\) −413.788 −0.0454515
\(437\) −12839.8 −1.40551
\(438\) 89.9262 0.00981014
\(439\) −5078.63 −0.552141 −0.276070 0.961137i \(-0.589032\pi\)
−0.276070 + 0.961137i \(0.589032\pi\)
\(440\) 845.842 0.0916453
\(441\) −1321.69 −0.142716
\(442\) 2480.73 0.266960
\(443\) −8477.52 −0.909208 −0.454604 0.890694i \(-0.650219\pi\)
−0.454604 + 0.890694i \(0.650219\pi\)
\(444\) 417.608 0.0446370
\(445\) −6748.89 −0.718939
\(446\) 750.756 0.0797070
\(447\) 40.5940 0.00429537
\(448\) 1386.55 0.146224
\(449\) 17792.1 1.87007 0.935033 0.354561i \(-0.115370\pi\)
0.935033 + 0.354561i \(0.115370\pi\)
\(450\) 2461.28 0.257835
\(451\) −3520.42 −0.367561
\(452\) −12672.4 −1.31872
\(453\) 203.824 0.0211401
\(454\) −1276.28 −0.131936
\(455\) −1614.16 −0.166314
\(456\) 329.011 0.0337881
\(457\) −1385.23 −0.141791 −0.0708955 0.997484i \(-0.522586\pi\)
−0.0708955 + 0.997484i \(0.522586\pi\)
\(458\) 1147.44 0.117067
\(459\) −536.796 −0.0545871
\(460\) −3481.07 −0.352838
\(461\) −9174.59 −0.926906 −0.463453 0.886122i \(-0.653390\pi\)
−0.463453 + 0.886122i \(0.653390\pi\)
\(462\) 11.9348 0.00120186
\(463\) 4066.00 0.408127 0.204064 0.978958i \(-0.434585\pi\)
0.204064 + 0.978958i \(0.434585\pi\)
\(464\) 11276.6 1.12824
\(465\) −227.556 −0.0226939
\(466\) −4839.59 −0.481094
\(467\) 16393.7 1.62443 0.812216 0.583356i \(-0.198261\pi\)
0.812216 + 0.583356i \(0.198261\pi\)
\(468\) −8226.93 −0.812585
\(469\) 5075.02 0.499665
\(470\) −343.485 −0.0337102
\(471\) −138.207 −0.0135206
\(472\) 6805.71 0.663683
\(473\) −1015.90 −0.0987554
\(474\) 62.3771 0.00604446
\(475\) −13521.3 −1.30611
\(476\) −3025.37 −0.291319
\(477\) 6636.46 0.637029
\(478\) 1966.53 0.188173
\(479\) 12328.2 1.17597 0.587986 0.808871i \(-0.299921\pi\)
0.587986 + 0.808871i \(0.299921\pi\)
\(480\) 136.458 0.0129759
\(481\) −15464.8 −1.46597
\(482\) 2747.45 0.259632
\(483\) −104.462 −0.00984092
\(484\) −859.103 −0.0806821
\(485\) 5366.95 0.502476
\(486\) −338.533 −0.0315970
\(487\) −1891.56 −0.176006 −0.0880028 0.996120i \(-0.528048\pi\)
−0.0880028 + 0.996120i \(0.528048\pi\)
\(488\) 11446.6 1.06181
\(489\) 533.750 0.0493600
\(490\) −249.526 −0.0230049
\(491\) 484.518 0.0445336 0.0222668 0.999752i \(-0.492912\pi\)
0.0222668 + 0.999752i \(0.492912\pi\)
\(492\) −371.254 −0.0340191
\(493\) −15885.8 −1.45124
\(494\) −5728.85 −0.521767
\(495\) 1592.69 0.144618
\(496\) −11211.5 −1.01495
\(497\) −3810.51 −0.343913
\(498\) 170.864 0.0153747
\(499\) −10923.0 −0.979917 −0.489959 0.871746i \(-0.662988\pi\)
−0.489959 + 0.871746i \(0.662988\pi\)
\(500\) −8429.86 −0.753990
\(501\) 86.2339 0.00768991
\(502\) 4009.15 0.356448
\(503\) 16.4363 0.00145697 0.000728486 1.00000i \(-0.499768\pi\)
0.000728486 1.00000i \(0.499768\pi\)
