Defining parameters
Level: | \( N \) | \(=\) | \( 77 = 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 77.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(77))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 16 | 10 |
Cusp forms | 22 | 16 | 6 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(6\) |
Plus space | \(+\) | \(10\) | |
Minus space | \(-\) | \(6\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(77))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | 11 | |||||||
77.4.a.a | $1$ | $4.543$ | \(\Q\) | None | \(3\) | \(4\) | \(12\) | \(7\) | $-$ | $-$ | \(q+3q^{2}+4q^{3}+q^{4}+12q^{5}+12q^{6}+\cdots\) | |
77.4.a.b | $2$ | $4.543$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-4\) | \(-4\) | \(14\) | $-$ | $+$ | \(q+(-1+\beta )q^{2}-2q^{3}+(1-2\beta )q^{4}+\cdots\) | |
77.4.a.c | $4$ | $4.543$ | 4.4.509800.1 | None | \(-4\) | \(-12\) | \(-18\) | \(-28\) | $+$ | $-$ | \(q+(-1+\beta _{2})q^{2}+(-3+\beta _{3})q^{3}+(6+\cdots)q^{4}+\cdots\) | |
77.4.a.d | $4$ | $4.543$ | 4.4.522072.1 | None | \(-2\) | \(14\) | \(10\) | \(-28\) | $+$ | $+$ | \(q+\beta _{2}q^{2}+(4+\beta _{1})q^{3}+(6-\beta _{2}-2\beta _{3})q^{4}+\cdots\) | |
77.4.a.e | $5$ | $4.543$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(1\) | \(2\) | \(-24\) | \(35\) | $-$ | $-$ | \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(9+\beta _{1}+\beta _{2})q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(77))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(77)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)