Properties

Label 77.4.a.c.1.2
Level $77$
Weight $4$
Character 77.1
Self dual yes
Analytic conductor $4.543$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [77,4,Mod(1,77)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(77, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("77.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 77.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.54314707044\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.11082\) of defining polynomial
Character \(\chi\) \(=\) 77.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.65527 q^{2} +5.17115 q^{3} +5.36103 q^{4} -10.0822 q^{5} -18.9020 q^{6} -7.00000 q^{7} +9.64616 q^{8} -0.259212 q^{9} +O(q^{10})\) \(q-3.65527 q^{2} +5.17115 q^{3} +5.36103 q^{4} -10.0822 q^{5} -18.9020 q^{6} -7.00000 q^{7} +9.64616 q^{8} -0.259212 q^{9} +36.8533 q^{10} +11.0000 q^{11} +27.7227 q^{12} -84.5724 q^{13} +25.5869 q^{14} -52.1367 q^{15} -78.1476 q^{16} -38.2525 q^{17} +0.947489 q^{18} -127.283 q^{19} -54.0511 q^{20} -36.1980 q^{21} -40.2080 q^{22} +140.378 q^{23} +49.8817 q^{24} -23.3486 q^{25} +309.135 q^{26} -140.961 q^{27} -37.5272 q^{28} -116.806 q^{29} +190.574 q^{30} +338.709 q^{31} +208.482 q^{32} +56.8826 q^{33} +139.823 q^{34} +70.5756 q^{35} -1.38964 q^{36} -75.3416 q^{37} +465.256 q^{38} -437.337 q^{39} -97.2548 q^{40} -22.4446 q^{41} +132.314 q^{42} +181.844 q^{43} +58.9713 q^{44} +2.61343 q^{45} -513.121 q^{46} +300.530 q^{47} -404.113 q^{48} +49.0000 q^{49} +85.3455 q^{50} -197.810 q^{51} -453.395 q^{52} -31.8596 q^{53} +515.253 q^{54} -110.905 q^{55} -67.5231 q^{56} -658.201 q^{57} +426.958 q^{58} -68.3030 q^{59} -279.507 q^{60} -145.315 q^{61} -1238.07 q^{62} +1.81448 q^{63} -136.877 q^{64} +852.679 q^{65} -207.922 q^{66} -668.020 q^{67} -205.073 q^{68} +725.916 q^{69} -257.973 q^{70} +727.608 q^{71} -2.50040 q^{72} -416.982 q^{73} +275.394 q^{74} -120.739 q^{75} -682.370 q^{76} -77.0000 q^{77} +1598.59 q^{78} +458.805 q^{79} +787.902 q^{80} -721.934 q^{81} +82.0412 q^{82} +355.737 q^{83} -194.059 q^{84} +385.671 q^{85} -664.690 q^{86} -604.022 q^{87} +106.108 q^{88} -1245.97 q^{89} -9.55281 q^{90} +592.007 q^{91} +752.571 q^{92} +1751.51 q^{93} -1098.52 q^{94} +1283.30 q^{95} +1078.09 q^{96} -935.338 q^{97} -179.108 q^{98} -2.85133 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} + 2 q^{6} - 28 q^{7} - 60 q^{8} + 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} + 2 q^{6} - 28 q^{7} - 60 q^{8} + 66 q^{9} - 92 q^{10} + 44 q^{11} - 186 q^{12} - 134 q^{13} + 28 q^{14} - 62 q^{15} - 6 q^{16} - 74 q^{17} - 256 q^{18} - 164 q^{19} + 116 q^{20} + 84 q^{21} - 44 q^{22} + 194 q^{23} + 570 q^{24} + 38 q^{25} + 734 q^{26} - 510 q^{27} - 154 q^{28} - 108 q^{29} + 1252 q^{30} - 412 q^{31} - 4 q^{32} - 132 q^{33} - 346 q^{34} + 126 q^{35} + 1518 q^{36} + 286 q^{37} + 224 q^{38} - 256 q^{39} - 540 q^{40} - 18 q^{41} - 14 q^{42} - 496 q^{43} + 242 q^{44} + 580 q^{45} - 284 q^{46} + 62 q^{47} - 862 q^{48} + 196 q^{49} + 212 q^{50} - 508 q^{51} - 822 q^{52} - 828 q^{53} + 2420 q^{54} - 198 q^{55} + 420 q^{56} + 700 q^{57} + 1388 q^{58} - 1224 q^{59} - 1776 q^{60} - 350 q^{61} - 878 q^{62} - 462 q^{63} - 718 q^{64} - 396 q^{65} + 22 q^{66} - 1498 q^{67} + 1058 q^{68} - 386 q^{69} + 644 q^{70} + 2326 q^{71} - 3000 q^{72} - 1630 q^{73} - 1156 q^{74} - 1362 q^{75} - 3152 q^{76} - 308 q^{77} - 2464 q^{78} - 1020 q^{79} + 3072 q^{80} + 1128 q^{81} + 2118 q^{82} - 1920 q^{83} + 1302 q^{84} + 2008 q^{85} + 1056 q^{86} + 1640 q^{87} - 660 q^{88} + 1550 q^{89} - 5780 q^{90} + 938 q^{91} + 2592 q^{92} + 6046 q^{93} - 1042 q^{94} + 2332 q^{95} + 4082 q^{96} - 2202 q^{97} - 196 q^{98} + 726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.65527 −1.29233 −0.646167 0.763196i \(-0.723629\pi\)
−0.646167 + 0.763196i \(0.723629\pi\)
\(3\) 5.17115 0.995188 0.497594 0.867410i \(-0.334217\pi\)
0.497594 + 0.867410i \(0.334217\pi\)
\(4\) 5.36103 0.670129
\(5\) −10.0822 −0.901782 −0.450891 0.892579i \(-0.648894\pi\)
−0.450891 + 0.892579i \(0.648894\pi\)
\(6\) −18.9020 −1.28612
\(7\) −7.00000 −0.377964
\(8\) 9.64616 0.426304
\(9\) −0.259212 −0.00960043
\(10\) 36.8533 1.16540
\(11\) 11.0000 0.301511
\(12\) 27.7227 0.666904
\(13\) −84.5724 −1.80432 −0.902161 0.431400i \(-0.858020\pi\)
−0.902161 + 0.431400i \(0.858020\pi\)
\(14\) 25.5869 0.488457
\(15\) −52.1367 −0.897443
\(16\) −78.1476 −1.22106
\(17\) −38.2525 −0.545741 −0.272871 0.962051i \(-0.587973\pi\)
−0.272871 + 0.962051i \(0.587973\pi\)
\(18\) 0.947489 0.0124070
\(19\) −127.283 −1.53688 −0.768442 0.639919i \(-0.778968\pi\)
−0.768442 + 0.639919i \(0.778968\pi\)
\(20\) −54.0511 −0.604310
\(21\) −36.1980 −0.376146
\(22\) −40.2080 −0.389654
\(23\) 140.378 1.27265 0.636323 0.771423i \(-0.280455\pi\)
0.636323 + 0.771423i \(0.280455\pi\)
\(24\) 49.8817 0.424253
\(25\) −23.3486 −0.186789
\(26\) 309.135 2.33179
\(27\) −140.961 −1.00474
\(28\) −37.5272 −0.253285
\(29\) −116.806 −0.747943 −0.373971 0.927440i \(-0.622004\pi\)
−0.373971 + 0.927440i \(0.622004\pi\)
\(30\) 190.574 1.15980
\(31\) 338.709 1.96238 0.981192 0.193034i \(-0.0618327\pi\)
0.981192 + 0.193034i \(0.0618327\pi\)
\(32\) 208.482 1.15171
\(33\) 56.8826 0.300061
\(34\) 139.823 0.705280
\(35\) 70.5756 0.340842
\(36\) −1.38964 −0.00643352
\(37\) −75.3416 −0.334759 −0.167379 0.985893i \(-0.553531\pi\)