\(504\) −2704.74 −0.239045
\(505\) −3532.32 −0.311260
\(506\) −953.141 −0.0837397
\(507\) 57.4480 0.00503226
\(508\) 2640.88 0.230650
\(509\) 5133.84 0.447060 0.223530 0.974697i \(-0.428242\pi\)
0.223530 + 0.974697i \(0.428242\pi\)
\(510\) −50.6465 −0.00439738
\(511\) 4061.25 0.351583
\(512\) 11675.1 1.00776
\(513\) 1239.64 0.106689
\(514\) −4814.89 −0.413183
\(515\) −1970.99 −0.168645
\(516\) −107.134 −0.00914017
\(517\) 741.961 0.0631169
\(518\) −2390.64 −0.202777
\(519\) −4.54762 −0.000384621 0
\(520\) −3303.24 −0.278571
\(521\) −4454.52 −0.374580 −0.187290 0.982305i \(-0.559970\pi\)
−0.187290 + 0.982305i \(0.559970\pi\)
\(522\) −6677.86 −0.559927
\(523\) −226.348 −0.0189245 −0.00946224 0.999955i \(-0.503012\pi\)
−0.00946224 + 0.999955i \(0.503012\pi\)
\(524\) −516.932 −0.0430959
\(525\) −110.006 −0.00914490
\(526\) −116.880 −0.00968858
\(527\) 15794.2 1.30551
\(528\) −77.6590 −0.00640090
\(529\) −3824.46 −0.314331
\(530\) 1252.91 0.102685
\(531\) 12814.9 1.04730
\(532\) 6986.60 0.569375
\(533\) 13748.2 1.11726
\(534\) −194.874 −0.0157921
\(535\) −10758.7 −0.869420
\(536\) 10385.6 0.836923
\(537\) −265.140 −0.0213066
\(538\) −3736.32 −0.299413
\(539\) 539.000 0.0430730
\(540\) 336.087 0.0267831
\(541\) 11808.2 0.938401 0.469201 0.883092i \(-0.344542\pi\)
0.469201 + 0.883092i \(0.344542\pi\)
\(542\) −2734.98 −0.216748
\(543\) −725.579 −0.0573436
\(544\) −9471.28 −0.746466
\(545\) −312.839 −0.0245882
\(546\) −46.6086 −0.00365323
\(547\) 11208.4 0.876122 0.438061 0.898945i \(-0.355665\pi\)
0.438061 + 0.898945i \(0.355665\pi\)
\(548\) −9102.28 −0.709544
\(549\) 21553.6 1.67556
\(550\) −1003.73 −0.0778171
\(551\) 36685.6 2.83641
\(552\) −213.772 −0.0164832
\(553\) 2817.08 0.216626
\(554\) 1342.00 0.102917
\(555\) 315.728 0.0241476
\(556\) 9743.11 0.743166
\(557\) −21505.6 −1.63594 −0.817972 0.575259i \(-0.804901\pi\)
−0.817972 + 0.575259i \(0.804901\pi\)
\(558\) 6639.35 0.503703
\(559\) 3967.38 0.300183
\(560\) 1623.65 0.122521
\(561\) 109.401 0.00823339
\(562\) 1947.81 0.146198
\(563\) 18770.5 1.40512 0.702559 0.711626i \(-0.252041\pi\)
0.702559 + 0.711626i \(0.252041\pi\)
\(564\) 78.2452 0.00584170
\(565\) −9580.85 −0.713397
\(566\) −7579.31 −0.562866
\(567\) −5087.87 −0.376844
\(568\) −7797.91 −0.576044
\(569\) −19439.7 −1.43226 −0.716130 0.697967i \(-0.754088\pi\)
−0.716130 + 0.697967i \(0.754088\pi\)
\(570\) 116.960 0.00859457
\(571\) 5978.67 0.438178 0.219089 0.975705i \(-0.429692\pi\)
0.219089 + 0.975705i \(0.429692\pi\)
\(572\) 3355.03 0.245246
\(573\) 182.815 0.0133284
\(574\) 2125.27 0.154542
\(575\) 8785.37 0.637174
\(576\) 5342.84 0.386490
\(577\) −17704.6 −1.27739 −0.638695 0.769460i \(-0.720525\pi\)
−0.638695 + 0.769460i \(0.720525\pi\)
\(578\) −1145.56 −0.0824377
\(579\) −52.5941 −0.00377502
\(580\) 9946.06 0.712048
\(581\) 7716.57 0.551011
\(582\) 154.970 0.0110373
\(583\) −2706.42 −0.192262
\(584\) 8311.03 0.588892
\(585\) −6219.87 −0.439590
\(586\) 467.747 0.0329735
\(587\) −1063.42 −0.0747738 −0.0373869 0.999301i \(-0.511903\pi\)
−0.0373869 + 0.999301i \(0.511903\pi\)
\(588\) 56.8415 0.00398657
\(589\) −36474.1 −2.55159
\(590\) 2419.35 0.168819
\(591\) 393.709 0.0274027
\(592\) 15555.7 1.07996
\(593\) −18456.7 −1.27812 −0.639061 0.769156i \(-0.720677\pi\)
−0.639061 + 0.769156i \(0.720677\pi\)
\(594\) 92.0230 0.00635648
\(595\) −2287.30 −0.157597
\(596\) 1764.06 0.121239
\(597\) −278.155 −0.0190689
\(598\) 3722.27 0.254540
\(599\) 24953.5 1.70213 0.851063 0.525064i \(-0.175959\pi\)
0.851063 + 0.525064i \(0.175959\pi\)
\(600\) −225.119 −0.0153174
\(601\) 16330.2 1.10836 0.554179 0.832398i \(-0.313032\pi\)
0.554179 + 0.832398i \(0.313032\pi\)
\(602\) 613.300 0.0415220
\(603\) 19555.7 1.32068
\(604\) 8857.39 0.596692
\(605\) −649.515 −0.0436471
\(606\) −101.996 −0.00683711
\(607\) −12193.8 −0.815371 −0.407686 0.913122i \(-0.633664\pi\)
−0.407686 + 0.913122i \(0.633664\pi\)
\(608\) 21872.4 1.45895
\(609\) 298.466 0.0198595
\(610\) 4069.15 0.270090
\(611\) −2897.56 −0.191854
\(612\) −11657.8 −0.769995
\(613\) 18075.5 1.19097 0.595483 0.803368i \(-0.296961\pi\)
0.595483 + 0.803368i \(0.296961\pi\)
\(614\) −4619.65 −0.303638
\(615\) −280.682 −0.0184036
\(616\) 1103.02 0.0721461
\(617\) −20714.8 −1.35162 −0.675809 0.737077i \(-0.736205\pi\)
−0.675809 + 0.737077i \(0.736205\pi\)
\(618\) −56.9123 −0.00370445
\(619\) −23526.6 −1.52765 −0.763825 0.645423i \(-0.776681\pi\)
−0.763825 + 0.645423i \(0.776681\pi\)
\(620\) −9888.70 −0.640548
\(621\) −805.448 −0.0520475
\(622\) −9124.33 −0.588187
\(623\) −8800.89 −0.565971
\(624\) 303.279 0.0194565
\(625\) 5649.92 0.361595
\(626\) −6582.19 −0.420251
\(627\) −252.645 −0.0160920
\(628\) −6005.92 −0.381628
\(629\) −21914.0 −1.38914
\(630\) −961.504 −0.0608051
\(631\) 7890.00 0.497775 0.248887 0.968532i \(-0.419935\pi\)
0.248887 + 0.968532i \(0.419935\pi\)
\(632\) 5764.92 0.362842
\(633\) 379.027 0.0237993
\(634\) 2232.37 0.139840
\(635\) 1996.61 0.124776
\(636\) −285.412 −0.0177945
\(637\) −2104.94 −0.130927
\(638\) 2723.30 0.168991
\(639\) −14683.2 −0.909009
\(640\) 7690.30 0.474978
\(641\) 20817.4 1.28274 0.641370 0.767232i \(-0.278366\pi\)
0.641370 + 0.767232i \(0.278366\pi\)
\(642\) −310.657 −0.0190976
\(643\) −22246.1 −1.36439 −0.682193 0.731172i \(-0.738973\pi\)
−0.682193 + 0.731172i \(0.738973\pi\)
\(644\) −4539.49 −0.277765
\(645\) −80.9977 −0.00494462
\(646\) −8117.91 −0.494420
\(647\) −30769.4 −1.86966 −0.934829 0.355099i \(-0.884447\pi\)