−0.167379 + 0.985893i \(0.553531\pi\)
\(38\) 465.256 1.98617
\(39\) −437.337 −1.79564
\(40\) −97.2548 −0.384434
\(41\) −22.4446 −0.0854941 −0.0427471 0.999086i \(-0.513611\pi\)
−0.0427471 + 0.999086i \(0.513611\pi\)
\(42\) 132.314 0.486106
\(43\) 181.844 0.644906 0.322453 0.946585i \(-0.395492\pi\)
0.322453 + 0.946585i \(0.395492\pi\)
\(44\) 58.9713 0.202051
\(45\) 2.61343 0.00865749
\(46\) −513.121 −1.64468
\(47\) 300.530 0.932698 0.466349 0.884601i \(-0.345569\pi\)
0.466349 + 0.884601i \(0.345569\pi\)
\(48\) −404.113 −1.21518
\(49\) 49.0000 0.142857
\(50\) 85.3455 0.241394
\(51\) −197.810 −0.543115
\(52\) −453.395 −1.20913
\(53\) −31.8596 −0.0825708 −0.0412854 0.999147i \(-0.513145\pi\)
−0.0412854 + 0.999147i \(0.513145\pi\)
\(54\) 515.253 1.29846
\(55\) −110.905 −0.271898
\(56\) −67.5231 −0.161128
\(57\) −658.201 −1.52949
\(58\) 426.958 0.966593
\(59\) −68.3030 −0.150717 −0.0753584 0.997157i \(-0.524010\pi\)
−0.0753584 + 0.997157i \(0.524010\pi\)
\(60\) −279.507 −0.601402
\(61\) −145.315 −0.305012 −0.152506 0.988303i \(-0.548734\pi\)
−0.152506 + 0.988303i \(0.548734\pi\)
\(62\) −1238.07 −2.53606
\(63\) 1.81448 0.00362862
\(64\) −136.877 −0.267337
\(65\) 852.679 1.62710
\(66\) −207.922 −0.387779
\(67\) −668.020 −1.21808 −0.609042 0.793138i \(-0.708446\pi\)
−0.609042 + 0.793138i \(0.708446\pi\)
\(68\) −205.073 −0.365717
\(69\) 725.916 1.26652
\(70\) −257.973 −0.440481
\(71\) 727.608 1.21621 0.608107 0.793855i \(-0.291929\pi\)
0.608107 + 0.793855i \(0.291929\pi\)
\(72\) −2.50040 −0.00409270
\(73\) −416.982 −0.668548 −0.334274 0.942476i \(-0.608491\pi\)
−0.334274 + 0.942476i \(0.608491\pi\)
\(74\) 275.394 0.432621
\(75\) −120.739 −0.185890
\(76\) −682.370 −1.02991
\(77\) −77.0000 −0.113961
\(78\) 1598.59 2.32057
\(79\) 458.805 0.653413 0.326707 0.945126i \(-0.394061\pi\)
0.326707 + 0.945126i \(0.394061\pi\)
\(80\) 787.902 1.10113
\(81\) −721.934 −0.990307
\(82\) 82.0412 0.110487
\(83\) 355.737 0.470449 0.235224 0.971941i \(-0.424418\pi\)
0.235224 + 0.971941i \(0.424418\pi\)
\(84\) −194.059 −0.252066
\(85\) 385.671 0.492140
\(86\) −664.690 −0.833435
\(87\) −604.022 −0.744344
\(88\) 106.108 0.128536
\(89\) −1245.97 −1.48396 −0.741980 0.670422i \(-0.766113\pi\)
−0.741980 + 0.670422i \(0.766113\pi\)
\(90\) −9.55281 −0.0111884
\(91\) 592.007 0.681969
\(92\) 752.571 0.852837
\(93\) 1751.51 1.95294
\(94\) −1098.52 −1.20536
\(95\) 1283.30 1.38594
\(96\) 1078.09 1.14617
\(97\) −935.338 −0.979063 −0.489532 0.871986i \(-0.662832\pi\)
−0.489532 + 0.871986i \(0.662832\pi\)
\(98\) −179.108 −0.184619
\(99\) −2.85133 −0.00289464
\(100\) −125.173 −0.125173
\(101\) −533.395 −0.525493 −0.262747 0.964865i \(-0.584628\pi\)
−0.262747 + 0.964865i \(0.584628\pi\)
\(102\) 723.048 0.701887
\(103\) −738.096 −0.706086 −0.353043 0.935607i \(-0.614853\pi\)
−0.353043 + 0.935607i \(0.614853\pi\)
\(104\) −815.800 −0.769190
\(105\) 364.957 0.339202
\(106\) 116.456 0.106709
\(107\) −2039.07 −1.84228 −0.921141 0.389229i \(-0.872741\pi\)
−0.921141 + 0.389229i \(0.872741\pi\)
\(108\) −755.699 −0.673307
\(109\) 1488.69 1.30817 0.654085 0.756421i \(-0.273054\pi\)
0.654085 + 0.756421i \(0.273054\pi\)
\(110\) 405.387 0.351383
\(111\) −389.603 −0.333148
\(112\) 547.033 0.461516
\(113\) −532.743 −0.443507 −0.221753 0.975103i \(-0.571178\pi\)
−0.221753 + 0.975103i \(0.571178\pi\)
\(114\) 2405.91 1.97661
\(115\) −1415.32 −1.14765
\(116\) −626.201 −0.501218
\(117\) 21.9222 0.0173223
\(118\) 249.666 0.194776
\(119\) 267.768 0.206271
\(120\) −502.919 −0.382584
\(121\) 121.000 0.0909091
\(122\) 531.167 0.394177
\(123\) −116.064 −0.0850828
\(124\) 1815.83 1.31505
\(125\) 1495.68 1.07023
\(126\) −6.63242 −0.00468939
\(127\) −2257.44 −1.57729 −0.788645 0.614849i \(-0.789217\pi\)
−0.788645 + 0.614849i \(0.789217\pi\)
\(128\) −1167.53 −0.806220
\(129\) 940.343 0.641803
\(130\) −3116.78 −2.10276
\(131\) 1174.21 0.783142 0.391571 0.920148i \(-0.371932\pi\)
0.391571 + 0.920148i \(0.371932\pi\)
\(132\) 304.950 0.201079
\(133\) 890.984 0.580888
\(134\) 2441.79 1.57417
\(135\) 1421.21 0.906059
\(136\) −368.990 −0.232652
\(137\) 2690.08 1.67758 0.838792 0.544451i \(-0.183262\pi\)
0.838792 + 0.544451i \(0.183262\pi\)
\(138\) −2653.42 −1.63677
\(139\) 17.7500 0.0108312 0.00541559 0.999985i \(-0.498276\pi\)
0.00541559 + 0.999985i \(0.498276\pi\)
\(140\) 378.358 0.228408
\(141\) 1554.09 0.928210
\(142\) −2659.61 −1.57175
\(143\) −930.297 −0.544023
\(144\) 20.2568 0.0117227
\(145\) 1177.67 0.674482
\(146\) 1524.18 0.863988
\(147\) 253.386 0.142170
\(148\) −403.908 −0.224332
\(149\) 1517.86 0.834550 0.417275 0.908780i \(-0.362985\pi\)
0.417275 + 0.908780i \(0.362985\pi\)
\(150\) 441.335 0.240232
\(151\) 1948.86 1.05031 0.525153 0.851008i \(-0.324008\pi\)
0.525153 + 0.851008i \(0.324008\pi\)
\(152\) −1227.80 −0.655180
\(153\) 9.91550 0.00523935
\(154\) 281.456 0.147275
\(155\) −3414.94 −1.76964
\(156\) −2344.58 −1.20331
\(157\) −1554.20 −0.790055 −0.395027 0.918669i \(-0.629265\pi\)
−0.395027 + 0.918669i \(0.629265\pi\)
\(158\) −1677.06 −0.844428
\(159\) −164.751 −0.0821735
\(160\) −2101.96 −1.03859
\(161\) −982.647 −0.481015
\(162\) 2638.87 1.27981
\(163\) −3472.71 −1.66873 −0.834367 0.551209i \(-0.814167\pi\)
−0.834367 + 0.551209i \(0.814167\pi\)
\(164\) −120.326 −0.0572921
\(165\) −573.504 −0.270589
\(166\) −1300.32 −0.607977