−0.934829 + 0.355099i \(0.884447\pi\)
\(648\) −10411.9 −0.631202
\(649\) −5226.05 −0.316087
\(650\) 3919.85 0.236537
\(651\) −296.745 −0.0178654
\(652\) 23194.7 1.39321
\(653\) 14927.0 0.894546 0.447273 0.894397i \(-0.352395\pi\)
0.447273 + 0.894397i \(0.352395\pi\)
\(654\) −9.03322 −0.000540102 0
\(655\) −390.820 −0.0233139
\(656\) −13829.0 −0.823068
\(657\) 15649.3 0.929283
\(658\) −447.922 −0.0265377
\(659\) −11593.6 −0.685318 −0.342659 0.939460i \(-0.611327\pi\)
−0.342659 + 0.939460i \(0.611327\pi\)
\(660\) −68.4960 −0.00403970
\(661\) 24733.6 1.45541 0.727704 0.685891i \(-0.240587\pi\)
0.727704 + 0.685891i \(0.240587\pi\)
\(662\) 1434.43 0.0842155
\(663\) −427.242 −0.0250267
\(664\) 15791.4 0.922927
\(665\) 5282.14 0.308019
\(666\) −9211.91 −0.535967
\(667\) −23836.2 −1.38372
\(668\) 3747.39 0.217052
\(669\) −129.298 −0.00747228
\(670\) 3691.97 0.212886
\(671\) −8789.78 −0.505701
\(672\) 177.949 0.0102151
\(673\) −22202.2 −1.27167 −0.635834 0.771826i \(-0.719344\pi\)
−0.635834 + 0.771826i \(0.719344\pi\)
\(674\) 2377.61 0.135878
\(675\) −848.202 −0.0483664
\(676\) 2496.46 0.142038
\(677\) −10445.5 −0.592989 −0.296494 0.955035i \(-0.595818\pi\)
−0.296494 + 0.955035i \(0.595818\pi\)
\(678\) −276.646 −0.0156704
\(679\) 6998.77 0.395565
\(680\) −4680.77 −0.263970
\(681\) 219.807 0.0123686
\(682\) −2707.60 −0.152022
\(683\) −15600.1 −0.873969 −0.436985 0.899469i \(-0.643954\pi\)
−0.436985 + 0.899469i \(0.643954\pi\)
\(684\) 26921.7 1.50494
\(685\) −6881.67 −0.383847
\(686\) −325.394 −0.0181102
\(687\) −197.617 −0.0109746
\(688\) −3990.70 −0.221140
\(689\) 10569.3 0.584410
\(690\) −75.9936 −0.00419280
\(691\) −26622.8 −1.46567 −0.732835 0.680406i \(-0.761803\pi\)
−0.732835 + 0.680406i \(0.761803\pi\)
\(692\) −197.622 −0.0108562
\(693\) 2076.94 0.113848
\(694\) −6391.20 −0.349578
\(695\) 7366.17 0.402035
\(696\) 610.787 0.0332641
\(697\) 19481.5 1.05870
\(698\) 1738.09 0.0942517
\(699\) 833.494 0.0451011
\(700\) −4780.45 −0.258120
\(701\) −16091.8 −0.867017 −0.433508 0.901150i \(-0.642725\pi\)
−0.433508 + 0.901150i \(0.642725\pi\)
\(702\) −359.375 −0.0193215
\(703\) 50606.7 2.71503
\(704\) −2178.87 −0.116646
\(705\) 59.1563 0.00316022
\(706\) 3743.99 0.199585
\(707\) −4606.33 −0.245034
\(708\) −551.124 −0.0292550
\(709\) 58.1652 0.00308101 0.00154051 0.999999i \(-0.499510\pi\)
0.00154051 + 0.999999i \(0.499510\pi\)
\(710\) −2772.07 −0.146527
\(711\) 10855.1 0.572572
\(712\) −18010.3 −0.947985
\(713\) 23698.7 1.24477
\(714\) −66.0455 −0.00346175
\(715\) 2536.53 0.132672
\(716\) −11521.9 −0.601390
\(717\) −338.683 −0.0176407
\(718\) 5311.46 0.276075
\(719\) 2437.03 0.126406 0.0632030 0.998001i \(-0.479868\pi\)
0.0632030 + 0.998001i \(0.479868\pi\)
\(720\) 6256.44 0.323839
\(721\) −2570.28 −0.132763
\(722\) 12240.1 0.630925
\(723\) −473.177 −0.0243397
\(724\) −31530.8 −1.61855
\(725\) −25101.4 −1.28585
\(726\) −18.7547 −0.000958749 0
\(727\) −5394.60 −0.275206 −0.137603 0.990487i \(-0.543940\pi\)
−0.137603 + 0.990487i \(0.543940\pi\)
\(728\) −4307.59 −0.219300
\(729\) −19566.3 −0.994073
\(730\) 2954.48 0.149795
\(731\) 5621.87 0.284449
\(732\) −926.946 −0.0468045
\(733\) −21145.5 −1.06552 −0.532761 0.846266i \(-0.678845\pi\)
−0.532761 + 0.846266i \(0.678845\pi\)
\(734\) 7759.65 0.390210
\(735\) 42.9743 0.00215664
\(736\) −14211.4 −0.711738
\(737\) −7975.03 −0.398594
\(738\) 8189.38 0.408476
\(739\) −37759.5 −1.87957 −0.939787 0.341760i \(-0.888977\pi\)
−0.939787 + 0.341760i \(0.888977\pi\)
\(740\) 13720.3 0.681579
\(741\) 986.645 0.0489141
\(742\) 1633.86 0.0808370
\(743\) −9418.47 −0.465047 −0.232524 0.972591i \(-0.574698\pi\)
−0.232524 + 0.972591i \(0.574698\pi\)
\(744\) −607.265 −0.0299239
\(745\) 1333.69 0.0655876
\(746\) 11030.5 0.541361
\(747\) 29734.5 1.45640
\(748\) 4754.16 0.232392
\(749\) −14029.9 −0.684435
\(750\) −184.029 −0.00895970
\(751\) 19452.5 0.945185 0.472592 0.881281i \(-0.343318\pi\)
0.472592 + 0.881281i \(0.343318\pi\)
\(752\) 2914.60 0.141336
\(753\) −690.472 −0.0334159
\(754\) −10635.2 −0.513676
\(755\) 6696.53 0.322797
\(756\) 438.274 0.0210845
\(757\) −5870.88 −0.281877 −0.140938 0.990018i \(-0.545012\pi\)
−0.140938 + 0.990018i \(0.545012\pi\)
\(758\) 1507.05 0.0722145
\(759\) 164.154 0.00785034
\(760\) 10809.5 0.515922
\(761\) 9711.24 0.462591 0.231296 0.972883i \(-0.425704\pi\)
0.231296 + 0.972883i \(0.425704\pi\)
\(762\) 57.6519 0.00274083
\(763\) −407.958 −0.0193566
\(764\) 7944.42 0.376203
\(765\) −8813.71 −0.416549
\(766\) −38.3853 −0.00181060
\(767\) 20409.1 0.960796
\(768\) −36.8461 −0.00173121
\(769\) 3693.86 0.173217 0.0866085 0.996242i \(-0.472397\pi\)
0.0866085 + 0.996242i \(0.472397\pi\)
\(770\) 392.112 0.0183516
\(771\) 829.241 0.0387346
\(772\) −2285.53 −0.106552
\(773\) 38031.9 1.76962 0.884808 0.465955i \(-0.154289\pi\)
0.884808 + 0.465955i \(0.154289\pi\)
\(774\) 2363.25 0.109748
\(775\) 24956.7 1.15674
\(776\) 14322.4 0.662559
\(777\) 411.725 0.0190097
\(778\) 5911.03 0.272392
\(779\) −44989.4 −2.06921
\(780\) 267.495 0.0122793
\(781\) 5987.95 0.274348
\(782\) 5274.55 0.241199
\(783\) 2301.31 0.105035
\(784\) 2117.32 0.0964521
\(785\) −4540.70 −0.206452
\(786\) −11.2849 −0.000512111 0
\(787\) 3509.51 0.158959 0.0794793 0.996837i \(-0.474674\pi\)
0.0794793 + 0.996837i \(0.474674\pi\)
\(788\) 17109.0 0.773457
\(789\) 20.1295 0.000908274 0
\(790\) 2049.37 0.0922951
\(791\) −12493.9 −0.561608
\(792\) 4250.30 0.190692
\(793\) 34326.4 1.53716