\(167\) −2228.90 −1.03280 −0.516400 0.856347i \(-0.672728\pi\)
−0.516400 + 0.856347i \(0.672728\pi\)
\(168\) −349.172 −0.160353
\(169\) 4955.50 2.25558
\(170\) −1409.73 −0.636009
\(171\) 32.9933 0.0147547
\(172\) 974.872 0.432170
\(173\) −1008.04 −0.443005 −0.221502 0.975160i \(-0.571096\pi\)
−0.221502 + 0.975160i \(0.571096\pi\)
\(174\) 2207.87 0.961942
\(175\) 163.440 0.0705995
\(176\) −859.624 −0.368162
\(177\) −353.205 −0.149992
\(178\) 4554.36 1.91777
\(179\) −746.246 −0.311603 −0.155802 0.987788i \(-0.549796\pi\)
−0.155802 + 0.987788i \(0.549796\pi\)
\(180\) 14.0107 0.00580163
\(181\) −2787.76 −1.14482 −0.572410 0.819968i \(-0.693991\pi\)
−0.572410 + 0.819968i \(0.693991\pi\)
\(182\) −2163.95 −0.881333
\(183\) −751.447 −0.303544
\(184\) 1354.11 0.542534
\(185\) 759.611 0.301880
\(186\) −6402.27 −2.52385
\(187\) −420.778 −0.164547
\(188\) 1611.15 0.625028
\(189\) 986.730 0.379757
\(190\) −4690.82 −1.79109
\(191\) −911.917 −0.345466 −0.172733 0.984969i \(-0.555260\pi\)
−0.172733 + 0.984969i \(0.555260\pi\)
\(192\) −707.810 −0.266051
\(193\) 4454.66 1.66142 0.830709 0.556707i \(-0.187935\pi\)
0.830709 + 0.556707i \(0.187935\pi\)
\(194\) 3418.92 1.26528
\(195\) 4409.33 1.61928
\(196\) 262.690 0.0957327
\(197\) −1377.46 −0.498171 −0.249086 0.968481i \(-0.580130\pi\)
−0.249086 + 0.968481i \(0.580130\pi\)
\(198\) 10.4224 0.00374084
\(199\) −94.3572 −0.0336121 −0.0168060 0.999859i \(-0.505350\pi\)
−0.0168060 + 0.999859i \(0.505350\pi\)
\(200\) −225.224 −0.0796288
\(201\) −3454.43 −1.21222
\(202\) 1949.71 0.679113
\(203\) 817.643 0.282696
\(204\) −1060.46 −0.363957
\(205\) 226.292 0.0770971
\(206\) 2697.95 0.912499
\(207\) −36.3876 −0.0122179
\(208\) 6609.13 2.20318
\(209\) −1400.12 −0.463388
\(210\) −1334.02 −0.438362
\(211\) 1174.19 0.383101 0.191550 0.981483i \(-0.438648\pi\)
0.191550 + 0.981483i \(0.438648\pi\)
\(212\) −170.800 −0.0553330
\(213\) 3762.57 1.21036
\(214\) 7453.35 2.38084
\(215\) −1833.40 −0.581565
\(216\) −1359.74 −0.428326
\(217\) −2370.96 −0.741712
\(218\) −5441.56 −1.69059
\(219\) −2156.27 −0.665331
\(220\) −594.563 −0.182206
\(221\) 3235.11 0.984692
\(222\) 1424.10 0.430539
\(223\) 88.5875 0.0266021 0.0133010 0.999912i \(-0.495766\pi\)
0.0133010 + 0.999912i \(0.495766\pi\)
\(224\) −1459.37 −0.435305
\(225\) 6.05223 0.00179325
\(226\) 1947.32 0.573159
\(227\) 883.312 0.258271 0.129135 0.991627i \(-0.458780\pi\)
0.129135 + 0.991627i \(0.458780\pi\)
\(228\) −3528.64 −1.02495
\(229\) 1240.26 0.357898 0.178949 0.983858i \(-0.442730\pi\)
0.178949 + 0.983858i \(0.442730\pi\)
\(230\) 5173.40 1.48315
\(231\) −398.179 −0.113412
\(232\) −1126.73 −0.318851
\(233\) −5479.93 −1.54078 −0.770392 0.637571i \(-0.779939\pi\)
−0.770392 + 0.637571i \(0.779939\pi\)
\(234\) −80.1315 −0.0223861
\(235\) −3030.01 −0.841090
\(236\) −366.174 −0.101000
\(237\) 2372.55 0.650269
\(238\) −978.764 −0.266571
\(239\) 594.006 0.160766 0.0803830 0.996764i \(-0.474386\pi\)
0.0803830 + 0.996764i \(0.474386\pi\)
\(240\) 4074.36 1.09583
\(241\) 308.785 0.0825336 0.0412668 0.999148i \(-0.486861\pi\)
0.0412668 + 0.999148i \(0.486861\pi\)
\(242\) −442.288 −0.117485
\(243\) 72.7302 0.0192002
\(244\) −779.039 −0.204397
\(245\) −494.029 −0.128826
\(246\) 424.247 0.109955
\(247\) 10764.7 2.77303
\(248\) 3267.24 0.836573
\(249\) 1839.57 0.468185
\(250\) −5467.14 −1.38309
\(251\) 3487.59 0.877031 0.438515 0.898724i \(-0.355505\pi\)
0.438515 + 0.898724i \(0.355505\pi\)
\(252\) 9.72748 0.00243164
\(253\) 1544.16 0.383717
\(254\) 8251.58 2.03839
\(255\) 1994.36 0.489772
\(256\) 5362.66 1.30924
\(257\) 451.445 0.109574 0.0547868 0.998498i \(-0.482552\pi\)
0.0547868 + 0.998498i \(0.482552\pi\)
\(258\) −3437.21 −0.829425
\(259\) 527.391 0.126527
\(260\) 4571.24 1.09037
\(261\) 30.2775 0.00718057
\(262\) −4292.08 −1.01208
\(263\) −5878.61 −1.37829 −0.689146 0.724622i \(-0.742014\pi\)
−0.689146 + 0.724622i \(0.742014\pi\)
\(264\) 548.699 0.127917
\(265\) 321.216 0.0744609
\(266\) −3256.79 −0.750701
\(267\) −6443.09 −1.47682
\(268\) −3581.27 −0.816272
\(269\) −52.8516 −0.0119792 −0.00598962 0.999982i \(-0.501907\pi\)
−0.00598962 + 0.999982i \(0.501907\pi\)
\(270\) −5194.90 −1.17093
\(271\) −6822.19 −1.52922 −0.764610 0.644493i \(-0.777069\pi\)
−0.764610 + 0.644493i \(0.777069\pi\)
\(272\) 2989.34 0.666381
\(273\) 3061.36 0.678688
\(274\) −9832.98 −2.16800
\(275\) −256.835 −0.0563189
\(276\) 3891.66 0.848733
\(277\) 469.032 0.101738 0.0508689 0.998705i \(-0.483801\pi\)
0.0508689 + 0.998705i \(0.483801\pi\)
\(278\) −64.8810 −0.0139975
\(279\) −87.7972 −0.0188397
\(280\) 680.784 0.145302
\(281\) −2305.05 −0.489352 −0.244676 0.969605i \(-0.578682\pi\)
−0.244676 + 0.969605i \(0.578682\pi\)
\(282\) −5680.61 −1.19956
\(283\) −7370.80 −1.54823 −0.774114 0.633046i \(-0.781805\pi\)
−0.774114 + 0.633046i \(0.781805\pi\)
\(284\) 3900.73 0.815020
\(285\) 6636.14 1.37927
\(286\) 3400.49 0.703060
\(287\) 157.112 0.0323137
\(288\) −54.0408 −0.0110569
\(289\) −3449.74 −0.702167
\(290\) −4304.69 −0.871656
\(291\) −4836.77 −0.974352
\(292\) −2235.45 −0.448013
\(293\) 1758.90 0.350702 0.175351 0.984506i \(-0.443894\pi\)
0.175351 + 0.984506i \(0.443894\pi\)
\(294\) −926.197 −0.183731
\(295\) 688.646 0.135914
\(296\) −726.757 −0.142709
\(297\) −1550.58 −0.302941
\(298\) −5548.20 −1.07852
\(299\) −11872.1 −2.29626
\(300\) −647.286 −0.124570
\(301\) −1272.91 −0.243752
\(302\) −7123.63 −1.35735
\(303\) −2758.27 −0.522965
\(304\) 9946.89 1.87662
\(305\) 1465.10 0.275054
\(306\) −36.2439 −0.00677099
\(307\) 3468.10 0.644739 0.322369 0.946614i \(-0.395521\pi\)
0.322369 + 0.946614i \(0.395521\pi\)
\(308\) −412.799 −0.0763682
\(309\) −3816.81 −0.702688
\(310\) 12482.5 2.28697
\(311\) 1983.98 0.361741 0.180870 0.983507i \(-0.442109\pi\)
0.180870 + 0.983507i \(0.442109\pi\)
\(312\) −4218.62 −0.765488
\(313\) −10094.2 −1.82287 −0.911436 0.411443i \(-0.865025\pi\)
−0.911436 + 0.411443i \(0.865025\pi\)
\(314\) 5681.03 1.02102
\(315\) −18.2940 −0.00327223
\(316\) 2459.67 0.437871
\(317\) −3051.34 −0.540633 −0.270316 0.962772i \(-0.587128\pi\)
−0.270316 + 0.962772i \(0.587128\pi\)
\(318\) 602.209 0.106196
\(319\) −1284.87 −0.225513
\(320\) 1380.02 0.241080
\(321\) −10544.3 −1.83342
\(322\) 3591.84 0.621632
\(323\) 4868.91 0.838741
\(324\) −3870.31 −0.663633
\(325\) 1974.65 0.337027
\(326\) 12693.7 2.15656
\(327\) 7698.23 1.30187
\(328\) −216.504 −0.0364465
\(329\) −2103.71 −0.352527
\(330\) 2096.31 0.349692
\(331\) −26.9826 −0.00448066 −0.00224033 0.999997i \(-0.500713\pi\)
−0.00224033 + 0.999997i \(0.500713\pi\)
\(332\) 1907.12 0.315261
\(333\) 19.5294 0.00321383
\(334\) 8147.25 1.33472
\(335\) 6735.13 1.09845
\(336\) 2828.79 0.459295
\(337\) 6818.62 1.10218 0.551089 0.834447i \(-0.314213\pi\)
0.551089 + 0.834447i \(0.314213\pi\)
\(338\) −18113.7 −2.91496
\(339\) −2754.90 −0.441373
\(340\) 2067.59 0.329797
\(341\) 3725.80 0.591681
\(342\) −120.600 −0.0190681
\(343\) −343.000 −0.0539949
\(344\) 1754.10 0.274926
\(345\) −7318.86 −1.14213
\(346\) 3684.66 0.572510
\(347\) 11907.0 1.84208 0.921038 0.389473i \(-0.127343\pi\)
0.921038 + 0.389473i \(0.127343\pi\)
\(348\) −3238.18 −0.498806
\(349\) −4352.72 −0.667609 −0.333805 0.942642i \(-0.608333\pi\)
−0.333805 + 0.942642i \(0.608333\pi\)
\(350\) −597.419 −0.0912382
\(351\) 11921.5 1.81288
\(352\) 2293.30 0.347253
\(353\) −1326.31 −0.199978 −0.0999891 0.994989i \(-0.531881\pi\)
−0.0999891 + 0.994989i \(0.531881\pi\)
\(354\) 1291.06 0.193839
\(355\) −7335.91 −1.09676
\(356\) −6679.68 −0.994444
\(357\) 1384.67 0.205278
\(358\) 2727.73 0.402696
\(359\) −8292.92 −1.21917 −0.609587 0.792719i \(-0.708665\pi\)
−0.609587 + 0.792719i \(0.708665\pi\)
\(360\) 25.2096 0.00369073
\(361\) 9342.06 1.36201
\(362\) 10190.0 1.47949
\(363\) 625.709 0.0904717
\(364\) 3173.77 0.457007
\(365\) 4204.10 0.602885
\(366\) 2746.74 0.392280
\(367\) −11027.5 −1.56848 −0.784241 0.620457i \(-0.786947\pi\)
−0.784241 + 0.620457i \(0.786947\pi\)
\(368\) −10970.2 −1.55397
\(369\) 5.81790 0.000820780 0
\(370\) −2776.59 −0.390130
\(371\) 223.017 0.0312088
\(372\) 9389.92 1.30872
\(373\) 8245.72 1.14463 0.572316 0.820034i \(-0.306045\pi\)
0.572316 + 0.820034i \(0.306045\pi\)
\(374\) 1538.06 0.212650
\(375\) 7734.41 1.06508
\(376\) 2898.96 0.397613
\(377\) 9878.58 1.34953
\(378\) −3606.77 −0.490773
\(379\) 10163.4 1.37747 0.688734 0.725014i \(-0.258167\pi\)
0.688734 + 0.725014i \(0.258167\pi\)
\(380\) 6879.81 0.928755
\(381\) −11673.6 −1.56970
\(382\) 3333.31 0.446458
\(383\) 14338.9 1.91301 0.956506 0.291714i \(-0.0942255\pi\)
0.956506 + 0.291714i \(0.0942255\pi\)
\(384\) −6037.48 −0.802341
\(385\) 776.332 0.102768
\(386\) −16283.0 −2.14711
\(387\) −47.1361 −0.00619138
\(388\) −5014.37 −0.656098
\(389\) −2382.91 −0.310587 −0.155294 0.987868i \(-0.549632\pi\)
−0.155294 + 0.987868i \(0.549632\pi\)
\(390\) −16117.3 −2.09265
\(391\) −5369.82 −0.694535
\(392\) 472.662 0.0609006
\(393\) 6072.04 0.779374
\(394\) 5034.98 0.643804
\(395\) −4625.78 −0.589236
\(396\) −15.2860 −0.00193978
\(397\) −9868.22 −1.24754 −0.623768 0.781609i \(-0.714399\pi\)
−0.623768 + 0.781609i \(0.714399\pi\)
\(398\) 344.901 0.0434380
\(399\) 4607.41 0.578093
\(400\) 1824.64 0.228080
\(401\) −5879.12 −0.732143 −0.366072 0.930587i \(-0.619298\pi\)
−0.366072 + 0.930587i \(0.619298\pi\)
\(402\) 12626.9 1.56660
\(403\) −28645.4 −3.54077
\(404\) −2859.55 −0.352148
\(405\) 7278.71 0.893042
\(406\) −2988.71 −0.365338
\(407\) −828.758 −0.100934
\(408\) −1908.10 −0.231532
\(409\) 5680.84 0.686796 0.343398 0.939190i \(-0.388422\pi\)
0.343398 + 0.939190i \(0.388422\pi\)
\(410\) −827.158 −0.0996352
\(411\) 13910.8 1.66951
\(412\) −3956.96 −0.473168
\(413\) 478.121 0.0569656
\(414\) 133.007 0.0157897
\(415\) −3586.62 −0.424242
\(416\) −17631.8 −2.07805
\(417\) 91.7878 0.0107791
\(418\) 5117.81 0.598853
\(419\) −1098.50 −0.128079 −0.0640395 0.997947i \(-0.520398\pi\)
−0.0640395 + 0.997947i \(0.520398\pi\)
\(420\) 1956.55 0.227309
\(421\) −5265.06 −0.609509 −0.304754 0.952431i \(-0.598574\pi\)
−0.304754 + 0.952431i \(0.598574\pi\)
\(422\) −4291.97 −0.495095
\(423\) −77.9008 −0.00895430
\(424\) −307.323 −0.0352003
\(425\) 893.143 0.101938
\(426\) −13753.2 −1.56419
\(427\) 1017.21 0.115284
\(428\) −10931.5 −1.23457
\(429\) −4810.70 −0.541406
\(430\) 6701.56 0.751577
\(431\) 4273.45 0.477598 0.238799 0.971069i \(-0.423246\pi\)
0.238799 + 0.971069i \(0.423246\pi\)
\(432\) 11015.8 1.22685
\(433\) −8560.19 −0.950061 −0.475031 0.879969i \(-0.657563\pi\)
−0.475031 + 0.879969i \(0.657563\pi\)
\(434\) 8666.52 0.958539
\(435\) 6089.89 0.671236
\(436\) 7980.90 0.876642
\(437\) −17867.8 −1.95591
\(438\) 7881.77 0.859830
\(439\) 12664.2 1.37684 0.688419 0.725314i \(-0.258305\pi\)
0.688419 + 0.725314i \(0.258305\pi\)