\(794\) −3497.03 −0.156303
\(795\) −215.782 −0.00962642
\(796\) −12087.5 −0.538230
\(797\) 32249.5 1.43330 0.716648 0.697435i \(-0.245676\pi\)
0.716648 + 0.697435i \(0.245676\pi\)
\(798\) 152.521 0.00676591
\(799\) −4105.91 −0.181798
\(800\) −14965.7 −0.661399
\(801\) −33912.7 −1.49594
\(802\) 416.242 0.0183267
\(803\) −6381.97 −0.280467
\(804\) −841.025 −0.0368914
\(805\) −3432.03 −0.150265
\(806\) 10573.9 0.462096
\(807\) 643.484 0.0280690
\(808\) −9426.49 −0.410424
\(809\) −10977.6 −0.477072 −0.238536 0.971134i \(-0.576668\pi\)
−0.238536 + 0.971134i \(0.576668\pi\)
\(810\) −3701.32 −0.160557
\(811\) 39624.5 1.71567 0.857833 0.513928i \(-0.171810\pi\)
0.857833 + 0.513928i \(0.171810\pi\)
\(812\) 12970.2 0.560546
\(813\) 471.029 0.0203195
\(814\) 3756.71 0.161760
\(815\) 17536.1 0.753696
\(816\) 429.754 0.0184368
\(817\) −12982.8 −0.555949
\(818\) −6463.50 −0.276272
\(819\) −8111.03 −0.346059
\(820\) −12197.3 −0.519451
\(821\) −13918.0 −0.591647 −0.295824 0.955243i \(-0.595594\pi\)
−0.295824 + 0.955243i \(0.595594\pi\)
\(822\) −198.708 −0.00843155
\(823\) 8300.77 0.351575 0.175788 0.984428i \(-0.443753\pi\)
0.175788 + 0.984428i \(0.443753\pi\)
\(824\) −5259.87 −0.222374
\(825\) 172.867 0.00729511
\(826\) 3154.96 0.132900
\(827\) 7729.99 0.325028 0.162514 0.986706i \(-0.448040\pi\)
0.162514 + 0.986706i \(0.448040\pi\)
\(828\) −17492.1 −0.734172
\(829\) 19095.7 0.800027 0.400014 0.916509i \(-0.369005\pi\)
0.400014 + 0.916509i \(0.369005\pi\)
\(830\) 5613.65 0.234762
\(831\) −231.124 −0.00964815
\(832\) 8509.06 0.354565
\(833\) −2982.75 −0.124065
\(834\) 212.698 0.00883107
\(835\) 2833.17 0.117420
\(836\) −10978.9 −0.454204
\(837\) −2288.04 −0.0944879
\(838\) 4543.98 0.187314
\(839\) 37318.3 1.53560 0.767801 0.640688i \(-0.221351\pi\)
0.767801 + 0.640688i \(0.221351\pi\)
\(840\) 87.9435 0.00361231
\(841\) 43715.4 1.79242
\(842\) −5608.82 −0.229564
\(843\) −335.460 −0.0137057
\(844\) 16471.0 0.671750
\(845\) 1887.42 0.0768394
\(846\) −1725.99 −0.0701427
\(847\) −847.000 −0.0343604
\(848\) −10631.4 −0.430525
\(849\) 1305.34 0.0527669
\(850\) 5554.53 0.224140
\(851\) −32881.3 −1.32451
\(852\) 631.472 0.0253919
\(853\) −2096.82 −0.0841663 −0.0420831 0.999114i \(-0.513399\pi\)
−0.0420831 + 0.999114i \(0.513399\pi\)
\(854\) 5306.38 0.212624
\(855\) 20353.8 0.814136
\(856\) −28711.1 −1.14641
\(857\) 11671.7 0.465223 0.232611 0.972570i \(-0.425273\pi\)
0.232611 + 0.972570i \(0.425273\pi\)
\(858\) 73.2421 0.00291427
\(859\) −25386.7 −1.00836 −0.504181 0.863598i \(-0.668206\pi\)
−0.504181 + 0.863598i \(0.668206\pi\)
\(860\) −3519.84 −0.139565
\(861\) −366.024 −0.0144879
\(862\) −12549.5 −0.495869
\(863\) 2360.78 0.0931191 0.0465596 0.998916i \(-0.485174\pi\)