\(440\) −1069.80 −0.115911
\(441\) −12.7014 −0.00137149
\(442\) −11825.2 −1.27255
\(443\) 12368.9 1.32656 0.663279 0.748372i \(-0.269164\pi\)
0.663279 + 0.748372i \(0.269164\pi\)
\(444\) −2088.67 −0.223252
\(445\) 12562.2 1.33821
\(446\) −323.812 −0.0343788
\(447\) 7849.09 0.830535
\(448\) 958.136 0.101044
\(449\) −2092.69 −0.219956 −0.109978 0.993934i \(-0.535078\pi\)
−0.109978 + 0.993934i \(0.535078\pi\)
\(450\) −22.1225 −0.00231748
\(451\) −246.891 −0.0257775
\(452\) −2856.05 −0.297207
\(453\) 10077.9 1.04525
\(454\) −3228.75 −0.333772
\(455\) −5968.75 −0.614988
\(456\) −6349.12 −0.652028
\(457\) 7825.71 0.801031 0.400515 0.916290i \(-0.368831\pi\)
0.400515 + 0.916290i \(0.368831\pi\)
\(458\) −4533.49 −0.462525
\(459\) 5392.13 0.548329
\(460\) −7587.60 −0.769073
\(461\) 4775.60 0.482477 0.241238 0.970466i \(-0.422446\pi\)
0.241238 + 0.970466i \(0.422446\pi\)
\(462\) 1455.45 0.146567
\(463\) 11518.3 1.15615 0.578077 0.815982i \(-0.303803\pi\)
0.578077 + 0.815982i \(0.303803\pi\)
\(464\) 9128.12 0.913280
\(465\) −17659.2 −1.76113
\(466\) 20030.7 1.99121
\(467\) −7420.17 −0.735256 −0.367628 0.929973i \(-0.619830\pi\)
−0.367628 + 0.929973i \(0.619830\pi\)
\(468\) 117.525 0.0116081
\(469\) 4676.14 0.460392
\(470\) 11075.5 1.08697
\(471\) −8037.00 −0.786253
\(472\) −658.861 −0.0642512
\(473\) 2000.29 0.194447
\(474\) −8672.32 −0.840365
\(475\) 2971.89 0.287073
\(476\) 1435.51 0.138228
\(477\) 8.25837 0.000792715 0
\(478\) −2171.26 −0.207764
\(479\) 10159.2 0.969076 0.484538 0.874770i \(-0.338988\pi\)
0.484538 + 0.874770i \(0.338988\pi\)
\(480\) −10869.5 −1.03359
\(481\) 6371.82 0.604013
\(482\) −1128.69 −0.106661
\(483\) −5081.41 −0.478701
\(484\) 648.685 0.0609208
\(485\) 9430.29 0.882902
\(486\) −265.849 −0.0248131
\(487\) −12344.9 −1.14866 −0.574331 0.818623i \(-0.694738\pi\)
−0.574331 + 0.818623i \(0.694738\pi\)
\(488\) −1401.73 −0.130028
\(489\) −17957.9 −1.66070
\(490\) 1805.81 0.166486
\(491\) 15344.9 1.41040 0.705200 0.709009i \(-0.250857\pi\)
0.705200 + 0.709009i \(0.250857\pi\)
\(492\) −622.225 −0.0570164
\(493\) 4468.13 0.408183
\(494\) −39347.8 −3.58369
\(495\) 28.7477 0.00261033
\(496\) −26469.3 −2.39618
\(497\) −5093.26 −0.459686
\(498\) −6724.13 −0.605051
\(499\) −5022.76 −0.450601 −0.225300 0.974289i \(-0.572336\pi\)
−0.225300 + 0.974289i \(0.572336\pi\)
\(500\) 8018.41 0.717188
\(501\) −11526.0 −1.02783
\(502\) −12748.1 −1.13342
\(503\) 8735.90 0.774383 0.387191 0.921999i \(-0.373445\pi\)
0.387191 + 0.921999i \(0.373445\pi\)
\(504\) 17.5028 0.00154690
\(505\) 5377.82 0.473881
\(506\) −5644.33 −0.495891
\(507\) 25625.6 2.24472
\(508\) −12102.2 −1.05699
\(509\) −21805.5 −1.89884 −0.949420 0.314008i \(-0.898328\pi\)
−0.949420 + 0.314008i \(0.898328\pi\)
\(510\) −7289.94 −0.632949
\(511\) 2918.87 0.252687
\(512\) −10261.7 −0.885760
\(513\) 17942.1 1.54417
\(514\) −1650.16 −0.141606
\(515\) 7441.66 0.636735
\(516\) 5041.21 0.430091
\(517\) 3305.83 0.281219
\(518\) −1927.76 −0.163515
\(519\) −5212.72 −0.440873
\(520\) 8225.08 0.693642
\(521\) −4732.28 −0.397936 −0.198968 0.980006i \(-0.563759\pi\)
−0.198968 + 0.980006i \(0.563759\pi\)
\(522\) −110.673 −0.00927970
\(523\) −7511.23 −0.627998 −0.313999 0.949423i \(-0.601669\pi\)
−0.313999 + 0.949423i \(0.601669\pi\)
\(524\) 6295.00 0.524806
\(525\) 845.174 0.0702598
\(526\) 21487.9 1.78121
\(527\) −12956.5 −1.07095
\(528\) −4445.24 −0.366391
\(529\) 7539.02 0.619629
\(530\) −1174.13 −0.0962283
\(531\) 17.7049 0.00144695
\(532\) 4776.59 0.389270
\(533\) 1898.20 0.154259
\(534\) 23551.3 1.90855
\(535\) 20558.4 1.66134
\(536\) −6443.82 −0.519274
\(537\) −3858.95 −0.310104
\(538\) 193.187 0.0154812
\(539\) 539.000 0.0430730
\(540\) 7619.13 0.607176
\(541\) −598.410 −0.0475557 −0.0237779 0.999717i \(-0.507569\pi\)
−0.0237779 + 0.999717i \(0.507569\pi\)
\(542\) 24937.0 1.97626
\(543\) −14415.9 −1.13931
\(544\) −7974.95 −0.628535
\(545\) −15009.3 −1.17968
\(546\) −11190.1 −0.877092
\(547\) −14042.3 −1.09763 −0.548816 0.835943i \(-0.684921\pi\)
−0.548816 + 0.835943i \(0.684921\pi\)
\(548\) 14421.6 1.12420
\(549\) 37.6674 0.00292824
\(550\) 938.801 0.0727829
\(551\) 14867.5 1.14950
\(552\) 7002.31 0.539924
\(553\) −3211.64 −0.246967
\(554\) −1714.44 −0.131479
\(555\) 3928.06 0.300427
\(556\) 95.1581 0.00725828
\(557\) 4965.87 0.377757 0.188878 0.982000i \(-0.439515\pi\)
0.188878 + 0.982000i \(0.439515\pi\)
\(558\) 320.923 0.0243472
\(559\) −15379.0 −1.16362
\(560\) −5515.32 −0.416187
\(561\) −2175.90 −0.163755
\(562\) 8425.60 0.632406
\(563\) −15362.4 −1.14999 −0.574997 0.818155i \(-0.694997\pi\)
−0.574997 + 0.818155i \(0.694997\pi\)
\(564\) 8331.50 0.622020
\(565\) 5371.24 0.399947
\(566\) 26942.3 2.00083
\(567\) 5053.54 0.374301
\(568\) 7018.62 0.518477
\(569\) 17735.3 1.30668 0.653341 0.757064i \(-0.273367\pi\)
0.653341 + 0.757064i \(0.273367\pi\)
\(570\) −24256.9 −1.78247
\(571\) −19818.8 −1.45252 −0.726262 0.687418i \(-0.758744\pi\)
−0.726262 + 0.687418i \(0.758744\pi\)
\(572\) −4987.35 −0.364566
\(573\) −4715.66 −0.343804
\(574\) −574.288 −0.0417602
\(575\) −3277.63 −0.237716
\(576\) 35.4800 0.00256655
\(577\) 6579.03 0.474677 0.237339 0.971427i \(-0.423725\pi\)
0.237339 + 0.971427i \(0.423725\pi\)
\(578\) 12609.8 0.907434
\(579\) 23035.7 1.65342
\(580\) 6313.50 0.451989
\(581\) −2490.16 −0.177813
\(582\) 17679.7 1.25919
\(583\) −350.455 −0.0248960
\(584\) −4022.27 −0.285005
\(585\) −221.024 −0.0156209
\(586\) −6429.25 −0.453225
\(587\) 13901.5 0.977470 0.488735 0.872432i \(-0.337459\pi\)
0.488735 + 0.872432i \(0.337459\pi\)
\(588\) 1358.41 0.0952720
\(589\) −43112.0 −3.01596
\(590\) −2517.19 −0.175646
\(591\) −7123.03 −0.495774
\(592\) 5887.76 0.408760
\(593\) 23928.0 1.65700 0.828502 0.559986i \(-0.189193\pi\)
0.828502 + 0.559986i \(0.189193\pi\)
\(594\) 5667.78 0.391501
\(595\) −2699.70 −0.186011
\(596\) 8137.30 0.559256
\(597\) −487.935 −0.0334503
\(598\) 43395.9 2.96754
\(599\) 24078.9 1.64247 0.821233 0.570594i \(-0.193287\pi\)
0.821233 + 0.570594i \(0.193287\pi\)
\(600\) −1164.67 −0.0792457
\(601\) −11806.6 −0.801336 −0.400668 0.916223i \(-0.631222\pi\)
−0.400668 + 0.916223i \(0.631222\pi\)
\(602\) 4652.83 0.315009
\(603\) 173.158 0.0116941
\(604\) 10447.9 0.703840
\(605\) −1219.95 −0.0819802
\(606\) 10082.2 0.675846
\(607\) 1957.71 0.130908 0.0654539 0.997856i \(-0.479150\pi\)
0.0654539 + 0.997856i \(0.479150\pi\)
\(608\) −26536.2 −1.77004
\(609\) 4228.15 0.281336
\(610\) −5355.35 −0.355462
\(611\) −25416.6 −1.68289
\(612\) 53.1573 0.00351104
\(613\) −16029.2 −1.05614 −0.528069 0.849201i \(-0.677084\pi\)
−0.528069 + 0.849201i \(0.677084\pi\)
\(614\) −12676.9 −0.833218
\(615\) 1170.19 0.0767261
\(616\) −742.754 −0.0485819
\(617\) −7153.99 −0.466789 −0.233394 0.972382i \(-0.574983\pi\)
−0.233394 + 0.972382i \(0.574983\pi\)
\(618\) 13951.5 0.908108
\(619\) −11035.9 −0.716590 −0.358295 0.933608i \(-0.616642\pi\)
−0.358295 + 0.933608i \(0.616642\pi\)
\(620\) −18307.6 −1.18589
\(621\) −19787.9 −1.27868
\(622\) −7252.00 −0.467490
\(623\) 8721.78 0.560884
\(624\) 34176.8 2.19258
\(625\) −12161.3 −0.778321
\(626\) 36897.1 2.35576
\(627\) −7240.22 −0.461158
\(628\) −8332.11 −0.529438
\(629\) 2882.01 0.182692
\(630\) 66.8696 0.00422881
\(631\) −4311.46 −0.272007 −0.136004 0.990708i \(-0.543426\pi\)
−0.136004 + 0.990708i \(0.543426\pi\)
\(632\) 4425.71 0.278553
\(633\) 6071.89 0.381258
\(634\) 11153.5 0.698678
\(635\) 22760.1 1.42237
\(636\) −883.233 −0.0550668
\(637\) −4144.05 −0.257760
\(638\) 4696.54 0.291439
\(639\) −188.604 −0.0116762
\(640\) 11771.3 0.727035
\(641\) 2692.13 0.165886 0.0829429 0.996554i \(-0.473568\pi\)
0.0829429 + 0.996554i \(0.473568\pi\)
\(642\) 38542.4 2.36939
\(643\) 19694.3 1.20788 0.603941 0.797029i \(-0.293596\pi\)
0.603941 + 0.797029i \(0.293596\pi\)
\(644\) −5268.00 −0.322342
\(645\) −9480.76 −0.578767
\(646\) −17797.2 −1.08393
\(647\) −21225.5 −1.28974 −0.644870 0.764292i \(-0.723089\pi\)
−0.644870 + 0.764292i \(0.723089\pi\)
\(648\) −6963.89 −0.422172
\(649\) −751.333 −0.0454428
\(650\) −7217.88 −0.435552
\(651\) −12260.6 −0.738143
\(652\) −18617.3 −1.11827
\(653\) −12929.7 −0.774850 −0.387425 0.921901i \(-0.626635\pi\)
−0.387425 + 0.921901i \(0.626635\pi\)
\(654\) −28139.1 −1.68246
\(655\) −11838.7 −0.706224
\(656\) 1753.99 0.104393
\(657\) 108.086 0.00641835
\(658\) 7689.64 0.455582
\(659\) −20835.3 −1.23161 −0.615803 0.787900i \(-0.711168\pi\)
−0.615803 + 0.787900i \(0.711168\pi\)
\(660\) −3074.57 −0.181330
\(661\) −1451.06 −0.0853850 −0.0426925 0.999088i \(-0.513594\pi\)
−0.0426925 + 0.999088i \(0.513594\pi\)
\(662\) 98.6288 0.00579051
\(663\) 16729.2 0.979954
\(664\) 3431.50 0.200554
\(665\) −8983.10 −0.523834
\(666\) −71.3853 −0.00415334
\(667\) −16397.0 −0.951867
\(668\) −11949.2 −0.692109
\(669\) 458.099 0.0264741
\(670\) −24618.7 −1.41956
\(671\) −1598.47 −0.0919645
\(672\) −7546.63 −0.433211
\(673\) −28986.0 −1.66022 −0.830111 0.557598i \(-0.811723\pi\)
−0.830111 + 0.557598i \(0.811723\pi\)
\(674\) −24923.9 −1.42438
\(675\) 3291.25 0.187675
\(676\) 26566.6 1.51153
\(677\) 24818.6 1.40895 0.704474 0.709730i \(-0.251183\pi\)
0.704474 + 0.709730i \(0.251183\pi\)
\(678\) 10069.9 0.570401
\(679\) 6547.36 0.370051
\(680\) 3720.24 0.209801
\(681\) 4567.74 0.257028
\(682\) −13618.8 −0.764650
\(683\) −7450.70 −0.417413 −0.208706 0.977978i \(-0.566925\pi\)
−0.208706 + 0.977978i \(0.566925\pi\)
\(684\) 176.878 0.00988758
\(685\) −27122.0 −1.51282
\(686\) 1253.76 0.0697795
\(687\) 6413.57 0.356176
\(688\) −14210.7 −0.787467
\(689\) 2694.44 0.148984
\(690\) 26752.4 1.47601
\(691\) −28469.1 −1.56731 −0.783657 0.621193i \(-0.786648\pi\)
−0.783657 + 0.621193i \(0.786648\pi\)
\(692\) −5404.13 −0.296870
\(693\) 19.9593 0.00109407
\(694\) −43523.3 −2.38058
\(695\) −178.959 −0.00976736
\(696\) −5826.49 −0.317317
\(697\) 858.563 0.0466577
\(698\) 15910.4 0.862775
\(699\) −28337.6 −1.53337
\(700\) 876.208 0.0473108
\(701\) 20045.7 1.08005 0.540027 0.841648i \(-0.318414\pi\)
0.540027 + 0.841648i \(0.318414\pi\)
\(702\) −43576.2 −2.34285
\(703\) 9589.73 0.514486
\(704\) −1505.64 −0.0806052
\(705\) −15668.6 −0.837043
\(706\) 4848.02 0.258439
\(707\) 3733.77 0.198618
\(708\) −1893.54 −0.100514
\(709\) 15326.9 0.811868 0.405934 0.913902i \(-0.366946\pi\)
0.405934 + 0.913902i \(0.366946\pi\)
\(710\) 26814.8 1.41738
\(711\) −118.928 −0.00627304
\(712\) −12018.8 −0.632618
\(713\) 47547.3 2.49742
\(714\) −5061.34 −0.265288
\(715\) 9379.47 0.490591
\(716\) −4000.64 −0.208814
\(717\) 3071.70 0.159992
\(718\) 30312.9 1.57558
\(719\) −11023.4 −0.571770 −0.285885 0.958264i \(-0.592288\pi\)
−0.285885 + 0.958264i \(0.592288\pi\)
\(720\) −204.233 −0.0105713
\(721\) 5166.68 0.266875
\(722\) −34147.8 −1.76018