0.0465596 + 0.998916i \(0.485174\pi\)
\(864\) 1372.07 0.0540263
\(865\) −149.410 −0.00587293
\(866\) −13108.6 −0.514373
\(867\) 197.293 0.00772828
\(868\) −12895.4 −0.504260
\(869\) −4426.83 −0.172808
\(870\) 217.128 0.00846130
\(871\) 31144.7 1.21159
\(872\) −834.855 −0.0324217
\(873\) 26968.6 1.04553
\(874\) −12180.7 −0.471417
\(875\) −8311.10 −0.321105
\(876\) −673.024 −0.0259582
\(877\) 8504.19 0.327441 0.163721 0.986507i \(-0.447650\pi\)
0.163721 + 0.986507i \(0.447650\pi\)
\(878\) −4817.95 −0.185191
\(879\) −80.5573 −0.00309116
\(880\) −2551.44 −0.0977377
\(881\) −8050.60 −0.307868 −0.153934 0.988081i \(-0.549194\pi\)
−0.153934 + 0.988081i \(0.549194\pi\)
\(882\) −1253.85 −0.0478677
\(883\) −38768.2 −1.47752 −0.738762 0.673966i \(-0.764589\pi\)
−0.738762 + 0.673966i \(0.764589\pi\)
\(884\) −18566.3 −0.706392
\(885\) −416.671 −0.0158263
\(886\) −8042.37 −0.304953
\(887\) 41925.4 1.58705 0.793526 0.608536i \(-0.208243\pi\)
0.793526 + 0.608536i \(0.208243\pi\)
\(888\) 842.563 0.0318407
\(889\) 2603.68 0.0982279
\(890\) −6402.47 −0.241136
\(891\) 7995.22 0.300617
\(892\) −5618.79 −0.210909
\(893\) 9481.93 0.355320
\(894\) 38.5103 0.00144069
\(895\) −8711.02 −0.325338
\(896\) 10028.5 0.373917
\(897\) −641.065 −0.0238624
\(898\) 16878.8 0.627231
\(899\) −67711.7 −2.51203
\(900\) −18420.6 −0.682246
\(901\) 14977.0 0.553779
\(902\) −3339.72 −0.123282
\(903\) −105.625 −0.00389256
\(904\) −25567.8 −0.940677
\(905\) −23838.5 −0.875601
\(906\) 193.362 0.00709052
\(907\) −12962.1 −0.474533 −0.237266 0.971445i \(-0.576251\pi\)
−0.237266 + 0.971445i \(0.576251\pi\)
\(908\) 9551.95 0.349111
\(909\) −17749.7 −0.647657
\(910\) −1531.30 −0.0557826
\(911\) 29894.3 1.08720 0.543602 0.839343i \(-0.317060\pi\)
0.543602 + 0.839343i \(0.317060\pi\)
\(912\) −992.447 −0.0360342
\(913\) −12126.0 −0.439555
\(914\) −1314.13 −0.0475575
\(915\) −700.806 −0.0253202
\(916\) −8587.68 −0.309765
\(917\) −509.649 −0.0183534
\(918\) −509.242 −0.0183088
\(919\) 1297.57 0.0465754 0.0232877 0.999729i \(-0.492587\pi\)
0.0232877 + 0.999729i \(0.492587\pi\)
\(920\) −7023.37 −0.251689
\(921\) 795.615 0.0284652
\(922\) −8703.67 −0.310889
\(923\) −23384.6 −0.833924
\(924\) −89.3223 −0.00318018
\(925\) −34626.7 −1.23083
\(926\) 3857.29 0.136888
\(927\) −9904.12 −0.350910
\(928\) 40604.6 1.43633
\(929\) −38299.3 −1.35259 −0.676297 0.736629i \(-0.736416\pi\)
−0.676297 + 0.736629i \(0.736416\pi\)
\(930\) −215.876 −0.00761166
\(931\) 6888.18 0.242482
\(932\) 36220.4 1.27300
\(933\) 1571.43 0.0551407
\(934\) 15552.2 0.544844
\(935\) 3594.32 0.125719
\(936\) −16598.6 −0.579638
\(937\) −17601.2 −0.613667 −0.306834 0.951763i \(-0.599269\pi\)
−0.306834 + 0.951763i \(0.599269\pi\)
\(938\) 4814.52 0.167590