\(723\) 1596.77 0.0821365
\(724\) −14945.3 −0.767177
\(725\) 2727.26 0.139707
\(726\) −2287.14 −0.116920
\(727\) 28755.9 1.46698 0.733492 0.679699i \(-0.237889\pi\)
0.733492 + 0.679699i \(0.237889\pi\)
\(728\) 5710.60 0.290726
\(729\) 19868.3 1.00942
\(730\) −15367.2 −0.779129
\(731\) −6956.00 −0.351952
\(732\) −4028.53 −0.203413
\(733\) 21500.9 1.08343 0.541714 0.840563i \(-0.317775\pi\)
0.541714 + 0.840563i \(0.317775\pi\)
\(734\) 40308.7 2.02700
\(735\) −2554.70 −0.128206
\(736\) 29266.3 1.46572
\(737\) −7348.21 −0.367266
\(738\) −21.2660 −0.00106072
\(739\) −2598.63 −0.129353 −0.0646767 0.997906i \(-0.520602\pi\)
−0.0646767 + 0.997906i \(0.520602\pi\)
\(740\) 4072.30 0.202298
\(741\) 55665.7 2.75969
\(742\) −815.189 −0.0403322
\(743\) 29920.5 1.47736 0.738678 0.674058i \(-0.235450\pi\)
0.738678 + 0.674058i \(0.235450\pi\)
\(744\) 16895.4 0.832547
\(745\) −15303.4 −0.752583
\(746\) −30140.4 −1.47925
\(747\) −92.2112 −0.00451651
\(748\) −2255.80 −0.110268
\(749\) 14273.5 0.696317
\(750\) −28271.4 −1.37643
\(751\) 17763.1 0.863096 0.431548 0.902090i \(-0.357968\pi\)
0.431548 + 0.902090i \(0.357968\pi\)
\(752\) −23485.7 −1.13888
\(753\) 18034.8 0.872810
\(754\) −36108.9 −1.74404
\(755\) −19648.9 −0.947147
\(756\) 5289.89 0.254486
\(757\) 6472.04 0.310740 0.155370 0.987856i \(-0.450343\pi\)
0.155370 + 0.987856i \(0.450343\pi\)
\(758\) −37150.1 −1.78015
\(759\) 7985.08 0.381871
\(760\) 12378.9 0.590830
\(761\) −33720.2 −1.60625 −0.803126 0.595809i \(-0.796831\pi\)
−0.803126 + 0.595809i \(0.796831\pi\)
\(762\) 42670.1 2.02858
\(763\) −10420.8 −0.494441
\(764\) −4888.81 −0.231507
\(765\) −99.9703 −0.00472475
\(766\) −52412.6 −2.47225
\(767\) 5776.55 0.271941
\(768\) 27731.1 1.30294
\(769\) −9361.49 −0.438991 −0.219495 0.975614i \(-0.570441\pi\)
−0.219495 + 0.975614i \(0.570441\pi\)
\(770\) −2837.71 −0.132810
\(771\) 2334.49 0.109046
\(772\) 23881.6 1.11336
\(773\) 34886.0 1.62324 0.811618 0.584188i \(-0.198587\pi\)
0.811618 + 0.584188i \(0.198587\pi\)
\(774\) 172.295 0.00800133
\(775\) −7908.38 −0.366551
\(776\) −9022.42 −0.417379
\(777\) 2727.22 0.125918
\(778\) 8710.20 0.401383
\(779\) 2856.83 0.131395
\(780\) 23638.6 1.08512
\(781\) 8003.69 0.366702
\(782\) 19628.2 0.897572
\(783\) 16465.2 0.751490
\(784\) −3829.23 −0.174437
\(785\) 15669.8 0.712458
\(786\) −22195.0 −1.00721
\(787\) −9526.64 −0.431497 −0.215748 0.976449i \(-0.569219\pi\)
−0.215748 + 0.976449i \(0.569219\pi\)
\(788\) −7384.58 −0.333839
\(789\) −30399.2 −1.37166
\(790\) 16908.5 0.761490
\(791\) 3729.20 0.167630
\(792\) −27.5044 −0.00123400
\(793\) 12289.7 0.550339
\(794\) 36071.1 1.61223
\(795\) 1661.05 0.0741026
\(796\) −505.852 −0.0225244
\(797\) −33267.9 −1.47856 −0.739278 0.673400i \(-0.764833\pi\)
−0.739278 + 0.673400i \(0.764833\pi\)
\(798\) −16841.3 −0.747089
\(799\) −11496.0 −0.509012
\(800\) −4867.75 −0.215126
\(801\) 322.970 0.0142467
\(802\) 21489.8 0.946174
\(803\) −4586.80 −0.201575
\(804\) −18519.3 −0.812345
\(805\) 9907.27 0.433771
\(806\) 104707. 4.57586
\(807\) −273.303 −0.0119216
\(808\) −5145.22 −0.224020
\(809\) 17949.6 0.780069 0.390035 0.920800i \(-0.372463\pi\)
0.390035 + 0.920800i \(0.372463\pi\)
\(810\) −26605.7 −1.15411
\(811\) 10877.9 0.470991 0.235495 0.971875i \(-0.424329\pi\)
0.235495 + 0.971875i \(0.424329\pi\)
\(812\) 4383.41 0.189443
\(813\) −35278.6 −1.52186
\(814\) 3029.34 0.130440
\(815\) 35012.7 1.50484
\(816\) 15458.3 0.663174
\(817\) −23145.7 −0.991147
\(818\) −20765.0 −0.887570
\(819\) −153.455 −0.00654720
\(820\) 1213.16 0.0516650
\(821\) −4519.04 −0.192102 −0.0960509 0.995376i \(-0.530621\pi\)
−0.0960509 + 0.995376i \(0.530621\pi\)
\(822\) −50847.8 −2.15757
\(823\) 36987.7 1.56660 0.783300 0.621644i \(-0.213535\pi\)
0.783300 + 0.621644i \(0.213535\pi\)
\(824\) −7119.80 −0.301007
\(825\) −1328.13 −0.0560480
\(826\) −1747.66 −0.0736186
\(827\) 15325.3 0.644392 0.322196 0.946673i \(-0.395579\pi\)
0.322196 + 0.946673i \(0.395579\pi\)
\(828\) −195.075 −0.00818760
\(829\) 26546.3 1.11217 0.556087 0.831124i \(-0.312302\pi\)
0.556087 + 0.831124i \(0.312302\pi\)
\(830\) 13110.1 0.548263
\(831\) 2425.43 0.101248
\(832\) 11576.0 0.482362
\(833\) −1874.37 −0.0779630
\(834\) −335.509 −0.0139301
\(835\) 22472.3 0.931361
\(836\) −7506.07 −0.310530
\(837\) −47744.9 −1.97169
\(838\) 4015.31 0.165521
\(839\) 11906.5 0.489938 0.244969 0.969531i \(-0.421222\pi\)
0.244969 + 0.969531i \(0.421222\pi\)
\(840\) 3520.44 0.144603
\(841\) −10745.3 −0.440581
\(842\) 19245.2 0.787689
\(843\) −11919.8 −0.486997
\(844\) 6294.85 0.256727
\(845\) −49962.5 −2.03404
\(846\) 284.749 0.0115719
\(847\) −847.000 −0.0343604
\(848\) 2489.75 0.100824
\(849\) −38115.5 −1.54078
\(850\) −3264.68 −0.131738
\(851\) −10576.3 −0.426030
\(852\) 20171.2 0.811098
\(853\) −6859.53 −0.275341 −0.137670 0.990478i \(-0.543961\pi\)
−0.137670 + 0.990478i \(0.543961\pi\)
\(854\) −3718.17 −0.148985
\(855\) −332.646 −0.0133056
\(856\) −19669.2 −0.785372
\(857\) 5193.59 0.207013 0.103506 0.994629i \(-0.466994\pi\)
0.103506 + 0.994629i \(0.466994\pi\)
\(858\) 17584.4 0.699677
\(859\) 5265.73 0.209155 0.104578 0.994517i \(-0.466651\pi\)
0.104578 + 0.994517i \(0.466651\pi\)
\(860\) −9828.89 −0.389724
\(861\) 812.451 0.0321583
\(862\) −15620.6 −0.617216
\(863\) −16016.7 −0.631767 −0.315884 0.948798i \(-0.602301\pi\)
−0.315884 + 0.948798i \(0.602301\pi\)