\(939\) 1133.61 0.0393973
\(940\) 2570.70 0.0891990
\(941\) 39385.4 1.36443 0.682214 0.731152i \(-0.261017\pi\)
0.682214 + 0.731152i \(0.261017\pi\)
\(942\) −131.112 −0.00453490
\(943\) 29231.5 1.00945
\(944\) −20529.1 −0.707803
\(945\) 331.352 0.0114062
\(946\) −963.757 −0.0331231
\(947\) 42471.2 1.45737 0.728685 0.684849i \(-0.240132\pi\)
0.728685 + 0.684849i \(0.240132\pi\)
\(948\) −466.842 −0.0159940
\(949\) 24923.3 0.852523
\(950\) −12827.3 −0.438075
\(951\) −384.468 −0.0131096
\(952\) −6103.96 −0.207805
\(953\) −39650.2 −1.34774 −0.673870 0.738850i \(-0.735369\pi\)
−0.673870 + 0.738850i \(0.735369\pi\)
\(954\) 6295.82 0.213663
\(955\) 6006.28 0.203517
\(956\) −14717.9 −0.497918
\(957\) −469.018 −0.0158424
\(958\) 11695.4 0.394428
\(959\) −8974.05 −0.302176
\(960\) −173.720 −0.00584042
\(961\) 37530.2 1.25978
\(962\) −14671.0 −0.491696
\(963\) −54061.8 −1.80905
\(964\) −20562.4 −0.687003
\(965\) −1727.95 −0.0576421
\(966\) −99.0996 −0.00330070
\(967\) −48452.2 −1.61129 −0.805644 0.592399i \(-0.798181\pi\)
−0.805644 + 0.592399i \(0.798181\pi\)
\(968\) −1733.32 −0.0575527
\(969\) 1398.10 0.0463503
\(970\) 5091.47 0.168533
\(971\) −10531.1 −0.348051 −0.174026 0.984741i \(-0.555678\pi\)
−0.174026 + 0.984741i \(0.555678\pi\)
\(972\) 2533.64 0.0836076
\(973\) 9605.85 0.316495
\(974\) −1794.47 −0.0590333
\(975\) −675.093 −0.0221747
\(976\) −34528.3 −1.13240
\(977\) 49108.4 1.60810 0.804052 0.594559i \(-0.202673\pi\)
0.804052 + 0.594559i \(0.202673\pi\)
\(978\) 506.353 0.0165556
\(979\) 13830.0 0.451489
\(980\) 1867.50 0.0608724
\(981\) −1572.00 −0.0511621
\(982\) 459.648 0.0149368
\(983\) −2280.32 −0.0739888 −0.0369944 0.999315i \(-0.511778\pi\)
−0.0369944 + 0.999315i \(0.511778\pi\)
\(984\) −749.038 −0.0242667
\(985\) 12935.1 0.418423
\(986\) −15070.4 −0.486753
\(987\) 77.1429 0.00248783
\(988\) 42875.7 1.38063
\(989\) 8435.46 0.271215
\(990\) 1510.93 0.0485057
\(991\) −15807.2 −0.506691 −0.253345 0.967376i \(-0.581531\pi\)
−0.253345 + 0.967376i \(0.581531\pi\)
\(992\) −40370.4 −1.29210
\(993\) −247.043 −0.00789494
\(994\) −3614.92 −0.115350
\(995\) −9138.63 −0.291170
\(996\) −1278.78 −0.0406824
\(997\) 51827.2 1.64632 0.823161 0.567808i \(-0.192208\pi\)
0.823161 + 0.567808i \(0.192208\pi\)
\(998\) −10362.3 −0.328670
\(999\) 3174.60 0.100540
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 77.4.a.c.1.3 4
3.2 odd 2 693.4.a.m.1.2 4
4.3 odd 2 1232.4.a.w.1.2 4
5.4 even 2 1925.4.a.q.1.2 4
7.6 odd 2 539.4.a.f.1.3 4
11.10 odd 2 847.4.a.e.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.3 4 1.1 even 1 trivial
539.4.a.f.1.3 4 7.6 odd 2
693.4.a.m.1.2 4 3.2 odd 2
847.4.a.e.1.2 4 11.10 odd 2
1232.4.a.w.1.2 4 4.3 odd 2
1925.4.a.q.1.2 4 5.4 even 2