\(864\) −29387.9 −1.15717
\(865\) 10163.3 0.399494
\(866\) 31289.8 1.22780
\(867\) −17839.1 −0.698788
\(868\) −12710.8 −0.497042
\(869\) 5046.86 0.197011
\(870\) −22260.2 −0.867462
\(871\) 56496.0 2.19781
\(872\) 14360.1 0.557678
\(873\) 242.450 0.00939943
\(874\) 65311.7 2.52769
\(875\) −10469.8 −0.404507
\(876\) −11559.8 −0.445857
\(877\) −11195.5 −0.431065 −0.215533 0.976497i \(-0.569149\pi\)
−0.215533 + 0.976497i \(0.569149\pi\)
\(878\) −46291.3 −1.77933
\(879\) 9095.51 0.349015
\(880\) 8666.92 0.332002
\(881\) 45542.5 1.74162 0.870809 0.491621i \(-0.163595\pi\)
0.870809 + 0.491621i \(0.163595\pi\)
\(882\) 46.4270 0.00177242
\(883\) 10394.9 0.396167 0.198083 0.980185i \(-0.436528\pi\)
0.198083 + 0.980185i \(0.436528\pi\)
\(884\) 17343.5 0.659871
\(885\) 3561.09 0.135260
\(886\) −45211.8 −1.71436
\(887\) −4020.51 −0.152193 −0.0760967 0.997100i \(-0.524246\pi\)
−0.0760967 + 0.997100i \(0.524246\pi\)
\(888\) −3758.17 −0.142022
\(889\) 15802.1 0.596159
\(890\) −45918.1 −1.72941
\(891\) −7941.28 −0.298589
\(892\) 474.920 0.0178268
\(893\) −38252.5 −1.43345
\(894\) −28690.6 −1.07333
\(895\) 7523.82 0.280998
\(896\) 8172.72 0.304723
\(897\) −61392.5 −2.28521
\(898\) 7649.36 0.284257
\(899\) −39563.3 −1.46775
\(900\) 32.4462 0.00120171
\(901\) 1218.71 0.0450623
\(902\) 902.453 0.0333131
\(903\) −6582.40 −0.242579
\(904\) −5138.93 −0.189069
\(905\) 28106.8 1.03238
\(906\) −36837.3 −1.35082
\(907\) −23907.5 −0.875231 −0.437615 0.899162i \(-0.644177\pi\)
−0.437615 + 0.899162i \(0.644177\pi\)
\(908\) 4735.46 0.173075
\(909\) 138.262 0.00504496
\(910\) 21817.4 0.794770
\(911\) 40571.4 1.47551 0.737755 0.675069i \(-0.235886\pi\)
0.737755 + 0.675069i \(0.235886\pi\)
\(912\) 51436.9 1.86759
\(913\) 3913.11 0.141846
\(914\) −28605.1 −1.03520
\(915\) 7576.26 0.273731
\(916\) 6649.07 0.239838
\(917\) −8219.50 −0.296000
\(918\) −19709.7 −0.708625
\(919\) 20551.0 0.737667 0.368834 0.929495i \(-0.379757\pi\)
0.368834 + 0.929495i \(0.379757\pi\)
\(920\) −13652.5 −0.489248
\(921\) 17934.1 0.641637
\(922\) −17456.1 −0.623521
\(923\) −61535.6 −2.19444
\(924\) −2134.65 −0.0760008
\(925\) 1759.12 0.0625292
\(926\) −42102.4 −1.49414
\(927\) 191.323 0.00677872
\(928\) −24351.9 −0.861413
\(929\) 34068.4 1.20317 0.601587 0.798807i \(-0.294535\pi\)
0.601587 + 0.798807i \(0.294535\pi\)
\(930\) 64549.1 2.27597
\(931\) −6236.89 −0.219555
\(932\) −29378.1 −1.03252
\(933\) 10259.5 0.360000
\(934\) 27122.8 0.950197
\(935\) 4242.38 0.148386
\(936\) 211.465 0.00738455
\(937\) 15597.9 0.543824 0.271912 0.962322i \(-0.412344\pi\)
0.271912 + 0.962322i \(0.412344\pi\)
\(938\) −17092.6 −0.594981
\(939\) −52198.7 −1.81410
\(940\) −16244.0 −0.563639
\(941\) −22855.3 −0.791775 −0.395887 0.918299i \(-0.629563\pi\)
−0.395887 + 0.918299i \(0.629563\pi\)
\(942\) 29377.4 1.01610
\(943\) −3150.73 −0.108804
\(944\) 5337.71 0.184034
\(945\) −9948.44 −0.342458
\(946\) −7311.59 −0.251290
\(947\) 36670.7 1.25833 0.629164 0.777272i \(-0.283397\pi\)
0.629164 + 0.777272i \(0.283397\pi\)
\(948\) 12719.3 0.435764
\(949\) 35265.1 1.20628
\(950\) −10863.1 −0.370994
\(951\) −15779.0 −0.538031
\(952\) 2582.93 0.0879341
\(953\) −19922.8 −0.677192 −0.338596 0.940932i \(-0.609952\pi\)
−0.338596 + 0.940932i \(0.609952\pi\)
\(954\) −30.1866 −0.00102445
\(955\) 9194.16 0.311535
\(956\) 3184.49 0.107734
\(957\) −6644.24 −0.224428
\(958\) −37134.8 −1.25237
\(959\) −18830.6 −0.634068
\(960\) 7136.30 0.239920
\(961\) 84932.7 2.85095
\(962\) −23290.8 −0.780587
\(963\) 528.550 0.0176867
\(964\) 1655.41 0.0553081
\(965\) −44913.0 −1.49824
\(966\) 18574.0 0.618641
\(967\) 24523.8 0.815545 0.407772 0.913084i \(-0.366306\pi\)
0.407772 + 0.913084i \(0.366306\pi\)
\(968\) 1167.19 0.0387549
\(969\) 25177.9 0.834705
\(970\) −34470.3 −1.14100
\(971\) 4493.82 0.148520 0.0742602 0.997239i \(-0.476340\pi\)
0.0742602 + 0.997239i \(0.476340\pi\)
\(972\) 389.909 0.0128666
\(973\) −124.250 −0.00409380
\(974\) 45123.8 1.48446
\(975\) 10211.2 0.335405
\(976\) 11356.0 0.372436
\(977\) −18285.3 −0.598771 −0.299385 0.954132i \(-0.596782\pi\)
−0.299385 + 0.954132i \(0.596782\pi\)
\(978\) 65641.1 2.14619
\(979\) −13705.7 −0.447431
\(980\) −2648.51 −0.0863300
\(981\) −385.885 −0.0125590
\(982\) −56089.9 −1.82271
\(983\) −25850.8 −0.838772 −0.419386 0.907808i \(-0.637755\pi\)
−0.419386 + 0.907808i \(0.637755\pi\)
\(984\) −1119.58 −0.0362711
\(985\) 13887.8 0.449242
\(986\) −16332.2 −0.527509
\(987\) −10878.6 −0.350830
\(988\) 57709.7 1.85829
\(989\) 25526.9 0.820738
\(990\) −105.081 −0.00337342
\(991\) −26842.1 −0.860412 −0.430206 0.902731i \(-0.641559\pi\)
−0.430206 + 0.902731i \(0.641559\pi\)
\(992\) 70614.6 2.26010
\(993\) −139.531 −0.00445910
\(994\) 18617.2 0.594068
\(995\) 951.331 0.0303108
\(996\) 9861.99 0.313744
\(997\) −10468.1 −0.332526 −0.166263 0.986081i \(-0.553170\pi\)
−0.166263 + 0.986081i \(0.553170\pi\)
\(998\) 18359.6 0.582327
\(999\) 10620.3 0.336347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 77.4.a.c.1.2 4
3.2 odd 2 693.4.a.m.1.3 4
4.3 odd 2 1232.4.a.w.1.1 4
5.4 even 2 1925.4.a.q.1.3 4
7.6 odd 2 539.4.a.f.1.2 4
11.10 odd 2 847.4.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.2 4 1.1 even 1 trivial
539.4.a.f.1.2 4 7.6 odd 2
693.4.a.m.1.3 4 3.2 odd 2
847.4.a.e.1.3 4 11.10 odd 2
1232.4.a.w.1.1 4 4.3 odd 2
1925.4.a.q.1.3 4 5.4 even 2